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Abstract—In the research of dynamic MRI imaging, we have 

utilized the minimax-concave (MC) function to replace the 

traditional nuclear norm, thereby significantly enhancing the 

model's fitting accuracy. The Total Variation (TV) duality 

technique is introduced to refine the model resolution further, 

better capturing underlying structures in MRI data. The 

splitting method is also employed to establish a comprehensive 

solution framework for the model. A high-efficiency algorithm, 

designed using the proximity operator, is developed to solve 

sub-problems within this framework, ensuring swift and 

accurate convergence. Numerical experiments on various 

dynamic MRI datasets and undersampling templates 

demonstrate that the new method outperforms traditional 

approaches in several key metrics, including CPU runtime, 

iteration count, and reconstruction performance. The new 

method reduces computational overhead, expedites the image 

reconstruction process, and significantly improves the quality of 

reconstructed images. 

 
Index Terms—DMRI reconstruction, MC function, 

Low-rank,   Primal-dual 

I. INTRODUCTION 

YNAMIC magnetic resonance imaging (DMRI) is a 

revolutionary advancement in medical diagnostic 

technology, providing both temporal and spatial 

information through magnetic resonance signals. This 

technique has a wide range of clinical applications, 

particularly cardiovascular imaging [1]. However, traditional 

DMRI methods suffer from longer imaging times, which have 

several drawbacks. Firstly, longer scanning times limit the 

spatiotemporal resolution of MR images and result in a lower 

signal-to-noise ratio. Secondly, extended scanning durations 

can cause discomfort for patients and increase the likelihood 

of motion artifacts. 
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Consequently, numerous researchers have focused on 

reducing acquisition time and improving imaging quality 

since the inception of MRI technology. One such approach is 

multi-coil parallel magnetic resonance imaging technology 

[2-3]. Nonetheless, inadequate spatial sampling violates the 

conventional Nyquist criterion, producing aliasing artifacts 

during the inverse Fourier transform process. To address this 

issue, the compressive sensing theory [4-5] proposes that 

accurate image reconstruction can be achieved from 

undersampled Fourier data, also known as k-space. Therefore, 

magnetic resonance imaging research based on compressive 

sensing theory has received widespread attention [6]. 

In dynamic magnetic resonance imaging research based on 

compressive sensing, the dynamic MRI reconstruction model 

can generally be expressed as 

2
min A

2
( ),

1
FX

X B X  S                      (1) 

where 
F

represents the Fourier norm, 2
( ),  H

F
A tr A A  

HA denotes the Hermitian transpose of the matrix A , 

( )X m n d   is a dynamic MR image. d represents a 

dynamic image with d  dynamics, each of which is the spatial 

dimension m n . The matrix A RF  is the sampling 

operator, where R and F are the Fourier transform and 

sampling mask for each time frame, respectively. B represents 

undersampled data,  ( )XS   represents a sparse transformation, 

and    is the balance parameter. Based on the sparse 

representation theory, a series of methods for processing 

dynamic magnetic resonance reconstruction have been 

proposed successively, such as k t  Sparse [7], k t  Focus 

[3]. Its characteristic is that it does not use wavelet transform, 

does not directly enforce the sparsity of the image, but further 

sparses the image using initial estimated values [8]. Dynamic 

MRI data is correlated in both time and space, and the 

reconstruction results generated by such methods may be 

affected by low spatial or temporal resolution. For example, 

k-t Sparse performs well on cardiac MRI with periodic motion 

data but poorly on non-periodic data  [9]. 

Recently, another popular strategy is to consider low rank 

in the model to find a solution that is both sparse and low rank 

(i.e., spatiotemporal MRI signals) [10]. This model type is 

known as the k-t SLR (k-t Sparse and Low-rank approach) 

model [11-12], which transforms a dynamic MR image into a 

so-called Casorati matrix,  where each column and row 

correspond to a frame and a voxel, respectively. It can recover 

lost or damaged matrix terms under low-rank and incoherent 

conditions, further accelerating dynamic MRI. However, TV 

regularization in k-t SLR can reduce the efficiency of 
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reconstructed images due to the staircase effect. In recent 

years, some researchers have viewed dynamic MR images as 

a combination of low-rank components (L) and sparse 

components (S) and regularized them using different 

constraints to obtain the L+S model [13]. The main feature of 

this type of method is that by subtracting the background from 

the image, the remaining part becomes "sparser" than the 

dynamic image itself, which also brings broader application 

prospects for models based on compressive sensing. 

