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Abstract—The problem of data redundancy in distributed
storage has become increasingly pronounced, posing significant
challenges for the estimation of target variables. This study
introduces a distributed redundant data estimation method that
employs the LIC criterion. Through simulation, the method’s
predictive accuracy is rigorously estimated, and its stability and
sensitivity are thoroughly investigated. Results demonstrate the
method’s effectiveness in extracting valuable information from
redundant distributed data. By identifying the optimal data
subset, it enhances data quality and boosts efficiency, making it
a potent strategy for tackling data analysis challenges inherent
in big data environments.

Index Terms—data redundancy, LIC criterion, stability and
sensitivity, optimal data subset.

I. INTRODUCTION

W ITH the continuous advancement of science and tech-
nology, data collection and storage capabilities have

greatly improved. This has resulted in the widespread use of
distributed systems as the main method for processing and
storing large amounts of data. This method involves splitting
data into subsets. It processes the subsets at the same time
across many computing nodes. This greatly boosts data
processing efficiency. Redundant information is common in
big datasets. It causes problems like wasteful storage use,
slower data processing, and higher costs. These problems
are major barriers to good data analysis and processing.

Traditional methods for redundant data estimation usually
involve centralized data processing. However, they may hit
efficiency bottlenecks when dealing with large-scale data.
To address this challenge, the paper proposes a method for
redundant data estimation. It estimates optimal subsets using
the LIC criterion. The LIC criterion is an efficient data
compression technique. It can reduce data size by removing
redundant information. Leveraging the LIC criterion enables
us to compress data and select the optimal subset.

A. Current Research Status

Currently, significant progress has been made in the
research on distributed redundant data. In the realm of
distributed statistical inference, Guo et al. [1] introduced
a parallel method, which has enhanced the efficiency of
statistical inference. Guo et al. [2] devised an optimization
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program for distributed interval estimation problems, leading
to improved estimation accuracy. See also Wang et al. [3],
Li et al. [4], Song et al. [5], Guo et al. [6], Huang et al.
[7], Wang et al. [8], Qian et al. [9], Guo et al. [10], Battey
et al. [11], Minsker et al. [12], Mirzasoleiman et al. [13],
Zhang et al. [14], Cheng et al. [15] and Guo et al. [16]–[22].
These methodologies collectively provide effective statistical
inference tools for handling large-scale distributed data.

B. Our Work

In this paper, we introduce the innovative LIC criterion,
designed to manage redundant data and identify the optimal
subset. We evaluate the performance of three subset selection
methods—LIC criterion, Minimum Information Matrix, and
Maximum Gain Matrix —using MAE and MSE as com-
parative metrics. This analysis aims to validate the LIC
criterion as the superior method for subset selection. The
paper elaborates on the foundational theory underpinning the
LIC criterion and presents simulation experiments to assess
the estimation methods’ accuracy and robustness. Further-
more, we investigate the stability and sensitivity of the three
methods across three prevalent redundant data distribution
functions, thereby substantiating the efficacy of the LIC
criterion. The primary advantage of this algorithm is its en-
hancement of existing estimation techniques; it achieves this
by reducing subset length without compromising accuracy,
concurrently enhancing work efficiency.

II. THEOREM

Condition 1. (KKT conditions) Assuming that β̂∗ ∈ Rp

signifies the genuine value of the estimator β̂ , and k̂ = {b ∈
Rp: ∥b∥∞ ≤ 1 and bj = sign[β̂j ], if β̂j ̸= 0} denotes
a sparse boundary condition, we have −2XIT

opt
(YIopt −

XIopt β̂
∗) + rk̂ = 0p.

Condition 2. The Gram matrix XT
Iopt

XIopt ∈ Rp×p

is revertible, the ordered eigenvalues are mp ≥· · ·≥
m1 > 0, so that ordered eigenvalues of the inverse matrix
(XT

Iopt
XIopt)

−1are 1/m1 ≥ · · · ≥ 1/mp > 0, which
satisfied ∥(XT

Iopt
XIopt)

−1α∥ ≤ ∥α∥2/m1.
Theorem 1. Suppose that the sample data set is sparse.

