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Abstract—An analysis is made on the effect of magneto
hydrodynamics on poro-circular stepped plates lubricated with
micropolar fluid. The modified Reynold’s equation leads to
the development of a closed form expression for pressure,
load sustaining capacity, and squeezing time. The impact of
porosity is analyzed using the modified Darcy’s equation, and
the outcomes are compared with the cases of the presence and
absence of porosity on the same circular stepped plate. The
external magnetic field influences the bearing’s efficiency by
increasing the pressure, load sustaining capacity, and squeezing
time performance. In the presence of porosity, the pressure, load
sustaining capacity and squeezing time decrease compared to
the absence of porosity, and the comparisons are shown in the
tables. The variation of the highly influenced parameter of the
bearing system is represented graphically.

Index Terms—Micropolar fluid, porosity, circular stepped
plate, MHD, Relative percentage.

I. INTRODUCTION

MAGNETOHYDRODYNAMICS deals with the study
of magnetic properties and electrically conducting

fluid behavior. Hannes Alfven developed the MHD field.
The underlying opinion at the heels of MHD is that mag-
netic fields may generate currents in a fluid that is flowing
conductively, polarizing the fluid and wavering itself. MHD
is characterized by Navier-Stoke’s equation and Maxwell’s
equation of electromagnetism, which are found either nu-
merically or analytically. In biological systems, as a field
of science, MHD involves the physiological fluids that are
electrically conducting under the action of exerted magnetic
fields. Biomagnetic fluids are considered working fluids in
medical science. MHD mathematical equations and finite
element analysis are passed down to examine the magnetic
fluid particle’s interaction in the blood flow. Based on this
principle, many researchers were inspired to work on MHD.
Jung and Lee [1] studied about the pumping mechanism
for a novel micro pump based on the MHD principles
both theoretically and experimentally. Bujurke and Kudenatti
[2] analyzed the flow of MHD lubrication within rough
rectangular plates and it was noticed that the influence
of roughness and magnetic field was to optimize the load
sustaining capacity and therefore delaying squeezing time.
Lin [3] and Hayat et al [4] studied MHD squeezing film
characteristics between annular disks and the squeezing flow

Manuscript received Januray 29, 2024; revised June 25, 2024.
Johny.A is a Research Scholar in the Department of Mathematics, College

of Engineering and Technology, SRM Institute of Science and Technology,
Kattankulathur 603203, Tamil Nadu, India (e-mail:ja4545@srmist.edu.in).

Sujatha. E is an Assistant Professor in the Department of Mathematics,
College of Engineering and Technology, SRM Institute of Science and
Technology, Kattankulathur 603203, Tamil Nadu, India (Corresponding
author; phone:9884708590; e-mail:sujathae@srmist.edu.in).

Geetha Sree. M is a Post Graduate student in the Department of
Mathematics, College of Engineering and Technology, SRM Institute of
Science and Technology, Kattankulathur 603203, Tamil Nadu, India (e-
mail:mg5961@srmist.edu.in).