Trémoulhéac proposed the kt-RPCA model [1] by 

introducing robust principal component analysis (RPCA) 

[14-15], which uses the time Fourier transform of sparse 

components to reconstruct dynamic MRI as the sum of 

low-rank and sparse components. Compared with the 

reconstruction model regularized only by low-rank or sparse 

constraints, combining low-rank and sparse constraints can 

significantly improve dynamic imaging results. Due to its 

excellent performance, it has received attention and 

application since its proposal [16-21]. Yao et al. [22-23] 

summarized the dynamic MRI reconstruction model in such 

situations as: 

2

*
min

1

2
A

F TVX
X B X X                   (2) 

where 
*

represents the nuclear norm, which is the convex 

envelope of the rank function, 
TV

 represents the total 

variation (TV) norm,    and    are parameters. Therefore, 

model (2) is a convex relaxation model that can be numerically 

solved using convex optimization algorithms, such as ADMM, 

primal-dual methods, etc. However, since incoherence may 

not always be satisfied in actual data, the optimal solution of 

traditional RPCA convex models may experience serious 

deviation [24]. In addition, in each iteration, the kernel norm 

requires a singular value decomposition of the matrix, which 

results in significant computation. Simply summing does not 

take into account the difference in singular value size. Finding 

alternatives to the kernel norm has become a new direction in 

research. In recent years, nonconvex penalty functions have 

successfully replaced the l0-norm [25-26]. Inspired by this, 

researchers have introduced nonconvex methods into the study 

of magnetic resonance imaging, resulting in a series of 

meaningful achievements  [27-29]. 

This article considers introducing the nonconvex 

minimax-concave (MC) penalty function into the model (2),  

2
min A ( , ) .

1

2
MCF TVX

X B X a X     

We are constructing the new dynamic MRI reconstruction 

nonconvex model and decomposing the model using the 

primal-dual idea.  

 The rest of the paper is organized as follows:  In Section 2, a 

new nonconvex model is constructed using the MC penalty 

function. The algorithm for solving this model is presented in 

Section 3; The experiment is given in Section 4. Finally, a 

summary is provided. 

II. MCTV MODEL 

In this section, we first review the definition and properties 

of the MC penalty function, then use this function to construct 

a regularization term and provide a dynamic MRI nonconvex 

model. 

A. Minimax-concave (MC) penalty function 

Definition 2.1. [25] The Minimax-concave (MC) penalty 

function   MC R R：  is defined as 

2 1
| | ,     | | ,

2

1 1
,              

(

  | | , 

)

2

,MC

a
x x x

a

x
a

x

a

a


 

 
 


                      (4) 

where 0a    is a parameter. Figure.1. shows the graph of 

parameters a  with values of  0.5, 1, and 1.5, respectively. 

 

Fig. 1. ( , )MC x a  penalty function 

 Inspired by the definition and graphics of the MC 

function, construct the following function ( , )MC x a  

( , ) | | ( , ),MC MCx a x x a                             (5) 

as illustrated in Figure. 2. 

 

Fig. 2. ( , )MC x a  function 
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From the definitions and graphs of functions ( , )MC x a  

and ( , )MC x a , it can be inferred that functions ( , )MC x a  and 

( , )MC x a  have the following properties. 

Properties 2.1.   

1) The function ( , )MC x a  is a continuous nonconvex 

function,  ( , )MC x a  is a continuous convex function; 

2) ( , ) ( , )MC MCx a x a   , ( , ) ( , )MC MCx a x a   ; 

3) 0 ( , ) | |MC x a x  ; 

4) If the parameter satisfies 0 1/a   , then the 

function  

 
21

( ) ( , ) ( )
2

MCx x a x t     

 is strictly convex, where  is the parameter. 

Proximity operators are essential in handling sparse models 

and regularization optimization problems [30]-[35]. 

Promoting sparsity enables models to achieve better 

interpretability and lower computational costs while 

maintaining predictive performance. Based on the definition 

and properties of the ( , )MC x a  function, this article adopts 

the expression of  

( , ) | | ( , ),MC MCx a x x a                           (6) 

and its corresponding proximity  operator is described as  

21
prox ( ; , ) arg min ( , ) ( ) ,

2
M

x
Ct a x a x t  

 
   

 

        (7) 

where 0  is called the proximity parameter. 

B. MCTV model 

Figure 1 shows the ( , )MC x a  function is more flexible in 

fitting performance than the kernel norm and has good penalty 

function properties. In the DMRI reconstruction model (2), 

we consider replacing the kernel norm with the MC function 

2
min A ( , ) ,

1

2
MCF TVX

X B X a X                (8) 

where ( )MC is a multivariate extension of (6), 0,  0    

is the regularization parameter. 