Let the Lasso estimator is β̂lassso, the truth estimator is β̂∗

and the optimal estimator is β̂Iopt. Under Condition 1-2, we
have ∥Xloptβ̂

∗ −Xloptβ̂lopt∥22 ≤ λ2p
4m1

.
Proof. Based on data sub-matrix QIk , suppose Lasso

optimal regression model of the form YIopt = XIoptβIopt +
uIopt , uIopt ∼ N(0, σ2InIopt×nIopt

). Denote Iopt is in-
dicator set function, XIopt is an nIopt× p optimal sub-
matrix of X with nIopt ≥ p, σ2 is the sample’s unknown
variance and uIopt is an error sub-vecton with E

(
uIopt

)
= 0

and Var
(
uIopt

)
= σ2InIopt×nIopt

. That the optimal Gram
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matrix XT
Iopt

XIopt and the matrix eigenvalues are denoted
mi(i = 1, . . . , p). Let estimator β = (β1, . . . , βp)

T be a p-
dimensional vector, certain tuning parameters λ ∈ [0,∞).
The lasso’s KKT condition

−2XT
Iopt

(
y −XIopt β̂lasso

)
+ λk̂ = 0p.

When the data is sparse, the Lasso estimator approximates
the population truth estimator of the data (β̂lasso ≈ β̂∗).
Defined the optimal estimator is

β̂Iopt =
(
XT

IoptXIopt

)−1

XT
IoptYIopt .

Adjust by equation, such that

β̂∗ =
(
XT

IoptXIopt

)−1

XT
IoptYIopt −

λ

2

(
XT

IoptXIopt

)−1

k̂.

We then find

∥XIopt β̂
∗ −XIopt β̂Iopt∥22

= ∥ − λ

2
XIopt(X

T
IoptXIopt)

−1k̂∥22

=
λ2∥XIopt(X

T
Iopt

XIopt)
−1k̂∥22

4

=
λ2

(
XIopt(X

T
Iopt

XIopt)
−1k̂

)T

XIopt(X
T
Iopt

XIopt
)−1k̂

4

=
λ2k̂T

(
(XT

Iopt
XIopt)

−1
)T

XT
Iopt

XIopt(X
T
Iopt

XIopt)
−1k̂

4

=
λ2k̂T

(
(XT

Iopt
XIopt)

−1
)T

k̂

4

=
λ2k̂T (XT

IoptXIopt)
−1k̂

4

≤
λ2 ∥ k̂ ∥2∥ (XT

Iopt
XIopt)

−1k̂ ∥2
4

≤ λ2 ∥ k̂ ∥22
4m1

.

Under Condition 1 and the ℓ2-norm definition can be
obtained |k̂j | ≤ 1 since k̂ ∈ ∂∥β̂lasso∥1 and ∥k̂∥22 =∑p

j=1 |k̂j |2 ≤
∑p

j=1 1 = p.
From Lasso sparsity boundary conditions, we can con-

clude ∥XIoptβ
∗ −XIopt β̂Iopt∥22 ≤ λ2p

4m1
. □

It can be seen that the boundary between the true value β̂∗

of the sparse data estimator and the optimal value β̂Iopt of
the simulation estimator is less than or equal to the constant
λ2p
4m1

.

III. STEPS

For convenient reference, we delineate the selection steps
as follows:
i: Generating simulated data sets for each distribution using
R software.
ii: Employing an algorithm rooted in LIC distributed redun-
dant data estimation to process this data.
iii: Employing evaluation metrics to assess the performance
of the three algorithms and documenting the results for LIC,
Lopt, and Iopt.
iv: Evaluating the performance of the LIC criterion and iden-
tifying the optimal subset through visualization examination.
v: Analyzing the characteristics and advantages of the opti-
mal subset and discussing its practical applicability.

IV. SIMULATION STUDY

A. Simulation preparation

The (X,Y ) is from Yi = Xiβi + ui, where ui ∼
N

(
0, σ2

i In×n

)
for i = 1, 2. In this simulation, we construct

X to comprise (X1, X2), and Y consists of (Y1, Y2). Define
as

Y1 = X1β + u1, n1 ∈ {1, . . . , n− nr},

X1 =
(
X1ij

)
∈ Rn1×p, X1ij ∼ N(0, 2).

Y2 = X2β + u2, n2 ∈ {1, . . . , nr},

X2 =
(
X2ij

)
∈ Rn2×p, X2ij ∼ F (X).

where β ∼ Unif(0, 3), u ∼ (u1, u2), u1∼N
(
0, σ2

1

)
and

u2∼N
(
0, σ2

2

)
.