of micropolar fluid, which is lubricated within parallel disks,
respectively. The utility of lubricants like non-Newtonian
fluids has recently captured demand. Randomly oriented
particles floating in a viscous liquid with no consideration
for particle deformation and fluids with microstructures are
called micropolar fluids. Further covering both theory and
applications, there is a micro-rotational phenomenon in a
micropolar fluid. The internal particles of fluid may alter
in area and shape; their geometry may reduce or expand.
Over and above that, they can rotate on their own. They can
also move unrestricted through bulk flow. Animal blood and
liquid crystals represent complex fluids with microstructures,
which come under the category of micropolar fluids. Not
only couple stresses, but they can also benefit the surface
and the body as these fluids respond to micro-rotational
motions. The theory of micropolar fluid investigates the
origin of micropolar fluid, which was introduced by Eringen
[5]. Laminar fluid behavior was studied using the micropolar
fluid theory that was proposed by Papautsky et.al [6]. In this
paper, they predicted the behavior of fluid in microchannels
using the micropolar fluid theory, which they also verified
experimentally on micromachined channels.
Bearings are the process of mechanical assemblies that
consist of elements that are in rotating motion, and in
certain cases both internal and external races are used for
applications of rotating shafts. Aside from ball bearings,
there are several other types of bearings. Ball bearings
contain rolling factors, which are used for lighter weight ap-
plications, whereas rolling element bearings have cylindrical
rolling elements which are used for bulkier weight-bearing
demands. Linear bearings are used for linear motions along
shafts and may also have rotating potential. Interestingly, the
automotive sector has accounted for the demand for bearing
manufacturers in recent times. Research and development
(RD)-bearing companies are even increasing investments.
The various bearing configurations are thrust, step, slider,
hydrodynamic bearings, and hydrostatic bearings. Needle
roller bearing is the most sought after bearing in which
RD wing of much companies are working on. Micropolar
lubricant influence the performance of bearings was studied
by Khatak and Garg [7]. In general, porosity plays a crucial
role in squeeze film characteristics. Based on permeability,
porosity influences the flow by accelerating or decelerating.
Many of the researchers showed interest in porous as they
are relatively inexpensive and geomentry which is easy to
handle. Porous bearings are commonly employed in general
equipment because of their self-lubricating properties and
load carrying capacity. Based on the application requirement
lubricant can be either solid or liquid. Compared to other dry
sliding bearings self lubricating porous bearings are more
advantageous due to constant oil presence avoids the seizure
risk and improves wear efficiency.
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Johny and Sujatha [8] investigated the work of a rough-
porous Rayleigh step slider bearing with the MHD effect
lubricated by couple stress fluid and it was compared to
a porous rough step slider with the MHD effect. Biplab
Bhattacharjee et.al [9] found that, when compared to other
traditional lubricants, a single layer porous journal bear-
ing where micropolar fluid is lubricated had a high load
sustaining capacity. Johny and sujatha [23] worked on the
double porous based step slider bearing. In order to support
the load, the squeeze film phenomenon originates in a
normal direction when two lubricating layers move towards
each other, which generates positive pressure. Based on
this phenomenon, several authors like Naduvinamani and
Santosh [10], Naduvinamani and Siddangouda [11], and
Shah [12] have investigated the performance of squeeze film
lubrication in bearings such as journal bearings and circular
stepped plates. In addition, Naduvinamani and Shridevi [13]
examined this squeeze film lubrication with the effect of
MHD between porous parallel plates.
Further, based on pressure dependent viscosity load carrying
capacity is examined by Birenda and Pentyala [14] and
Hanumagowda et.al [15]. Through these [14], [15] it has
been found that an increase in non dimensional stepped dis-
tance decreases the dimensionless load sustaining capacity,
pressure and time. Nayak [19] worked on the unsteady third
grade fluid with viscous dissipation, where it was found
that the magnetic parameter M values rise, temperature
rises, and velocity falls. Salah and Elhabian [17] analyzed
the effect of second-grade fluid flow over stretching sheet,
where as the Hartman number M and Prandtl number Pr
rise, and the velocity and temperature fields decrease. The
MHD effect within circular stepped plates lubricated with a
couple stress fluids was analyzed by Naduvinamani et.al [16].
According to the findings, applying an external magnetic
field improves load sustaining capacity and obstructs the time
approach in comparison with the case of a non-magnetic
field. Brinda et.al [18] examined the significance of surface
roughness with the MHD effect within two porous elliptical
plates. Recently, Sangeetha et.al [21] studied conical rough
bearings with the effect of MHD lubricated by micropolar
fluid and observed that as coupling number and Hartman
number values increase, there is an enhancement in squeeze
film characteristics. Faizan Ahmed and Sujatha [24] analyzed
the effect of surface roughness on the porous triangular
plate. It is found that the induced magnetic field increases
the workload compared to a similar condition without a
magnetic field. Furthermore, Naduvinamani and Angadi [22]
also studied the influence of micropolar fluid and MHD
between stepped porous parallel plates. In this paper [22],
it is found that the magnetic field influence helps to enhance
the workload. Johny and sujatha [20] worked on the circular
stepped plated which is lubricated with micropolar fluid and
the surface of the plate is considered smooth.
According to a review of the literature, no work has been
made to explore the influence of magnetohydrodynamics
(MHD) on porous circular stepped plates where micropolar
fluid is used as lubricant. The aim was to analyze the system
with and without porosity and find that the bearing is more
efficient in the absence of porosity. Here, the load sustaining
capacity and the squeezing time are derived and analyzed
by varying the parameters like M (Hartman number), N

