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Abstract—This paper examines fault-tolerant quantized con-
trol for neural networks under persistent dwell-time switching,
considering the presence of actuator faults and dynamic output
quantization. The dynamic scaling factor (DSF) of the quantizer
is designed as a piecewise function concerning the output to
avoid the possibility of division by zero. To reduce conservatism,
the controller is designed to combine the system model with
a time scheduler constructed with a minimum time span. A
sufficient condition for the asymptotic stability and L2-gain of
the closed-loop system is derived using a piecewise Lyapunov
functional and decoupling approach. When the condition is
satisfied, the needed feedback gains and the parameter range
associated with the DSF can be determined by exact mathemat-
ical expressions. For comparison, feedback gains that depend
only on the system mode are also studied, and the corresponding
design method is presented. The numerical simulation results
demonstrate the effectiveness of the proposed control scheme.

Index Terms—Neural network, Persistent dwell-time switch-
ing, Actuator fault, Dynamic output quantization

I. INTRODUCTION

SWITCHED neural networks (SNNs) consist of subsys-
tems representing neural network models and a switch-

ing rule determining which subsystem is activated [1, 2].
The switching rule in SNNs can be broadly categorized
into two types: state-related and time-related. Typical time-
related switching rules include dwell-time (DT) switching
[3], average dwell-time (ADT) switching [4], and persistent
dwell-time (PDT) switching [5]. PDT switching divides the
entire timeline into different phases. Each phase comprises a
non-switching portion of at least a predetermined duration
and a fast-switching portion with a switching period not
exceeding a specified length. In contrast to DT and ADT
switching methods, PDT switching better accommodates for
characterizing the dynamic behavior involving both rapid and
slow switching that occurs sequentially in a switched system
[6–8].

The rapid advancements in network and communication
technologies have heightened the focus on the networked
control of SNNs. In this context, the transmission of control
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signals within the networked framework faces inherent con-
straints posed by limited channel throughput and bandwidth,
which can precipitate detrimental scenarios including data
loss and communication congestion. To mitigate these issues
and optimize communication efficiency, quantizing signals
before transmission has emerged as a crucial step [9–11].
Guan et al. [12] designed a logarithmic quantization con-
troller for the finite-time H∞-synchronization of discrete-
time SNNs. In [13], Liu et al. explored the asymptotic
synchronization of Markov jumping SNNs and presented
boundary quantization control strategies. In the study of H∞
stabilization for delayed SNNs, Yan et al. [14] considered dy-
namic output quantization and presented quantized sampled-
data controller designs based on two classes of two-sided
loop functionals. In contrast to the static quantizers used in
[12, 13], the dynamic quantizers used in [14] can effectively
prevent signal saturation due to the effect of dynamic scaling
factors (DSFs).

Furthermore, in practical control systems, actuator faults
are frequent and often lead to a series of unpredictable and
serious consequences, such as degradation of controller per-
formance or even damage to controller components [15, 16].
To cope with this challenge, fault-tolerant control has been
widely introduced into the control field in the past decades as
a practical solution. Jin et al. [17] employed a neural network
to estimate unknown actuator fault bounds in a fault-tolerant
consensus protocol for multi-dimensional multi-agent sys-
tems. Zhang et al. [18] proposed a comprehensive neu-
ral learning-based fault-tolerant method, incorporating four
adaptively tuned parameters, to accomplish path-following
for underactuated vehicles, effectively addressing unknown
actuator faults. In [19], Wang et al. developed fault-tolerant
control strategies for synchronizing memristor-based SNNs
in the presence of actuator effectiveness faults and lock-
in-place faults. These studies have demonstrated that fault-
tolerant control can effectively compensate for the effects
of faults on the controlled system to ensure the desired
performance of the controller system.

Based on the above discussion, the focus of the present
work is on fault-tolerant quantized control for SNNs under
PDT switching in the presence of actuator faults and dynamic
output quantization. To our knowledge, there are few studies
in the control designs of SNNs in the existing literature that
consider both factors simultaneously, despite their potential
importance. Unlike [14], the DSF is designed as a piecewise
function concerning the output, which allows us to avoid the
possibility of division by zero. In this paper, a criterion for
the asymptotic stability and L2-gain of the closed-loop SNN
is established by means of a piecewise Lyapunov-Krasovskii
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functional (LKF) and some decoupling approaches. To re-
duce conservatism, the controller is designed to combine
the system model with a time scheduler constructed with
a minimum time span. The needed feedback gains and the
value range of a parameter associated with the DSF can
be determined by exact mathematical expressions when the
criterion is met. For comparison, the feedback gains that
depend only on the system mode are also studied, and
the corresponding design method is proposed. Finally, the
validity of the proposed control scheme is demonstrated
through numerical simulation.