In evaluating the performance of the LIC criterion, a
comprehensive set of indicators is utilized. During the data
simulation process, attention is given to the MSE and MAE
as measures of prediction accuracy. These metrics quantify
the disparities between true values and estimated values.
Specifically, MSE and MAE, which relate to prediction
errors, are defined as follows:

MSE = E(Y0 − Ŷ )2, MAE = E|Y0 − Ŷ |.

Typically, larger values of MAE and MSE indicate poorer
model fitting and prediction accuracy.

The primary objective of this experiment is to generate
simulated data by varying the control parameters: {n, p, K,
nr}. This is done under conditions where the redundancy
distribution adheres to the uniform, geometric, and chi-
square distributions. The aim is to observe and analyze the
numerical variations of the LIC criterion, thereby providing
a comprehensive assessment of its distinctive features and
practical performance.

B. Stability

For (α, σ1, σ2,K, nr) = (0.01, 3, 5, 10, 50), adjust the
values of {n, p} to observe changes in simulation results
and determine the optimal parameters.
Case1. X2 =

(
X2ij

)
∈ Rn2×p, X2ij ∼ Unif(0, 3).

• Scenario I: Setting n = (1000, 2000, 3000, 4000, 5000)
with p = 8.

Fig. 1. The values of MAE and MSE with n =
(1000, 2000, 3000, 4000, 5000) and p = 8.

• Scenario II: Setting p = (8, 9, 10, 11, 12) with n =
3000.
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Fig. 2. The values of MAE and MSE with p = (8, 9, 10, 11, 12) and
n = 3000.

The stability of the LIC criterion under the Uniform distri-
bution is explored. Experiments are designed with variations
in the parameters n and p. A dataset of 1000 data points is
generated, and the LIC criterion value for each data point is
computed sequentially. The simulated results are analyzed,
as shown in Fig.1 and Fig.2, with detailed considerations
based on the standard values of LIC for each data point.

A comparative analysis reveals a notably similar trend in
the variations of MAE and MSE. The impact of changes in
n and p on the outcomes is examined, and it is observed that
the LIC criterion has the lowest MAE and MSE values when
compared to the Optimal Information (Iopt) and Optimal
Gain Matrix selection algorithms. This observation strongly
indicates the significant advantage of the LIC criterion’s
stability.

With a larger sample size n, the MAE and MSE curves
under the LIC criterion at first rise and then fall. As n
increases from 3000 to 4000, the MAE under the LIC
criterion notably falls from 0.21749246 to 0.1502028, and
the MSE also drops from 0.07605684 to 0.040227921.

In the variation of dimensionality p, certain patterns are
observed. Notably, when the dimensionality reaches 10, the
MSE peaks at 0.08007556, and the MAE also attains a
relatively high value of 0.2294404. This observation offers
crucial insights into the behavior of the metrics as dimen-
sionality increases.
Case 2. X2 = (X2ij) ∈ Rn2×p, X2ij ∼ χ2(20).

• Scenario I: Setting n = (1000, 2000, 3000, 4000, 5000)
with p = 8.

Fig. 3. The values of MAE and MSE with n =
(1000, 2000, 3000, 4000, 5000) and p = 8.

• Scenario II: Setting p = (8, 9, 10, 11, 12) with n =
3000.

Fig. 4. The values of MAE and MSE with p = (8, 9, 10, 11, 12) and
n = 3000.

The simulated results in Fig.3 and Fig.4 are analyzed.
Under the LIC criterion, MAE and MSE stayed consistently
lower than the other two methods. This shows good stability.
Also, the trends in variation for these two metrics are highly
consistent. This further shows the LIC criterion’s reliability
with such data.

Specifically, as shown in Fig.3, as the sample size n grows
from 1000, the values under the LIC criterion remain at
extremely low levels (1.21E-05 and 2.95E-05). Then, they
are rising. When n reachs 4000, both metrics reach their
peak values but then exhibit a decreasing trend. This pattern
of variation suggests that under the condition of n = 1000,
the LIC criterion demonstrates optimal performance.