Fig. 1. Geometry of porous circular stepped plate

(coupling number), L (characteristic material length), ψ
permeability, and K step height of the bearing. Through the
influence of Hartman number and coupling number the load
sustaining capacity and the squeezing time are enhanced.

II. GEOMETRY OF THE BEARING

The physical illustration of a circular stepped plate is given
in Fig.1. The upper plate moves toward the lower plate with
squeezing velocity V = dh

dt . Consider R as the radius of
the circular plate which has a step in the center which is
of height K. The micropolar fluid is considered a lubricant
used between circular stepped plates, which flows in the
direction of r, where the maximum film thickness is h1 and
the minimum film thickness is h2. Here the lower plate is
porous in nature with layer thickness δ. The circular plates
is subjected to the constant magnetic field B0 which acts in
a perpendicular direction (direction of y) to the fluid flow.

Assuming the basic assumptions of thin film lubrication
to hold true, the governing equations of a micropolar fluid
are given as follows:
Linear momentum:(

2µ+ χ

2

)
∂2u

∂y2
+ χ

∂v1
∂y

− σB2
0u =

∂p

∂r
(1)

Angular momentum:

γ
∂2v1
∂y2

− 2χv1 − χ
∂u

∂y
= 0 (2)

Mass:
1

r

∂(ru)

∂r
+
∂v

∂y
= 0 (3)

and
∂p

∂y
= 0 (4)

In the above equations, u and v represent the velocity
components in the direction of r and y respectively; v1
is micro-rotational velocity, B0 denotes the strength of the
magnetic field; σ represents the electrical conductivity of the
fluid, µ represents the viscosity of the micro-polar fluid, χ
represents its spin viscosity and γ represents its viscosity
coefficient. The film thickness H between the plates is
considered in the following form:

H =

{
h1 for 0 ≤ r ≤ KR
h2 for KR ≤ r ≤ R
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For the velocity components, the necessary boundary
conditions are:
(i) On the lower porous surface y = 0

u = 0, v = −v∗, v1 = 0 (5)

(ii) On the upper surface y = H

u = 0, v = V, v1 = 0 (6)

By solving the equation (1) and (2) and using boundary
conditions (5) and (6) the velocity component u is derived
as.

u =
a− b

σB2
0 [c− d]

∂p

∂r
(7)

where
a = g1 sinh(k1H)[cosh(k2H)− cosh(k2y)]
b = g2 sinh(k2H)[cosh(k1H)− cosh(k1y)]
c = g2 sinh(k2H) cosh(k1H)
d = g1 sinh(k1H) cosh(k2H)
Darcy’s permeability is characteristic of the porous medium
and the fluid flowing through it. Laplace’s rule says that the
pressure inside an inflated elastic container with a curved
surface is equal to the pressure outside. Based on these laws,
the expression for pressure is derived.
The modified Darcy’s equation is given as

−→q = (u∗, v∗) =
−ϕ∗

µ+ χ
∇p∗ (8)

Here, u∗ and v∗ are the velocity components in the porous
region in r and y direction respectively. pressure in the per-
meable region is denoted as p∗ and ϕ∗ is porous permeability.
From the Laplace equation which is satisfied by p∗,

∂2p∗

∂r2
+
∂2p∗

∂y2
= 0 (9)

By integrating equation(9) with respect to y and applying the
boundary condition at y = −δ, ∂p