II. PRELIMINARIES

Consider the SNN model with PDT switching given by
ẋ(t) = Aδ(t)x(t) +Bδ(t)h(x(t)) +Wδ(t)u

f (t)

+ B̃δ(t)h(x(t− ν)) + Eδ(t)ϵ(t)

y(t) = Cδ(t)x(t)

z(t) = Dδ(t)x(t) +Gδ(t)ϵ(t)

(1)

where x(t) ∈ Rn, uf (t) ∈ Rny , y(t) ∈ Rny , z(t) ∈
Rnz , and ϵ(t) ∈ Rnw are the state variable, control in-
put with possible actuator faults, measured output, con-
trolled output and disturbance input, respectively; h(x(t)) =
col {h1(x1(t)), ..., hn(xn(t))} ∈ Rn stands to the activation
function, where hi(·) satisfies h(0) = 0 and the usual
Lipschitz condition with coeffcient Hi > 0 [20, 21]; ν > 0 is
the time delay and f ∈ M; δ(t) is the PDT switching signal
that maps [t0,∞) to Ns = {1, 2, . . . , s} with s indicating
the overall number of subsystems. The switching sequence
t0, t1, t2..., are unknown a prior but known immediately. The
minimum time span between any two neighboring switching
moments is denoted as hT = minl∈Z+

(tl+1 − tl).
The model of actuator faults can be expressed as

uf (t) =Mfu(t), (2)

where Mf is the actuator faults matrix, defined as Mf =
diag {m1f , . . . ,mpf} with 0 ≤ m̃jf ≤ mjf ≤ m̂jf ≤
1 (j = 1, . . . , p) [22, 23]. Here m̃jf and m̂jf (j = 1, . . . , p)
are known constants.

We define

M0f =diag
{
mf

01, ...,m
f
0p

}
,M1f =diag

{
mf

11, ...,m
f
1p

}
with

mf
0j = (m̂jf + m̃jf )/2,

mf
1j = (m̂jf − m̃jf )/2 (j = 1, ..., p).

Then, fault matrix Mf can be rewritten to

Mf =M0f +M1fΛf , (3)

where

Λf = diag {λ1f , ..., λpf} ,−1 ≤ λjf ≤ 1, j = 1, ..., p.

Remark 1. Based on Mf , when Mf = I , the system
actuator is normal; Mf = 0 indicates that the system actuator
is completely failed; and 0 ≤ Mf < I indicates that the
actuator is partially failed and the actuator efficiency is
reduced.

Considering the limited bandwidth of the communication
channel, measurement output y(t) is quantized prior to

transmission. The employed dynamic quantizer is formulated
as

Qy(y(t)) = ψy(t)Q

(
y(t)

ψy(t)

)
, (4)

where ψy(t) > 0 is the DSF, which, as in [24, 25], is defined
as a function with respect to y(t) to preclude division by
zero:

ψy(t) =

{
1, y(t) = 0,

ψ∥y(t)∥, y(t) ̸= 0,
(5)

ψ > 0 is a scalar to be ascertained, and

Q

(
y(t)

ψy(t)

)
= col

{
q

(
y1(t)

ψy(t)

)
, . . . , q

(
yny (t)

ψy(t)

)}
. (6)

In (6), q(·) is a static quantizer with q(0) = 0 and

|q(ϑ(t))− ϑ(t)| ≤ ωq, |ϑ(t)| ≤ ωs, (7)
|q(ϑ(t))− ϑ(t)| > ωq, |ϑ(t)| > ωs,

where ωq, ωs ∈ R+ denote the quantization error bound
and quantization saturation threshold, respectively. Based on
equations (4) to (7), it can be inferred that

∥ey(t)∥ ≤ √
nyψy(t)ωq, ∥y(t) ≤ ψy(t)ωs∥, (8)

