
An Extended Deep Learning Method for the
Navier Equation

Amattouch Mohamed Ridouan

Abstract—This article deals with the Navier equation for
simulating the elastic behavior of solids. We propose to solve this
equation using a combination of domain decomposition method
and meshless method trained with artificial neural networks.
The domain decomposition technique, which is employed to
solve the Navier partial differential equation, is the Schwarz
wave relaxation method. This method involves a parallel im-
plementation of the meshless method and will be trained using
a specific neural network approach. Finally, we present several
numerical test cases to validate the effectiveness of our methods.

Index Terms—Navier equations, schwarz domain decompo-
sition method, Artificial intelligence methods.

I. INTRODUCTION

Linear elasticity plays a crucial role in modeling the
deformation behavior of materials under mechanical loads.
In the absence of body forces, the vector equation of equilib-
rium, often referred to as the Navier equations, governs the
displacement field. Specifically, for the displacement vector
u, the Navier equations are given by:{

div(∇u) + 1
1−2ν∆u = 0

+ Boundary Conditions
(1)

Here, u represents the displacement vector, and ν denotes
the Poisson ratio. In practical scenarios, accurately comput-
ing the displacement field and integrating the deformation
and constraint fields is often more suitable. To address these
equations, a widely adopted approach is the finite element
method, which has been in elasticity models, by a number
of studies([1], [2], [3] and [4]).

While it is effective for simple geometries like cylinders
and tubes, finite element methods encounter challenges in
complex geometries, requiring fine mesh discretization for
convergence. However, memory processing limitations hin-
der their application in such cases. Spectral methods (e.g.,
[5], [6] and [7], [8]) offer an alternative, that offers increased
accuracy for certain scenarios. However, there are challenges
associated with these methods in selecting appropriate col-
location points or basis functions for complex domains.

A novel attempt to address domains with intricate geome-
tries is attained through meshless methods. These methods,
such as meshless schemes [9], [10], [11], [22], employ a
distribution of nodes to approximate solutions for partial dif-
ferential equations [23]. Meshless methods have been studied
by a number of scholars; in fact, the meshless method has the
advantage that its precision of interpolation is not affected
substantially by the distribution of the nodal [23]. Unlike

Manuscript received January 17, 2024; revised June 18, 2024.
M. R. Amattouch is a Professor of mathematics at the Department of

Mathematics, Mechanics, Cryptography and Numerical analysis University
Hassan II, Faculty of Science and Technics of Mohamedia, Morocco (e-mail:
mohamedridouan.amattouch@fstm.ac.ma).

finite element and volume methods, they exclusively rely on
node distributions. However, handling boundary conditions
remains a challenge. As a solution, [12] proposed converting
the boundary problem into an optimization problem, leverag-
ing metaheuristic or evolutionary algorithms to find optimal
solutions.

Recent advancements have seen the application of artifi-
cial neural networks, such as the Physics-Informed Neural
Network (PINN) [13], [14], [21], [24], to solve PDEs. This
approach was further extended in [15], incorporating domain
decomposition methods to expedite convergence. Despite
their promise, these methods often demand an extensive
number of collocation points, leading to slow and inefficient
convergence.

In this article, we propose a methodology to alleviate the
data burden associated with collocation points while solving
the Navier equations. Our approach formulates problem 1
as a global optimization task, akin to the work in [12], by
approximating solutions within a Fourier basis. Importantly,
we employ node meshes exclusively at the boundary, rather
than across the entire domain. To enhance convergence,
we integrate the Schwarz domain decomposition method,
employing fractional transmission conditions at sub-domain
interfaces. This results in a reformulated optimization prob-
lem, which we train to determine the general solution.

The structure of this article is as follows: we commence
by presenting our domain decomposition method in both
2D and 3D, considering Cartesian (and can be reformu-
lated to cylindrical coordinates). Subsequently, we introduce
our meshless method, featuring an artificial neural network
solver. Finally, we present numerical results, comparing them
against analytical solutions. Through simulation tests, we
demonstrate the effectiveness of our proposed method.