∗

∂y = 0 then we get,(
∂p∗

∂y

)
y=0

=

∫ 0

−δ

∂2p∗

∂r2
dy (10)

At y = 0 the velocity component v∗ is given by

[v∗]y=0 =
ϕ∗δ

µ+ χ
(
∂2p

∂r2
) (11)

By using the expression of u and integrating the equation
(3) w.r.to y over a film thickness the modified Reynold’s
equation is obtained as

∂

∂r

[(
f(H,N,L,M) +

ϕ∗δ

µ+ χ

)
r
∂p

∂r

]
= −V r (12)

In non-dimensional form, the modified Reynold’s equation
is of the form

∂

∂r

[(
F (H,N,L,M) + ψ

(
1−N2

1 +N2

))
r
∂p

∂r

]
= −r (13)

where F (H,N,L,M) = a1−b1
M2k1k2(c1−d1)

,

a1 = g1k1 sinh(
k1H
2 )(k2H cosh(k2H2 )− 2 sinh(k2H2 )),

b1 = g2k2 sinh(
k2H
2 )(k1H cosh(k1H2 )− 2 sinh(k1H2 )),

c1 = g1 cosh(
k2H
2 )(sinh(k1H2 )),

d1 = g2 cosh(
k1H
2 )(sinh(k2H2 )),

g1 = M2(1−N2)−k1
2

2N2k1
, g2 = M2(1−N2)−k2

2

2N2k2
,

k1 =

√
α+

√
α2−4β
2 , k2 =

√
α−

√
α2−4β
2 ,

α = N2+M2(1−N2)L2

L2 , β = N2M2

L2 ,

M = B0h2
√

σ
µ , L =

√
γ
4µ

h2
, N =

√
χ

2µ+χ .
Here the non-dimensional quantities are as follows
r = r

R , α = h22α, β = h42β, g1 = h2g1, g2 = h2g2

ψ = ϕ∗δ
h3
2
, T =

Wth2
2

µ0R4 , p =
ph3

2

µR2V

where M is Hartman parameter, N is dimensionless coupling
number, L is characteristic material length.
The related boundary conditions of pressure are given below,

p1 = p2 at r = K (14)
p2 = 0 at r = 1 (15)

By solving equation (13) using the conditions equation (14)
and equation (15) we get

∂p

∂r
=

−r
2
(
F (H,N,L,M) + ψ

(
1−N2

1+N2

)) (16)

On integrating the Equation (16) the dimensionless expres-
sion of pressure is obtained as

p1 =
K2 − r2

4F1(h1, N, L,M,ψ)
+

1−K2

4F2(1, N, L,Mψ)
(17)

p2 =
1− r2

4F2(1, N, L,M,ψ)
(18)

The load sustaining capacity w is given as

w = 2π

∫ KR

0

r(p1)dr + 2π

∫ R

KR

r(p2)dr (19)

By solving Equation (19) the load sustaining capacity W
in dimensionless form is got as

W =
K4

8F1(h1, N, L,M,ψ)
+

1−K4

8F2(1, N, L,M,ψ)
(20)

The squeezing time required to reduce the initial thickness
h0 of h2 to final film thickness hf of h2 by substituting
V = dh

dt is

T =

∫ 1

hf

(
K4

8G1(N,hs, h2, L,M,ψ)

+
1−K4

8G2(N,h2, L,M,ψ)

)
dh2 (21)

where G1(N,hs, h2, L,M) = a2−b2
M2k1k2(c2−d2)

a2 = g1k1 sinh
(k1(hs+h2)

2

)(
k2(hs+h2) cosh(

k2(hs+h2)
2

)
−

2 sinh
(k2(hs+h2)

2

))
b2 = g2k2 sinh

(k2(hs+h2)
2

)(
k1(hs+h2) cosh(

k1(hs+h2)
2

)
−

2 sinh
(k1(hs+h2)