∥ey(t)∥ >
√
nyψy(t)ωq, ∥y(t) > ψy(t)ωs∥,

where

ey(t) = Q(y(t))− y(t). (9)

The feedback controller after dynamic quantization of the
output signal is

u(t) = Kδ(t),rtQ(y(t)) (10)

for t ∈ [tr(s)+k, tr(s)+k+1), where Kδ(t),rt is the gain matrix.
In (10), rt as a time scheduler is defined as:

rt =



⌊
(t− tr(s))

hT

⌋
, t ∈ [tr(s), tr(s) + ς),

bς , t ∈ [tr(s) + ς, tr(s)+1),⌊
(t− tε)

hT

⌋
, t ∈ [tr(s)+1, t),

(11)

where bς =
⌊
ς
hT

⌋
, tε ≜ max

{
tr(s)+k ≤ t, 1 ≤ k ≤ nr

}
and

hT is the minimum time span.
Substituting model of actuator faults (2) and controller

(10) into (1), we can obtain the following closed-loop SNN:

ẋ(t) = (Aδ(t) +Bδ(t)MfKδ(t),rtCδ(t))x(t) (12)

+ B̃δ(t)h(x(t− ν)) +Bδ(t)MfKδ(t),rtey(t)
+Wδ(t)h(x(t)) + Eδ(t)ϵ(t).

At the end of this section, let us recall two important
lemmas:

Lemma 1. [26] Let I, F ,Wa, and Wb be real matrices
of suitable dimensions. Then I + He(WaFWb) < 0 for
FTF ≤ I , if there exist only one scalar κ > 0 such that

I + κ−1WaWT
a + κWT

b Wb < 0.

Lemma 2. [27] Consider closed-loop SNN (12), assume that
there are α > 0, µ > 1,γ > 0, and a right-continuous
Lyapunov function Vδ(t)(x(t), t) → R such that

f1(∥x(t)∥) ≤ Vδ(t)(x(t), t) ≤ f2(∥x(t)∥v), (13)

IAENG International Journal of Applied Mathematics

Volume 55, Issue 1, January 2025, Pages 7-15

 
______________________________________________________________________________________ 



V̇δ(x(t), t) ≤ −αVδ(t)(x(t), t)− Γ (s) ≤ 0, (14)
Vδ(tk)(x(tk), tk) ≤ µ lim

t→t−k

Vδ(t)(x(t), t) (15)

for t > t0 and k ∈ Z+, where f1 and f2 are two functions
belonging to F∞, and Γ (s) = ∥z(t)∥2 − γ2∥ϵ(t)∥2. Then,
for any PDT switching signal satisfies

ς >
βT lnµ

α
− σ, (16)

closed-loop SNN (12) is asymptotically stable with an L2-
gain, which is no greater than

γ∗ = γ

√
αµβT

α− βT lnµ
ς+σ

(17)

where βT = σ
hT

+ 1.

III. CONTROLLER DESIGN

Based on closed-loop SNN (12), we propose a method to
determine the controller gains and the ψ range associated
with the DSF ψy(t).

Theorem 1. For any i ∈ Nd, j ∈ Nς , given α > 0, µ > 0,
φy > 0, ωs > 0, ι > 0, and ρ > 0, suppose there exist scalar
constants φy > 0 and γ > 0, matrices Pi,j > 0, Q > 0, Si,j ,
Ui,j , and diagonal matrix R > 0 such that

Γ11
1,i,j Γ12

1,i,jΓ
13
1,i,jΓ

14
1,i,j Γ15

i Γ16
1,i,j Γ

17
1,i,j

∗ Γ22
i 0 0 0 0 0

∗ ∗ Γ33
i 0 0 0 0

∗ ∗ ∗ Γ44
i 0 0 0

∗ ∗ ∗ ∗ −I Γ56
i 0

∗ ∗ ∗ ∗ ∗ Γ66
i,j 0

∗ ∗ ∗ ∗ ∗ ∗ −µI


< 0, (18)