II. THE WAVEFORM RELAXATION DOMAIN
DECOMPOSITION METHOD

A. Domain Decomposition in 2D

The equation 1 can be expressed in 2D as follows:
2 1−ν
1−2ν

∂2u
∂x2 + 1

1−2ν
∂2u
∂y2 + ∂2v

∂x∂y = 0 on Ω

2 1−ν
1−2ν

∂2v
∂y2 + 1

1−2ν
∂2v
∂x2 + ∂2u

∂x∂y = 0 on Ω

+BC on ∂Ω

(2)

Here, u =

(
u
v

)
, and Ω represents our boundary domain.

In the following sections, we present the principles of our
Schwarz domain decomposition method. To illustrate, let’s
consider a scenario where our domain Ω is divided into two
sub-domains: Ω1 and Ω2, separated by an interface Γ (refer
to Figure 1).

By conducting calculations (for detailed derivations, refer
to [16], [17], [12]), we find that the eigenvalues of the

IAENG International Journal of Applied Mathematics

Volume 54, Issue 9, September 2024, Pages 1833-1839

__

Fig. 1. Domain split into two sub-domains

operator associated with equations 2 are given by:

λ± = −ik ± k

√
ν(3− ν)

(1− 2ν)2

It’s important to note that, in general, 1 − 2ν > 0 (−1 <
ν < 0.5 for most materials). This insight leads us to develop
a novel domain decomposition method. We establish two
sequences, up

1 and up
2 (p=1,2), as follows: Starting with initial

functions u0
1 and u0

2 defined on Ω1 and Ω2 respectively, we
iteratively compute up

1 and up
2 by solving auxiliary problems:

L(up+1
1) = 0 on Ω1

BC for up+1
1 on ∂Ω

B1(u
p+1
1) = B2(u

p
2) on Γ

(3)

And 
L(up+1

2) = 0 on Ω2

BC for up+1
2 on ∂Ω

B2(u
p+1
2) = B1(u

p
1) on Γ

(4)

Where

L(u) =

(
2 1−ν
1−2ν

∂2u
∂x2 + 1

1−2ν
∂2u
∂y2 + ∂2v

∂x∂y

2 1−ν
1−2ν

∂2v
∂y2 + 1

1−2ν
∂2v
∂x2 + ∂2u

∂x∂y

)
(5)

B1(u) =

(
∂u
∂x + ∂u

∂y
∂2u
∂y

)
(6)

And

B2(u) =

(
∂u
∂x + ∂u

∂y

−∂u
∂y

)
(7)

We prove the convergence of our algorithms 3 and 4 within
two iterations. These algorithms are independent and can be
executed in parallel. We also extend this method to splitting
into multiple sub-domains. In Figure 2, we illustrate the
division of the domain into 2n sub-domains Ωi, where Γi

denotes the interface between the sub-domains Ωi and Ωi+1.
For i = 1 to 2n, we construct sequences up

i (p=1,2) as
follows: Starting with initial functions u0

i defined on Ωi, we
iteratively compute up

1 and up
2 by solving auxiliary problems:

L(up+1
i) = 0 on Ωi

BC for up+1
i on ∂Ω ∩ Ωi

B1(u
p+1
i) = B2(u

p
i+1) on Γi

B2(u
p+1
i) = B1(u

p
i−1) on Γi−1

(8)

Fig. 2. Domain split into 2n sub-domains

B. Domain Decomposition in 3D Cartesian Coordinate

The equations 1 can be extended to 3D as follows:

2 1−ν
1−2ν

∂2u
∂x2 + 1

1−2ν

(
∂2u
∂y2 + ∂2u

∂z2

)
+ ∂2v

∂x∂y + ∂2w
∂x∂z = 0 On Ω

2 1−ν
1−2ν

∂2v
∂y2 + 1

1−2ν

(
∂2v
∂x2 + ∂2v

∂z2

)
+ ∂2u

∂x∂y + ∂2w
∂y∂z = 0 On Ω

2 1−ν
1−2ν

∂2w
∂z2 + 1

1−2ν

(
∂2w
∂y2 + ∂2w

∂x2

)
+ ∂2v

∂z∂y + ∂2u
∂x∂z = 0 On Ω

+BC On ∂Ω

(9)

Here, u =

 u
v
w

. In the following sections, we outline the

principles of our Schwarz domain decomposition method for
3D Cartesian coordinates. To illustrate this, let’s consider
a scenario where our domain Ω is divided into two sub-
domains: Ω1 and Ω2, separated by an interface Γ (refer to
Figure 3).

Fig. 3. Domain split into two sub-domains

Through computations, we determine the eigenvalues of

IAENG International Journal of Applied Mathematics

Volume 54, Issue 9, September 2024, Pages 1833-1839

__

the operator associated with equations 9 as follows:

λ± = −i(k + l)±

√
∆

ν(3− ν)

(1− 2ν)2

Where

∆ = −(k + l)2 + 8
1− ν

(1− 2ν)2
(k2 + l2)

Here, k (respectively l) is the frequency associated with the
variable y (respectively z). We can further express ∆ as

∆ = −(k + l)2 + γ(k2 + l2) = (c1l + c2k)(c3l + k)

With

c1 = −1 +
√
1 + (γ − 1)2, c2 = γ − 1,

And

c3 =
γ − 1

−1 +
√
1 + (γ − 1)2

It’s important to note that ∆ > 0 in general (−1 < ν <

0.5 <
√
3
2). Based on these insights, we develop a novel

domain decomposition method. We establish two sequences,
up
1 and up

2 (p=1,2), as follows: Starting with initial functions
u0
1 and u0

2 defined on Ω1 and Ω2 respectively, we iteratively
compute up

1 and up
2 by solving auxiliary problems:
L(up+1

1) = 0 on Ω1

BC for up+1
1 on ∂Ω

B1(u
p+1
1) = B2(u

p
2) on Γ

(10)

And 
L(up+1

2) = 0 on Ω2

BC for up+1
2 on ∂Ω

B2(u
p+1
2) = B1(u

p
1) on Γ

(11)

Where L is the operator associated with equation 9

B1(u) =
∂u

∂x
−D

1
2

c1k+c2j
D

1
2

c3k+j(u) (12)

And

B2(u) =
∂u

∂x
+D

1
2

c1k+c2j
D

1
2

c3k+j(u) (13)

Here, D
1
2

c1k+c2j
(and D

1
2

c3k+j) represents the Caputo deriva-
tive of a function f in the direction c1k+ c2j (and c3k+ j).
It’s worth noting that the Fourier transform of D

1
2

c1k+c2j
(and

D
1
2

c3k+j) can be expressed as

F(D
1
2

c1k+c2j
)(u)(k, l) =

√
i(c1k + c2l)F(u)(k, l)

and

F(D
1
2

c3k+j)(u)(k, l) =
√
i(c3k + l)F(u)(k, l)

Consequently, we demonstrate that the two algorithms 10
and 11 converge within two iterations. The same approach
is extended to constructing a multiple domain decomposition
method in 3D as presented for 2D in section II-A.

III. ARTIFICIAL NEURAL INTELLIGENCE METHOD

In this section, we seek an approximation uapprox for the
solution of problems 3 and 10 in the Fourier basis.