2

))
c2 = g1 cosh

(k2(hs+h2)
2

)
sinh

(k1(hs+h2)
2

)
d2 = g2 cosh

(k1(hs+h2)
2

)
sinh

(k2(hs+h2)
2

)
G2(N,h2, L,M) = a3−b3

M2k1k2(c3−d3)
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Fig. 2. Plot of dimensionless pressure P versus r for different values of
M
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Fig. 3. Plot of dimensionless pressure P versus r for different values of
N

a3 = g1k1 sinh
(
k1h2

2

)(
k2h2 cosh

(
k2h2

2

)
− 2 sinh

(
k2h2

2

))
b3 = g1k2 sinh

(
k2h2

2

)(
k1h2 cosh

(
k1h2

2

)
− 2 sinh

(
k1h2

2

))
c3 = g1 cosh

(
k2h2

2

)
sinh

(
k1h2

2

)
d3 = g2 cosh

(
k1h2

2

)
sinh

(
k2h2

2

)
F1(h1, N, L,M) + ψ( 1−N

2

1+N2 ) = F1(h1, N, L,M,ψ)

F2(1, N, L,M) + ψ( 1−N
2

1+N2 ) = F2(1, N, L,M,ψ)

G1(N,hs, h2, L,M) + ψ( 1−N
2

1+N2 ) = G1(N,hs, h2, L,M,ψ)

G2(N,h2, L,M) + ψ
(
1−N2

1+N2

)
= G2(N,h2, L,M,ψ)

III. RESULTS AND DISCUSSIONS

The parameters characteristic length L, coupling number
N , Hartman number M , and permeability parameter ψ define
the impact of MHD and micropolar fluid on the squeeze film
performance of porous circular stepped plates. It is noted that
the problem is examined in the cases of ψ = 0 (in the absence
of porous) and ψ = 0.01 (in the presence of porous). A table
displays the differences between the presence and absence of
porous materials. It analyzes the graphical representation to
understand the impact of pressure P , load carrying capacity
W , and squeeze film time T . To understand the permeability
ψ performance in the circular stepped plate, Fig. 5, 10, 11, 12
17 and 18 display the variations as three-dimensional surface
plots.
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Fig. 4. Plot of dimensionless pressure P versus r for different values of
L

Fig. 5. Surface plot of dimensionless pressure P by varying r and ψ
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Fig. 6. Plot of dimensionless work load W versus h1 for different values
of K

A. Dimensionless Pressure

The dimensionless pressure varied with axial distances r
for different values of specified parameters, like M , N , L,
and ψ, as shown in fig 2, 3, 4, and 5, respectively. Fig 2,
3, and 4 show that the effect of pressure P increases while
increasing the parameters M , N , and L, respectively. In fig
4 and 5, pressure decreases while increasing the parameters
K and ψ.
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Fig. 7. Plot of dimensionless work load W versus h1 for different values
of L

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

8

8.5

9

9.5

10

10.5

11

W

N = 0.0

N = 0.1

N = 0.2

N = 0.3

N = 0.4

N = 0.1

N = 0.0

N = 0.2

N = 0.3

N = 0.4

Fig. 8. Plot of dimensionless work load W versus h1 for different values
of N

1 1.2 1.4 1.6 1.8 2

0

1

2

3

4

5

6

7

8

9

W

M = 0.0

M = 2

M = 3

M = 4

M = 5M = 5

M = 4

M = 3

M = 2
M = 0.0

Fig. 9. Plot of dimensionless workload W versus h1 for different values
of M

B. Dimensionless Load sustaining capacity

The dimensionless load sustaining capacity is varied with
dimensionless film thickness h1 for different values of spec-
ified parameters like L, N , M , K, and ψ. It is compared
between the porous and non-porous cases, observing that the
non-porous case has a greater load than the porous case. As
shown in fig 6, the plot of dimensionless load W versus
maximum film thickness h1 varied with different values
of step distance K. It has been discovered that the load-