To solve the model (8), firstly, we use the dual form of 

TV
X  as follows 

Xmax , max , ,
TV Y Y

X DX Y X D Y
 

                 (9) 

where X X   , { :| | 1}Y Y   , D and D represent 

gradient and divergence operators, respectively. The model (8) 

can be transformed into a min-max problem using the 

aforementioned dual formula (9), 

2

X

1
min max ( , ) A ( ; .) ,

2
MCFX Y

X Y X B X a X DE Y 


        (10) 

 If 0,  >0  , then problem (10) is a total variational 

regularization model. If 0,  =0  , then problem (10) is an 

MC function minimization model. Therefore, we refer to 

model (10) as the MCTV model. 

III. ALGORITHM 

In this section, we design a specific method for solving the 

problem(10). To simplify the expression, let  

21
( ) A

2 F
f X X B  , 

then the model be expressed as 

Xmin max ( , ) ( ) , ,( ; )MC
X Y

X Y f X XE a X D Y 


           (11) 

which is a typical min-max problem. The commonly used 

methods for solving such issues include ADMM [36], 

splitting algorithm[37], primal-dual algorithm[38], etc. This 

article uses the primal-dual and proximity-splitting 

framework to solve the problem (10), specifically, 

1 1

2

2

1 1

arg min ( , ) ( ), ,

1
            ,

2

1
arg min ( )2

2
,,

k MC k k k
X

k F

k k k k FY

X X a f X X X X D Y

X X

Y X X D Y Y Y

 






 

 



       




 



     


  (12) 

where, ( ) ( )H

k kf X A AX B   , 0, 0, 0, 0        are 

parameters. Next, we discuss calculating the X and Y 

sub-problems separately. 

For the X subproblem, after relaxing and omitting  

constants, it degenerates into the calculation of neighboring 

operators for the MC penalty function, i.e 
2

1

1
arg min ( , ),

2
kk MC

FX
X X X X a              (13) 

where 1( ( ) )k k k kX X f X D Y      . Therefore, the 

problem (13) can be solved by referring to equation (7) to 

obtain the result.  

The Y subproblem can be directly calculated using the 

gradient projection algorithm. Set 1(2 )k k k kY Y D X X    , 

then,  

1 sgn( ) min(| |,1),k k kY Y Y                       (14) 

where sgn( )  represents the sign function. 

Now, we provide a specific algorithm, abbreviated as 

MCTV. 

 

Algorithm (MCTV): 

Step 0 Initialization: 

Input matrices ,  A RF B , given parameters 0a  , 

, , , ,     and given initial values 
0 0
,X Y . Let k:=0;  

Step 1: Compute 1kX   by (13); 

Step 2:  Compute 1kY   by (14); 

Step 3: Let 1 1 1( , )k k kW X Y   , if 1k kW W   2‖ ‖  , STOP; 

Otherwise, let : 1k k   go back to Step 1. 

IV. NUMERICAL EXPERIMENTS 

This section conducts numerical experiments on the 

MCTV method proposed in the previous section to verify its 

effectiveness. The experimental data were obtained using the 

cardiac cine (cine 256*256*24) and cardiac infusion 

(perfusion 192*192* 40) provided in reference [22], as shown 

in the first line of Figure 3. Three common sampling types are 

selected for the sampling template, as shown in the second 

IAENG International Journal of Applied Mathematics

Volume 54, Issue 9, September 2024, Pages 1840-1846

 
______________________________________________________________________________________ 



 

row of Figure 4. They are Random, Cartesian, and Radial 

sampling templates from left to right. The testing environment 

for the heart movie experiment is 12GB of memory, 3.7GHz, 

MATLAB version R2018a.  

The experiment is divided into two parts. In the first part, 

the cine data is reconstructed and compared with ktSLR [12], 

ktRPCA [1], and TVLR [22] in dynamic magnetic resonance 

studies. The second part conducts experiments on fusion data, 

with the primary purpose of verifying the convergence 

performance of the method and comparing it with TVLR. 

 

   
                cine data                                            perfusion data  

 

Fig. 3. Experimental original data 

 

   
 

Fig. 4.   Experimental sampling templates 

 

In the experiment, the parameter settings provided in the 

literature were used. In the MCTV method proposed in this 

chapter, the MC penalty parameter a=0.05 was used, while the 

other parameters were set using the settings in TVLR [22]. 

The evaluation indicators include PSNR (Peak 

Signal-to-Noise Ratio), RMSE (Root Mean Squared Error), 

and CPU time, where PSNR is defined as follows: 
2

k

10 2

k

X
PSNR 10lg .

X

F

F
X




 

A.  Cine Data Testing 

This subsection tests and compares the Cine data with some 

existing classical methods. 