In 2D, we seek coefficients alij , blij , clij , dlij , for i, j =
1, . . . , N and l = 1, 2, such that:

uapprox =

N∑
i=0

N∑
j=0

a1
ij cos(iπ

x

L
) cos(jπ

y

L
)

+b1ij cos(iπ
x
L
) sin(jπ y

L
)

+c1ij sin(iπ
x
L
) cos(jπ y

L
) + d1ij sin(iπ

x
L
) sin(jπ y

L
)

And similarly for vapprox. For simplicity, we can write:

uapprox =
M∑
i=0

a1i Θivapprox =
M∑
i=0

a2i Θi

Where (Θi)i represents the Fourier basis.
The coefficients uapprox minimize the objective function:

ϵ = ∥L(uapprox)∥+ ∥B1(uapprox)−B2(uprec)∥+
∥BC(uapprox)∥ = ϵ1 + ϵ2 + ϵ3

Here, uprec =

(∑M
i=0 ap

1
i Θi∑M

i=0 ap
2
i Θi

)
uprec represents the initial condition (which can be null)

or the last obtained value from 4.
For the first and second parts of the objective function (ϵ1

and ϵ2), we define the norms as:

∥uapprox∥ =

M∑
i=0

(a1i)
2 + (a2i)

2

By hand calculation, we determine L(uapprox) and
B1(uapprox)−B2(uprec) and compute the two norms:

ϵ1 = ∥L(uapprox)∥ and ϵ2 = ∥B1(uapprox)−B2(uprec)∥

It’s important to note that the norms ϵ1 and ϵ2 are quadratic
functions of the coefficients ai and are convex, ensuring that
the stochastic gradient can be effectively used and converge.

The norm ϵ3 associated with the boundary condition is
approximated as follows: We discretize the boundary of the
sub-domain Ωi with distributed nodes (refer to Figures 4 and
5).

Fig. 4. Nodes on the boundary of the domain in 2D

IAENG International Journal of Applied Mathematics

Volume 54, Issue 9, September 2024, Pages 1833-1839

__

Fig. 5. Nodes on the boundary of the domain in 3D

After defining the nodes xj
i (j = 1, . . . , NN) on the

boundary of the sub-domain Ωi, we compute the norm ϵ3:

ϵ3 =
NN∑
i=0

|BC(uapprox)(xj)|

The boundary condition BC consists of general Dirichlet,
Neumann conditions, or other differential conditions, typi-
cally written as BC(uapprox) = 0 in equations 3 or 10.

This entire loss function ϵ is then used to train an Artificial
Neural Network (ANN), as described in [15] and [18]. The
method is summarized in Figure 6. The training data xi is
quasi-uniformly selected and contains the common interface
points in the sub-domain Ωi. The loss function is defined
subdomain-wise and includes the interface conditions to
stitch the sub-domains together at the boundary.

Fig. 6. Schematic of our ANN method employed in a subdomain

The optimization problem of this ANN is guaranteed to
be convergent with the gradient descent method due to the
convex nature of the loss function.
This extended result underscores a well-founded approach
of integrating boundary conditions into the ANN training
process for PDEs. Building a complete loss function with
a diversity of boundary conditions and including classic

optimization techniques sets up a very promising framework
for a variety of problems in science and engineering.

IV. NUMERICAL SIMULATIONS

To evaluate the efficiency of our proposed method, we
compare the simulation results of our equation with estab-
lished finite element benchmarks like FreeFEM++ [19] and
FEniCS [20]. We provide four examples of different domains
for demonstration.

First Example: Consider a polygonal domain Ω (see
Figure 7). The bottom and right boundaries ΓD have fixed
conditions, while a linear loading f is applied to the left
upper edge of the plate ΓN .

Fig. 7. Domain Ω with load f

The problem is governed by the same boundary value
formulation as before:

div(∇u) + 1
1−2ν∆u = 0 on Ω

σ.n = 0 on ΓD

u = 0 on ΓN

(14)

where g represents the surface loading, and the Dirichlet
boundary condition is applied to the bottom part of the
boundary ΓD. The Young’s modulus E = 69000Pa,
Poisson’s ratio ν = 0.346, and the load is f = 200MPa.

To evaluate the performance of our computational method,
we divide the computational domain into three subdomains.
The interfaces between these subdomains are represented by
two lines. Within each subdomain, the network architecture
comprises six hidden layers, utilizing the hyperbolic tangent
(tanh) activation function. We use 100 interface points on
each interface and 700 boundary points.