Fig. 10. Surface plot of dimensionless workload W by varying h1 and ψ

Fig. 11. Surface plot of dimensionless workload W by varying M and ψ

Fig. 12. Surface plot of dimensionless workload W by varying L and N

TABLE I
COMPARISON BETWEEN POROUS AND NON POROUS CASES ON LOAD

SUSTAINING CAPACITY FOR VARIOUS VALUES OF K AND L

h1 1.2 1.4 1.6 1.8 2

ψ
=0

.0
1 L = 0.05 3.4541 3.4259 3.4158 3.4179 3.4315

L = 0.06 4.0783 4.0392 4.0169 4.0050 4.0002
L = 0.08 4.2633 4.2225 4.1965 4.1798 4.1694

ψ
=0

.0 L = 0.05 3.7294 3.6982 3.6871 3.6895 3.7043
L = 0.06 4.4673 4.4233 4.3987 4.3857 4.3805
L = 0.08 4.6899 4.6435 4.6145 4.5963 4.5850

ψ
=0

.0
1 K = 0.6 4.3074 4.2172 4.1615 4.1273 4.1072

K = 0.7 4.1810 4.0140 3.9108 3.8474 3.8102
K = 0.8 3.9872 3.7023 3.5263 3.4181 3.3547

ψ
=0

.0 K = 0.6 4.6824 4.5816 4.5206 4.4836 4.4621
K = 0.7 4.5358 4.3490 4.2360 4.1674 4.1276
K = 0.8 4.3110 3.9921 3.7994 3.6825 3.6146
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TABLE II
COMPARISON BETWEEN POROUS AND NON POROUS CASES ON LOAD

SUSTAINING CAPACITY FOR VARIOUS VALUES OF M AND N

h1 1.2 1.4 1.6 1.8 2

ψ
=0

.0
1 N = 0.0 8.3429 8.3194 8.3007 8.2853 8.2722

N = 0.2 10.1111 10.0759 10.0503 10.0312 10.0166
N = 0.4 10.8439 10.8004 10.7735 10.7570 10.7473

ψ
=0

.0 N = 0.1 10.3681 10.3335 10.3075 10.2872 10.2709
N = 0.2 11.1986 11.1577 11.1287 11.1075 11.0915
N = 0.4 11.8095 11.7608 11.7314 11.7136 11.7032

ψ
=0

.0
1 M = 0 0.6993 0.6917 0.6862 0.6820 0.6788

M= 3 3.8037 3.7740 3.7512 3.7331 3.7184
M= 5 8.5123 8.4449 8.3889 8.3411 8.2997

ψ
=0

.0 M = 0 2.0694 2.0520 2.0391 2.0291 2.0212
M= 3 4.2035 4.1689 4.1429 4.1227 4.1064
M= 5 10.8142 10.7168 10.6406 10.5786 10.5270
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Fig. 16. Plot of dimensionless time T versus hf for different values of
M

Fig. 17. Surface plot of dimensionless time T by varying hf and ψ

Fig. 18. Surface plot of dimensionless time T by varying L and M

sustaining capacity decreases with an increase in the value
of K. Fig 7 depicts that the increase in value of L increases
the load sustaining capacity. Fig 8 shows the variation of non-
dimensional workload with h1 for various coupling number
N values. As the coupling number increases, so does the
workload. Fig 9 depicts the graph of non-dimensional load
W versus h1 for different values of Hartman number. The
load increases as the Hartman number value M rises. Fig 10
depicts the variation between the load sustaining capacity W
and the permeability ψ for different values of film thickness
h1. It is noted that when increasing the parameters h1 and
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TABLE III
COMPARISON BETWEEN POROUS AND NON POROUS CASES ON

SQUEEZING TIME FOR VARIOUS VALUES OF k AND L

hf 0.2 0.4 0.6 0.8

ψ= 0.01
L = 0.04 1.6906 1.3143 0.9027 0.4617
L = 0.06 2.1885 1.7358 1.2008 0.6164
L = 0.08 2.5089 1.9920 1.3762 0.7054

ψ= 0.0
L = 0.04 1.7596 1.3698 0.9419 0.4822
L = 0.06 2.3066 1.8340 1.2712 0.6535
L = 0.08 2.6654 2.1224 1.4695 0.7544