 

 

 
 

Fig. 5. Results  under the Random template at 0.12 sampling rate 

 

  
 

Fig. 6. Results  under the Cartesia template at 0.18 sampling rate 

 

 
 

Fig. 7. Results  under the radial template at 0.13 sampling rate 

 

Figures 5-7 show the results of the 21st frame of the cine 

IAENG International Journal of Applied Mathematics

Volume 54, Issue 9, September 2024, Pages 1840-1846

 
______________________________________________________________________________________ 



 

sequence under various templates and methods. It can be seen 

from this that the reconstruction results of various methods 

vary under different sampling templates. The overall quality 

of reconstructed images obtained by the Random template 

with an intuitive upsampling rate of 0.12 is the best. In 

contrast, the quality of reconstructed images obtained by each 

method under the Radial template is poor. However, under 

different sampling templates, it can be seen that the 

reconstructed images obtained by the MCTV method perform 

the best among the four methods. Both ktSLR and ktRPCA 

have significant artifacts. 

Figures 8-10 show the Boxplot of PSNR and RSME values 

obtained by four methods for data cine reconstruction under 

three different templates. The blue box represents the range of 

values that are relatively concentrated in the iteration, and the 

red line represents the mean. From this, it can be intuitively 

seen that the MCTV method proposed in this article has 

significant advantages under different sampling templates. 

 

 
 

 
 

          Fig. 8. Boxplot of PSNR and RMSE results under Random templates 

 

 

 

 

 
 

 
      Fig. 9. Boxplot of PSNR and RMSE results under Cartesian templates 

 

 
Fig. 10. Boxplot of PSNR and RMSE results under Radial templates 
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Scanning time is one of the most critical indicators in 

magnetic resonance imaging research. Table 1 shows the CPU 

time of each method, and it can also be seen that the MCTV 

method has a certain time advantage, while the ktSLR and 

ktRPCA methods take relatively longer. 

 
TABLE I 

CPU time comparison during the cine data reconstruction process 

 

Data Sampling Templates Method CPU Time/s 

Cine 

Random 

(0.12) 

ktSLR 698 

ktRPCA 652 

TVLR 106 

MCTV 96 

Cartesian 

(0.18) 

ktSLR 833 

ktRPCA 503 

TVLR 102 

MCTV 93 

Radial 

(0.13) 

ktSLR 833 

ktRPCA 564 

TVLR 124 

MCTV 106 

B. Perfusion Data Testin 

This subsection applies the MCTV method proposed in this 

article to perfusion data to test the method's performance 

further. In the comparison in the previous section, we found 

that the ktSLR and ktRPCA methods are not as good as the 

TVLR method in terms of performance and have higher 

runtime costs. Therefore, this subsection is only comparable 

to the TVLR method. 

Similar to the previous subsection, we conducted 

reconstruction tests on fusion data under three sampling 

templates. Firstly, we consider the numerical results of the 

reconstruction of the two methods when the residual RE is 

limited to 10
-4

. We analyze them separately from the number 

of iterations, time, and generated PSNR values. The 

experimental results are shown in Table Ⅱ, which shows that 

in the Radial sampling mode, the two methods have the most 

iterations and time consumption, and the PSNR value is 

relatively the smallest, which is similar to the results of the 

cine data. 
 

TABLE Ⅱ 

Perfusion data limited residual RE=10-4 reconstruction numerical results   

Templates Method Iterations CPU time/s PSNR/dB 

Random 

TVLR 70 97 32.52 

MCTV 54 70 33.11 

Cartesian 

TVLR 99 132 32.03 

MCTV 84 110 32.64 

Radial 

TVLR 236 306 29.57 

MCTV 215 279 29.60 

 

Next, we will explore the convergence performance of the 

two methods. Figures 11-12 show the convergence curves of 

the two methods from the perspectives of iteration times and 

CPU running time, respectively. From the graph, it can be 

seen that both methods have good convergence. Under the 

same number of iterations (CPU time), the MCTV method 

proposed in this chapter has more obvious convergence.  

 

 
 

Figure. 11: Convergence curve under radial sampling 

 

 
        Figure. 12: Convergence curve under Random sampling 

 

 
Figure. 13: Cartesian sampling iteration times and PSNR curve graph 
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V. CONCLUSION 

A new nonconvex model is obtained by introducing the MC 

penalty function instead of the kernel norm in the dynamic 

magnetic resonance imaging model. In solving the model, a 

specific algorithm is constructed using the dual form of total 

variation and the proximity splitting framework. Numerical 

experiments show that the new method has good performance. 

The work that will be carried out next is to improve the new 

process and apply it to other medical imaging fields. 
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