The simulation results for the predicted solution and
a classic FreeFem++ simulation are presented in Figure
8, demonstrating that the two simulations match closely.
The L2 error between our method’s solution and the finite
element solution obtained using FreeFem++ (in the P2

space) is 3.37 10−3.

To test the convergence of our algorithm, we define the
interface loss error, expressed as follows:

MSE =
∑

interfacej

∑
pointi∈interfacej

∥uj1
i − uj1

i ∥

IAENG International Journal of Applied Mathematics

Volume 54, Issue 9, September 2024, Pages 1833-1839

__

Here, uj1
. denotes the solution in subdomain j1 and uj2

.

denotes the solution in subdomain j2, which shares interface
j with j1. The interface loss error in our simulation is
1.33 10−5.

Simulation of u Simulation of v

Fig. 8. Displacement coordinates

Second Example: Consider the same polygonal domain
Ω (see Figure 9). The bottom and right boundaries ΓD have
fixed conditions, and a linear loading f is applied to the left
edge of the plate ΓN .

Fig. 9. Domain Ω with load f

The problem is again governed by the same boundary
value formulation:


div(∇u) + 1

1−2ν∆u = 0 on Ω

σ.n = 0 on ΓD

u = 0 on ΓN

(15)

The Young’s modulus E = 69000Pa, Poisson’s ratio
ν = 0.346, and the load is f = 200MPa.
We divide again the computational domain into three
subdomains. The interfaces between these subdomains
are represented by two lines. Within each subdomain, the
network architecture comprises six hidden layers, utilizing
the hyperbolic tangent (tanh) activation function. We use
100 interface points on each interface and 700 boundary
points.

The simulation results for the predicted solution and
a classic FreeFem++ simulation are presented in Figure
10, demonstrating that the two simulations match closely.
The L2 error between our method’s solution and the finite
element solution obtained using FreeFem++ (in the P2

space) is 3.04 10−3.

To test the convergence of our algorithm, we define the
interface loss error, expressed as follows:

MSE =
∑

interfacej

∑
pointi∈interfacej

∥uj1
i − uj1

i ∥

Here, uj1
. denotes the solution in subdomain j1 and uj2

.

denotes the solution in subdomain j2, which shares interface j
with j1. The interface loss error in our simulation is 1.2 10−5.

Simulation of u Simulation of v

Fig. 10. Displacement coordinates

Third Example: Consider a rectangular domain Ω with a
central circular hole of radius R (see Figure 11). The bottom
boundary ΓD has fixed conditions, and a linear loading f is
applied to the upper edge of the plate ΓN . The problem
aims to study the shape deformation of the circle and stress
concentration around its circumference.

Fig. 11. Domain Ω with load f

The problem formulation remains the same:


div(∇u) + 1

1−2ν∆u = 0 on Ω

σ.n = 0 on ΓD

u = 0 on ΓN

(16)

The Young’s modulus E = 69000Pa, Poisson’s ratio
ν = 0.346, and the load is f = 200MPa.
To evaluate the performance of our computational method,
we divide the computational domain into four subdomains.
The interfaces between these subdomains are represented by
four lines. Within each subdomain, the network architecture
comprises five hidden layers, utilizing the hyperbolic tangent
(tanh) activation function. We use 100 interface points on
each interface and 1000 boundary points.

The simulation results for the predicted solution and a
classic FreeFem++ simulation are presented in Figure 12,
demonstrating that the two simulations match closely. The L2

error between our method’s solution and the finite element

IAENG International Journal of Applied Mathematics

Volume 54, Issue 9, September 2024, Pages 1833-1839

__

solution obtained using FreeFem++ (in the P2 space) is
1.04 10−1.
The interface loss error in our simulation is 4.47 10−4.

Simulation of u Simulation of v

Fig. 12. Displacement coordinates

Last Example: Now, we extend the domain to 3 dimen-
sions (Figure 13).