ψ= 0.01
K = 0.6 8.2966 4.7134 2.4894 1.0254
K = 0.7 7.5840 4.3849 2.3594 0.9903
K = 0.8 6.4909 3.8810 2.1599 0.9366

ψ= 0.0
K = 0.6 11.5103 5.7185 2.8434 1.1351
K = 0.7 10.4125 5.2813 2.6819 1.0932
K = 0.8 8.7286 4.6107 2.4342 1.0290

TABLE IV
COMPARISON BETWEEN POROUS AND NON POROUS CASES ON

SQUEEZING TIME FOR VARIOUS VALUES OF M AND N

hf 0.2 0.4 0.6 0.8

ψ= 0.01
N = 0.0 4.6222 2.8407 1.6505 0.7422
N = 0.2 6.2988 3.7851 2.1297 0.9267
N = 0.4 8.7293 4.9129 2.5683 1.0466

ψ= 0.0
N = 0.0 5.6091 3.2592 1.8490 0.8201
N = 0.2 8.2049 4.5225 2.4471 1.0411
N = 0.4 12.1769 5.9839 2.9415 1.1606

ψ= 0.01
M = 0 1.2563 0.7061 0.3835 0.1624
M = 3 5.4339 3.3168 1.9039 0.8449
M = 5 10.7125 6.9415 4.1194 1.8662

ψ= 0.0
M = 0 1.3248 0.7301 0.3933 0.1658
M = 3 6.8472 3.8965 2.1686 0.9452
M = 5 17.5085 10.0143 5.5892 2.4372

ψ, the load decreases. The load carrying capacity is analysed
by varying the parameters ψ and M , which is shown as
the surf plot in Fig.11. It is observed from that the plates
load carrying is become very high, when the absences of
porosity and the presences of highly influenced MHD. If
both permeability and Hartman number increases then the
load carrying capacity of the plate is also increase. The load
carrying capacity is analysed by varying the parameters L
and N , which is shown as the surf plot in Fig.12. It is
observed from that, If both characteristic material length and
coupling number increases then the load carrying capacity
of the plate is also increase. If both characteristic material
length and coupling number decreases then the load carrying
capacity of the plate is also decrease.

The comparison between the presence of porosity (ψ =
0.01) and absence of porosity (ψ = 0) for the load-sustaining
capacity of the bearing is shown in Tables I and II for
different values of step height K, characteristic length L,
and coupling number N , Hartman number M respectively.
It is found in both Tables I and II that the load sustaining
capacity is more efficient in the case ψ = 0 than ψ = 0.01.

C. Dimensionless Squeeze-film time

The squeezing time varies with the significant film thick-
ness to hf . Fig 15 depicts the variation of dimensionless
squeeze film time T with final film thickness hf for various
values of coupling number N . Fig 15 shows that as the value
of N increases, squeeze time also increases. Fig 13 shows
the graph of dimensionless squeeze film time T versus hf
for various step height K values. In that case, the squeeze
film time decreases as the value of K increases. Fig 14
shows the variation of dimensionless squeeze film time T

with hf for various L values. It is noticed that with an
increase in the value of L, the squeezing time T increases.
Fig 16 shows the variation of dimensionless squeeze film
time T with hf for various M values. It is noticed that
an increase in the value of Hartman number M increases
the squeezing time. Fig 17 depicts the variation between the
squeezing time T and the film thickness h1 for different
values of permeability ψ It is noted that the squeezing time
decreases when increasing the parameters h1 and ψ. The
squeezing time is analysed by varying the parameters L and
N , which is shown as the surf plot in Fig.18. It is observed
from that, If both characteristic material length and coupling
number increases then the squeezing time of the plate is also
increase. The squeezing time is decreases highly, when the
coupling number gets higher value and characteristic material
length gets lower value.
The comparison between the presence of porosity (ψ = 0.01)
and absence of porosity (ψ = 0) for the squeeze film time
of the bearing is shown in Tables III and IV for different
values of step height K, characteristic length L, and coupling
number N , Hartman number M respectively. It is found from
both Tables III and IV that the squeezing time is less in the
case ψ = 0 than ψ = 0.01, the reason being requirement
of more time to squeeze out the lubricant that as filled the
pores when compared to solid geometry (non-porous case).