Similarly, as shown in Fig.4, as the dimensionality p grad-
ually increases from 8, the MAE and MSE values under
the LIC criterion generally show a decreasing trend. When
p = 10, both MAE and MSE reached their minimum values
(0.1738802 and 0.0541217, respectively), indicating that the
performance of the LIC criterion achieves its optimum at
this dimensionality.
Case 3. X2 = (X2ij) ∈ Rn2×p, X2ij ∼ Geom(0.6).

• Scenario I: Setting n = (1000, 2000, 3000, 4000, 5000)
with p = 8.

Fig. 5. The values of MAE and MSE with n =
(1000, 2000, 3000, 4000, 5000) and p = 8.

• Scenario II: Setting p = (8, 9, 10, 11, 12) with
n = 4000.
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Fig. 6. The values of MAE and MSE with p = (8, 9, 10, 11, 12) and
n = 4000.

In this simulation, the stability of the geometric distri-
bution under the LIC criterion is investigated. The focus
is on selecting parameters n and p with a probability of
0.6. A comprehensive random sampling strategy is employed
during the simulation process, and various combinations of
n and p values are extensively tested. For each simulation,
the best subset selected by the LIC criterion is recorded,
along with the calculation of related performance metrics.

The trends in the MAE and MSE under the LIC criterion
remained consistent, as shown in Fig.5 and Fig.6. In com-
parison to the Lopt and Iopt criteria, the LIC criterion results
in smaller MAE and MSE values, indicating its advantages
in this particular application.

Fig.5 shows that as n grew from 1000 to 2000, MAE rises
from its lowest value of 0.03320847 to a peak of 0.17198431,
while MSE rose from its lowest value of 0.001390464 to
0.08883672. However, as n continued to increase, the error
values gradually decrease and reach their minimum at n =
4000, with values of 0.1109695 and 0.0386918. Similarly,
Fig.6 illustrats the impact of p values on the errors. When
dimensionality p is set to 9, both MAE and MSE reach their
minimum values, specifically 0.1392464 and 0.02838924.

C. Sensitivity

Following initial analysis, we observe that the LIC crite-
rion’s sensitivity is substantially influenced by the critical pa-
rameters K and nr. Additional simulations are conducted to
investigate their impact on criterion performance, especially
with redundant data from three key distributions. Varying
K and nr helps assess how the LIC criterion’s sensitivity
changes.
Case 1. X2 =

(
X2ij

)
∈ Rn2×p, X2ij ∼ Unif(0, 3) with

(α, σ1, σ2, p, nr) = (0.01, 3, 5, 8, 50).
• Scenario I: Setting K = (5, 10, 15, 20, 25) with n =

6000.
• Scenario II: Setting nr = (50, 60, 70, 80, 90) with

n = 3000.
The sensitivity experiment in Fig.7 is being thoroughly

analyzed. In the setting, the error indicators MAE and MSE
are much higher at lower block numbers K. This indicates
that the LIC criterion does not improve performance as
expected. However, as the K value gradually increases, the
error values begin to decrease, indicating an enhancement in
model performance. This trend is significant and consistent.
Disregarding the influence of endpoint effects, a significant

Fig. 7. The values of MAE and MSE with K = (5, 10, 15, 20, 25) and
n = 6000.

Fig. 8. The values of MAE and MSE with nr = (50, 60, 70, 80, 90) and
n = 3000.

inflection point is identified at K = 15. At this point, both
MAE and MSE reach their respective minimum values of
1.13E − 05 and 1.53E − 04. Subsequently, as the K value
further increases, both error indicators show an upward trend,
indicating a decline in model performance.

In Fig.8, it is seen that as the number of abnormal
samples nr grows, MAE and MSE initially increase and then
decrease. Specifically, at nr = 70, both reach their minimum
values of 0.1683721 and 0.05974087, respectively.
Case 2. X2 = (X2ij) ∈ Rn2×p, X2ij ∼ χ2(20) with
(α, σ1, σ2, p, nr) = (0.01, 3, 5, 8, 60).
• Scenario I: Setting K = (5, 10, 15, 20, 25) with n =

6000.

Fig. 9. The values of MAE and MSE with K = (5, 10, 15, 20, 25) and
n = 6000.

• Scenario II: Setting nr = (50, 60, 70, 80, 90) with n =
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3000.