Fig. 13. 3D Domain Ω

We consider the same equation with the same boundary
conditions as in problem 16.
To evaluate the performance of our computational method,
we divide the computational domain into four subdomains.
The interfaces between these subdomains are represented
by four surfaces. Within each subdomain, the network
architecture comprises seven hidden layers, utilizing the
hyperbolic tangent (tanh) activation function. We use 1000
interface points on each interface and 10000 boundary points.

The simulation results for the predicted solution and a
classic FreeFem++ simulation are presented in Figure 14,
demonstrating that the two simulations match closely. The L2

error between our method’s solution and the finite element
solution obtained using FreeFem++ (in the P2 space) is
9.04 10−1.
The interface loss error in our simulation is 5.46 10−3.

Fig. 14. Simulation of the norm of u on the domain’s surface

The results we obtained for the last examples are similar to

the simulations in the Freefem++ Benchmark with efficient
accuracy. In fact, the L2(Ω) error between the solutions of
our methods and the solution obtained by the Freefem++
software is on the order of 0.01 and 0.001. It is worth
noting that the Freefem++ software requires a finer mesh to
achieve better accuracy, which comes at the cost of increased
computation time.

V. CONCLUSION

In this article, we have introduced a novel approach to
solving the elasticity model that combines three distinct
methods: a meshless method, a fast domain decomposition
method, and an artificial neural network approach. The
integration of these methods offers several advantages in
terms of efficiency and accuracy.

Our proposed method operates primarily on the boundary
of the domain and leverages wave relaxation techniques
along with artificial neural networks to accelerate conver-
gence. By focusing on the domain’s boundary and employing
advanced computational tools, we achieve notable improve-
ments in the efficiency of the solution process.

To validate the effectiveness of our method, we conducted
numerical simulations and compared the results with estab-
lished benchmarks such as FreeFEM. The obtained accura-
cies for various basic geometries showcased the method’s
capabilities.

One of the key strengths of our approach is its adapt-
ability to complex simulations involving intricate domains,
particularly in higher dimensions. By reducing the need for
extensive collocation points and utilizing domain decompo-
sition techniques, our method can efficiently accommodate
parallelized computation.

In the future, we intend to extend this approach to more
complex scenarios, including applications to the Navier-
Stokes equation and other nonlinear mechanical models. The
combination of innovative techniques presented here has the
potential to significantly enhance the accuracy and efficiency
of simulations in various scientific and engineering domains.

REFERENCES

[1] Fenner,R.T. (1975). Finite element methods for engineers. Edi-
tor:Macmillan

[2] Axelsson,O. (1976). A class of iterative methods for finite element
equations. Comp. Meth. Appl. Mech. Eng.

[3] Arnold, D.N. and Falk, R.S. (1988). A new mixed formulation for
elasticity. Numer. Math., 53:13–30.

[4] Brenner, S.C. and Sung, L. (1992). Linear Finite Element Methods
for Planar Linear Elasticity. Mathematics of Computation, Vol. 59,
No. 200, pp. 321-338. https://doi.org/10.2307/2153060

[5] Le Louër, Frédérique, L.L. (2014). A high order spectral algorithm
for elastic obstacle scattering in three dimensions. Journal of Compu-
tational Physics, Volume 279, p. 1-17. doi:10.1016/j.jcp.2014.08.047

[6] Ganesh, M. ; Hawkins, S. C. (2008). A high-order tangential basis
algorithm for electromagnetic scattering by curved surfaces. Jour-
nal of Computational Physics, Volume 227, Issue 9, p. 4543-4562.
https://doi.org/10.1016/j.jcp.2008.01.016

[7] Chen H., Su Y., and Shizgal B.D. (2000). A direct spectral collocation
Poisson solver in polar and cylindrical coordinates. J. Comput. Phys.
160:453-469.

[8] Fornberg B. (1987). The pseudospectral method: comparisons with fi-
nite differences for the elastic wave equation. Geophysics, 52:483–501.