D. Estimation of relative percentage of load sustaining ca-
pacity RW and RT squeeze film time

The relative percentage is defined as

RW =

{(Wψ=0.01 −Wψ=0.0

Wψ=0.0

)
× 100

}
and

RT =

{(Tψ=0.01 − Tψ=0.0

Tψ=0.0

)
× 100

}
The relative percentage of load-sustaining capacity and
squeeze film time are analyzed based on the presence of
porosity (ψ = 0.01) and absence of porosity (ψ = 0.0).
It is analyzed for the different values of film thickness h1,
bearing step height K, and Hartman number M . From Table
V, it is noted that the relative percentage of load sustain-
ing capacity RW decreases while increasing bearing step
height K. However, as the Hartman number M increases,
RW increases. From Table VI it is noted that the relative
percentage of squeezing time RT decreases while increasing
bearing step height K. However, as the Hartman number M
increases, RT increases.

IV. CONCLUSION

This study looks into how micropolar fluids and magnetic
fields affect the squeeze film lubrication of porous circular
stepped plates. The effect of the pressure P , load sustain-
ing capacity W , and squeezing time T of the bearing is
analyzed by varying the highly influenced parameters like
k,N,L,M,ψ, h1 and hf . The impact of porosity is observed
in both scenarios of the presence (ψ = 0.01) and absence
(ψ = 0) of porous materials, and the following conclusions
can be drawn from the results.:
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TABLE V
CHANGE IN RW FOR DIFFERENT VALUES OF K = 0.5, 0.7, 0.9 AND

M = 0, 2, 3

h1 K RW M RW

1.2
0.6 -8.0102 0 -1.7515
0.7 -7.8223 2 -4.9211
0.8 -7.5094 3 -9.5116

1.4
0.6 -7.9523 0 -1.7445
0.7 -7.7013 2 -4.9003
0.8 -7.2595 3 -9.4723

1.6
0.6 -7.9427 0 -1.7435
0.7 -7.6757 2 -4.8915
0.8 -7.1883 3 -9.4546

TABLE VI
CHANGE IN RT FOR DIFFERENT VALUES OF K = 0.5, 0.7, 0.9 AND

M = 0, 2, 3

hf K RT M RT

0.2
0.6 -27.920 0 -5.175
0.7 -27.165 2 -11.707
0.8 -25.636 3 -20.641

0.4
0.6 -17.576 0 -3.292
0.7 -16.973 2 -8.040
0.8 -15.827 3 -14.877

0.6
0.6 -12.451 0 -2.501
0.7 -12.027 2 -6.455
0.8 -11.269 3 -12.204

• The dimensionless pressure increases by increasing the
value of the Hartman number M .

• The dimensionless pressure is directly proportional to
the value of Hartman number M , characteristic length
L, and coupling number N but it is inversely propor-
tional to the value of step size ψ.

• In the presence of porous facing on the bearing surface,
the load-sustaining capacity W and squeeze film time T
both lose more efficiency than in the absence of porous.

• The load carrying capacity is directly proportional to the
value of Hartman number M , characteristic length L,
and coupling number N but it is inversely proportional
to the value of step size K.

• The squeezing time is directly proportional to the value
of Hartman number M , Coupling number N and char-
acteristic length L, but it is inversely proportional to the
value of step size K.

• Increasing the bearing film thickness height h1, the load
sustaining capacity W decreases.

• Increasing the bearing final film height hf , the squeez-
ing film time T decreases.

• The relative percentage of squeezing time RT directly
proportional to the bearing step height K and indirectly
proportional to Hartman number M .

• The relative percentage of load carrying capacity RW
directly proportional to the bearing step height K and
indirectly proportional to Hartman number M .
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