Fig. 10. The values of MAE and MSE with nr = (50, 60, 70, 80, 90)
and n = 3000.

Specifically, as K increases, the error evaluation indicators
MAE and MSE initially exhibit a significant decreasing
trend, followed by an increasing trend. Particularly note-
worthy is that when K reaches 20, both MAE and MSE
reach their minimum values, specifically 0.0448467 and
0.00775919, respectively, at which point the performance of
LIC reaches its optimal state.

Disregarding the effects of endpoint influences and exam-
ining the variation of the parameter nr, it is observed that
the error values undergo corresponding changes. Specifically,
when nr equals 70, the error values reach a minimum
point. These detailed observations and analyses indicate that
changes in both the number of partition blocks K and the
parameter nr significantly impact the overall performance of
the model.
Case 3. X2 = (X2ij) ∈ Rn2×p, X2ij ∼ Geom(0.6) with
(α, σ1, σ2, nr) = (0.01, 3, 8, 8).
• Scenario I: Setting K = (5, 10, 15, 20, 25) with n =

6000.

Fig. 11. The values of MAE and MSE with K = (5, 10, 15, 20, 25) and
n = 6000.

• Scenario II: Setting nr = (50, 60, 70, 80, 90) with
n = 3000.

A thorough analysis of simulation Fig.11 and Fig.12
reveals the significant advantage of LIC criterion over tradi-
tional methods in terms of performance.

An observation of Fig.11 indicates that as K increases, the
values of MAE and MSE show a decreasing trend overall.
Particularly, at K = 15, the MAE and MSE under the LIC
criterion reach their respective lowest values of 0.09025262

Fig. 12. The values of MAE and MSE with nr = (50, 60, 70, 80, 90)
and n = 3000.

and 0.019957861, marking the optimal state of simulation
at this point. Therefore, K = 15 can be considered as the
ideal number of blocks.

D. Simulation Discussion Summary

In conducting a simulation study to delve into the stability
and sensitivity, this research examined the performance of
this criterion when confronted with redundant error data that
follows Uniform, Chi-Square, and Geometric distributions.
Research findings indicate that the LIC criterion is highly
applicable and performs well with diverse distributions of
redundant data. Comparative analyses reveal that changes to
the four key parameters {n, p,K, nr} can significantly im-
pact the method’s performance. However, despite variations
in these parameters, the LIC criterion consistently exhibits
lower error rates compared to traditional Iopt and Lopt meth-
ods, effectively demonstrating the significant advantages of
this method.

This discovery underscores the strength of the LIC crite-
rion and its powerful ability to generalize, making it highly
valuable in various scenarios involving redundant distribu-
tion data. Looking ahead, it is recommended to explore the
ways in which the sensitive parameters {n, p,K, nr} affect
model performance. This exploration aims to provide a better
understanding of the model’s predictive capabilities and offer
more precise guidance for model parameter optimization.

V. CONCLUSION

In the ongoing research, the LIC criterion has been utilized
for managing data with specific block lengths and numbers.
Future efforts will strive to transcend the limitation of block
numbers being constrained by the total number of data points
(n), thereby enhancing flexibility in handling diverse data
distributions and validating the effectiveness of the method.
Additionally, the methodology is intended for application
in other statistical models, such as probabilistic, factor,
and high-dimensional models, prevalent in fields like social
sciences, bioinformatics, and financial data analysis.

Integration of these models with the proposed method
promises more efficient management of redundant data,
facilitating more precise and reliable statistical analysis out-
comes. In multi-modal data contexts, eliminating redundant
information becomes crucial, and the redundant data elimi-
nation technique has been successfully implemented within
the adaptive mixed model framework.
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Furthermore, considerations are being given to extend-
ing the treatment of error terms by incorporating Laplace
White Noise and Symmetric Ergodic Noise variants into
the Gaussian normal distribution’s ε, thereby enhancing
the versatility and practicality of the method for diverse
application scenarios.

In conclusion, the objective is to develop a flexible and
efficient methodology for managing complex data distribu-
tions and models. This method holds significant potential to
contribute to data analysis and drive advancements in related
fields through continued research and exploration.

Our primary focus is on evaluating the performance of the
proposed LIC criterion in analyzing simulated data by the
LIC package. URL: https://CRAN.R-project.org/package=
LIC

DATA AVAILABILITY

.
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