Γ11
2,i,j Γ12

2,j Γ
13
2,i,jΓ

14
2,i,j Γ15

i Γ16
2,i,j Γ

17
2,i,j

∗ Γ22
i 0 0 0 0 0

∗ ∗ Γ33
i 0 0 0 0

∗ ∗ ∗ Γ44
i 0 0 0

∗ ∗ ∗ ∗ −I Γ56
i 0

∗ ∗ ∗ ∗ ∗ Γ66
i,j 0

∗ ∗ ∗ ∗ ∗ ∗ −µI


< 0, (19)

hold for any j ∈ Nς − bς , and

Γ11
3,i,j Γ12

3,i,jΓ
13
3,i,jΓ

14
3,i,j Γ15

i Γ16
3,i,j Γ

17
3,i,j

∗ Γ22
i 0 0 0 0 0

∗ ∗ Γ33
i 0 0 0 0

∗ ∗ ∗ Γ44
i 0 0 0

∗ ∗ ∗ ∗ −I Γ56
i 0

∗ ∗ ∗ ∗ ∗ Γ66
i,j 0

∗ ∗ ∗ ∗ ∗ ∗ −µI


< 0, (20)

Pi,0 ≤ µPl,j , (21)
1/ωs <

√
φy (22)

hold for any l ∈ Nd − {i} and j ∈ Nς − {0}, where

Γ11
1,i,j =αPi,j +He(Pi,jAi +WiM0iUi,j)Ci

+ (Pi,j+1 − Pi,j)/hT +DT
i Di +HQH + ιCTi Ci,

Γ11
2,i,j =αPi,j+1 +He(Pi,j+1Ai +WiM0iUi,j)

+ (Pi,j+1 − Pi,j)/hT +DT
i Di +HQH + ιCTi Ci,

Γ11
3,i,j =αPi,j +He(Pi,jAi +WiM0iUi,j)

+DT
i Di +HQH + ιCTi Ci,

Γ12
1,i,j =Γ12

3,i,j = Pi,jBi, Γ
12
2,i,j = Pi,j+1Bi,

Γ13
1,i,j =Γ13

3,i,j = Pi,jB̃i, Γ
13
2,i,j = Pi,j+1B̃i,

Γ14
1,i,j =Γ14

3,i,j = Pi,jEi +DT
i Gi,

Γ14
2,i,j =Pi,j+1Ei +DT

i Gi,

Γ16
1,i,j =Γ16

3,i,j = Pi,jWiM0i −WiM0iSi,j + ρ(Ui,jCi)
T ,

Γ16
2,i,j =Pi,j+1WiM0i −WiM0iSi,j + ρ(Ui,j)

T ,

Γ17
1,i,j =Γ17

3,i,j = Pi,jWiM1i,Γ
17
2,i,j = Pi,j+1WiM1i,

Γ15
i =WiM0iUi,j , Γ

22
i = L−Q, Γ33

i = −e−ανL,
Γ44
i =GTi Gi − γ2I, Γ56

i = ρUTi,j ,

Γ66
i,j = − ρ(Si,j + STi,j) + µI,

H = diag {H1, H2, . . . ,Hn} .

Then, for any PDT ς satisfying (16), the closed-loop SNN is
asymptotically stable with L2-gain no greater than γ∗ given
in (17). Furthermore, the feedback gains and the parameter
ψ range associated with the DSF ψy(t) for the required
dynamic quantization controller can be designed as

Ki,j = S−1
i,j Ui,j , i ∈ Nd, j ∈ Nς , (23)

√
φy ≤ ψ ≤ 2

√
φy, (24)

respectively.

Proof: Define ζj = jhT , j ∈ Nς . From (11), we
establish the following intervals:

[tr(s), tr(s)+1) = ∪bς−1
j=0 [tr(s)+ζj , tr(s)+ζj+1

)

∪ [tr(s)+ζbς , tr(s)+1),

[tr(s)+1, tr(s+1)) = ∪nr

k=1 [tr(s)+k, tr(s)+1),

[tr(s)+k, tr(s)+k+1) = ∪br,k−1
j=0 [tr(s)+k+ζj , tr(s)+k+ζj+1

)

∪ [tr(s)+k+ζbr,k , tr(s)+k+1).

We have 1 ≤ br,k =
⌊
σr,k

hT

⌋
< bς , in which σr,k denotes

the interval [tr(s), tr(s)+1). Therefore, according to the PDT
switching rule, σr,k < ς is true.