[9] Larsson, E., Shcherbakov, V., Heryudono, A. (2017). A least squares
radial basis function partition of unity method for solving pdes. SIAM
J. Sci. Comp. 39(6), A2538–A2563

[10] Piret, C., Dunn, J. (2016). Fast rbf ogr for solving pdes on arbitrary
surfaces. AIP Conference Proceedings 1776(1), 070005.

IAENG International Journal of Applied Mathematics

Volume 54, Issue 9, September 2024, Pages 1833-1839

__

[11] S. N. Atluri and T. Zhu (2000). The Meshless Local Petrov-Galerkin
(MLPG) approach for solving problems in elasto-statics. In Computa-
tional Mechanics, vol.25,no.2,pp.169-179.

[12] Amattouch M. R. and Belhadj H.(2020). An Heuristic Scheme for a
Reaction Advection Diffusion Equation. Heuristics for Optimization
and Learning.

[13] Mattey, R. and Ghosh, S. (2022). A Physics Informed Neural Network
for Time-Dependent Nonlinear and Higher Order Partial Differential
Equations. Computer Methods in Applied Mechanics and Engineering,
Volume 390, 114474, ISSN 0045-7825.

[14] Raissi, M., Perdikaris, P. and George Em Karniadakis (2019). Physics-
informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, Volume 378, Pages 686-
707.

[15] Jagtap, A.D., Karniadakis, G.E (2020). Extended physics-informed
neural networks (XPINNs): A generalized space-time domain de-
composition based deep learning framework for nonlinear partial
differential equations. Commun. Comput. Phys., 28, pp. 2002-2041.

[16] Amattouch, M.R., Nagid, N. and Belhadj, H. (2017). A modified fixed
point method for The Perona Malik equation, Journal of Mathematics
and System Science 7, 175-185.

[17] Amattouch, M.R. and Belhadj, H. (2017). Combined Optimized Do-
main Decomposition Method and a Modified Fixed Point Method for
Non Linear Diffusion Equation, Applied Mathematics and Information
Sciences, 11, No. (1), 201-207.

[18] Jagtap, A.D., Kawaguchi, K. and Karniadakis,G.E. (2020). Locally
adaptive activation functions with slope recovery for deep and physics-
informed neural networks, Proc. R. Soc. A 476: 20200334.

[19] Hecht, F. (2012). New development in FreeFem++. Journal of Numer-
ical Mathematics. https://doi.org/10.1515/jnum-2012-0013

[20] Langtangen, H. P. and Logg, A. (2016). Solving PDEs in Python, The
FEniCS Tutorial. Simula SpringerBriefs on Computing (SBRIEFSC,
volume 3)

[21] Yucheng Fan, and Dong Qiu (2024). On the Evolution of COVID-19
Virus Based on the Prediction Model of Deep Learning and Emotion
Analysis, Engineering Letters, vol. 32, no. 2, pp 412-428.

[22] Mohammed Baati, Nada Chakhim, Mohamed Louzar, and Abdellah
Lamnii (2024). Numerical Approximation of the One-dimensional In-
verse Stefan Problem Using a Meshless Method, Engineering Letters,
vol. 32, no. 1, pp112-122.

[23] Xie, H., Zhang, Z., Jiang, Z., and Zhou, J. (2023). Method of Particular
Solutions for Second-Order Differential Equation with Variable Coef-
ficients via Orthogonal Polynomials. Journal of Function Spaces,2023,
Article ID 9748605, 10 pages. https://doi.org/10.1155/2023/9748605

[24] Antonion, K., Wang, X., Raissi, M., and Joshie, L.(2024). Machine
Learning Through Physics–Informed Neural Networks: Progress and
Challenges. Academic Journal of Science and Technology, 9(1), 46-49.
https://doi.org/10.54097/b1d21816

IAENG International Journal of Applied Mathematics

Volume 54, Issue 9, September 2024, Pages 1833-1839

__