From the intervals above, we build a piecewise LKF
accordingly:

Vδ(t)(x(t), t) =

V0(t) +



V1,δ(t)(x(t), t), t ∈ [tr(s) + ζj , tr(s)+ζj+1
)

j = 0, 1, . . . , bς − 1,

V2,δ(t)(x(t), t), t ∈ [tr(s) + ζbς , tr(s)+1),

V3,δ(t)(x(t), t), t ∈ [tr(s)+k + ζj , tr(s)+k + ζj+1)

j = 0, 1, . . . , br,k − 1,

V4,δ(t)(x(t), t), t ∈ [tr(s)+k + ζbr,k , tr(s)+k+1),
(25)

here 1 < k < nr, r ∈ Z+, and

V0(t) =

∫ t

t−ν
eα(s−t)hT (x(s))Lh(x(s)) ds,

V1,δ(t)(x(t), t) = xT (t)[(1− ϱ1t)Pδ(t),j + ϱ1tPδ(t),j+1]x(t),

V2,δ(t)(x(t), t) = xT (t)Pδ(t),bςx(t),

V3,δ(t)(x(t), t) = xT (t)[(1− ϱ2t)Pδ(t),j + ϱ2tPδ(t),j+1]x(t),

V4,δ(t)(x(t), t) = xT (t)Pδ(t),br,kx(t)
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with

ϱ1t =
t− (tr(s) + bj)

hT
, ϱ2t =

t− (tr(s)+k + bj)

hT
.

It is evident that the aforementioned LKF Vδ(t)(x(t), t) ex-
hibits right-continuous differentiability, with the exception of
the switching instances. Consequently, it is enough to show
that the inequality presented in (13)-(15) holds, leveraging
the premise outlined in Lemma 2. Considering

hT (x(s))Lh(x(s)) ≤ λM (L)tr(H2)∥x(s)∥2,
λδ(t),N (P ) = max

j∈N ς
λN (Pδ(t),j),

λδ(t),n(P ) = min
j∈N ς

λn(Pδ(t),j),

we have

λδ(t),n(P )∥x(t)∥2

≤Vδ(t)(x(t), t) ≤ [λδ(t),N + νλN (L)tr(H2)]∥x(t)∥2ν ,

which implies the validity of (13).
Based on (7) and DSF, we can infer that

√
φy∥y(t)∥ ≤ ψy(t) ≤ 2

√
φy∥y(t)∥, (26)

from (7) and (26), we can obtain

∥y(t)∥ ≤ √
nyωsψy(t), (27)

∥ey(t)∥ ≤ √
nyψy(t)ωq, (28)

utilizing the expressions (26)-(28), we have

∥ey(t)∥ = 2
√
ny

√
φyωq∥y(t)∥. (29)

To prove (14), define the following

Θ(t) = col {x(t), h(x(t)), h(x(t− ν)), ϵ(t), ey(t)}

and according to closed-loop SNN (12), we konw that

xT (t)HQHx(t) > hT (x(t))Qh(x(t)). (30)

Furthermore, in according with (12) and (29), the following
inequality can be inferred:

xT (t)4nyφyω
2
qC

T
i Cix(t)− eTy (t)ey(t) ≥ 0,

assume ι = 2
√
ny

√
φyωq .

Following the discussion in [27], we consider the follow-
ing four cases:

Case 1: t ∈ [tr(s) + ζj , tr(s) + ζj+1), j = 0, 1, . . . , bς − 1.
Given this case, we have

V̇δ(t)=i(x(t), t)

=hT (x(t))Lh(x(t))− e−ανhT (x(t− ν))Lh(x(t− ν))

− αV0(t) + 2xT (t)[(1− ϱ1t)Pi,j + ϱ1tPi,j+1][(Ai

+WiMiKi,jCi,j)x(t) +Bih(x(t)) + B̃ih(x(t− ν))+

+ Eiϵ(t) +WiMiKi,jey(t)] +
1

hT
xT (x)[Pi,j+1

− Pi,j ]x(t),

and, thus, we can write that

V̇δ(t)=i(x(t), t) + αVδ(t)=i(x(t), t) + Γ (s)

≤hT (x(t))Lh(x(t))− e−ανhT (x(t− ν))Lh(x(t− ν))

+ αxT (t)[(1− ϱ1t)Pi,j + ϱ1tPi,j+1]x(t)

+ 2xT (t)[(1− ϱ1t)Pi,j + ϱ1tPi,j+1]

×[(Ai +WiMiKi,jCi,j)x(t) +Bih(x(t)) +B̃ih(x(t− ν))

+ Eiϵ(t) +WiMiKi,jey(t)] + Γ (s)

+
1

hT
xT (t)(Pi,j+1 − Pi,j)x(t) + xT (t)ι2CTi Cix(t)

− eTy (t)ey(t) + xT (t)HQHx(t)− hT (x(t))Qh(x(t))

≤ (1− ϱ1t)Θ
T (t)Π1,i,jΘ(t) + ϱ1tΘ

T (t)Π2,i,jΘ(t),

in which

Π1,i,j =


Ξ11
1,i,j Pi,jBi Pi,jB̃i Γ14

1,i,j Ξ15
1,i,j

∗ L−Q 0 0 0
∗ ∗ −e−ανL 0 0
∗ ∗ ∗ Γ44

i 0
∗ ∗ ∗ ∗ −I

 ,

Π2,i,j =


Ξ11
2,i,j Pi,j+1Bi Pi,j+1B̃i Γ14

2,i,j Ξ15
2,i,j

∗ L−Q 0 0 0
∗ ∗ −e−ανL 0 0
∗ ∗ ∗ Γ44

i 0
∗ ∗ ∗ ∗ −I

 ,
Ξ11
1,i,j =αPi,j +He(Pi,jAi + Pi,jWiMiKi,jCi)

+DT
i Di +HQH +

1

hT
[Pi,j+1 − Pi,j ] + ιCTi Ci,

Ξ11
2,i,j =αPi,j+1 +He(Pi,j+1Ai + Pi,j+1WiMiKi,jCi)

+DT
i Di +HQH +

1

hT
[Pi,j+1 − Pi,j ] + ιCTi Ci,

Ξ15
1,i,j =Pi,jWiMiKi,j ,

Ξ15
2,i,j =Pi,j+1WiMiKi,j .

Case 2: t ∈ [tr(s) + ζbς , tr(s)+1).
Given this case, we have

V̇δ(t)=i(x(t), t) + αVδ(t)=i(x(t), t) + Γ (s)

≤ΘT (t)Πi,bςΘ(t),

where

Πi,bς =


Ξ11
i,bς

Pi,bςBi Pi,bς B̃i Γ14
1,i,j Ξ15

1,i,j

∗ L−Q 0 0 0
∗ ∗ −e−ανL 0 0
∗ ∗ ∗ Γ44

i 0
∗ ∗ ∗ ∗ −I

 ,
Ξ11
i,bς =αPi,bς +He(Pi,bςAi + Pi,bςWiMiKi,bς ) + ιCTi Ci

+DT
i Di +HQH,

Ξ15
3,i,j =Pi,bςWiMiKi,bς .

Case 3: t ∈ [tr(s)+k+ζj , tr(s)+k+ζj+1), j = 1, . . . , br,k−
1, k = 1, 2, . . . , nr.

Given this case, we have

V̇δ(t)=i(x(t), t) + αVδ(t)=i(x(t), t) + Γ (s)

≤ (1− ϱ2t)Θ
T (t)Π1,i,jΘ(t) + ϱ2tΘ

T (t)Π2,i,jΘ(t),

Π1,i,j and Π2,i,j are the same as in Case 1.
Case 4: t ∈ [tr(s)+k + ζbr,k , tr(s)+k+1], k = 1, 2, . . . , nr.
Given this case, we have

V̇δ(t)=i(x(t), t) + αVδ(t)=i(x(t), t) + Γ (s)

≤ΘT (t)Πi,br,kΘ(t),
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where

Πi,br,k=


Ξ11
i,br,k

Pi,br,kBi Pi,br,kB̃i Γ14
3,i,br,k

Ξ15
3,i,br,k

∗ L−Q 0 0 0
∗ ∗ −e−ανL 0 0
∗ ∗ ∗ Γ44

i 0
∗ ∗ ∗ ∗ −I

 ,
Ξ11
i,br,k

=αPi,br,k +He(Pi,br,kAi + Pi,br,kWiMiKi,br,k)
+DT

i Di +HQH + ιCTi Ci,

Ξ15
3,i,br,k

=Pi,br,kWiMiKi,br,k .

From the above analysis, it can be proven that (14) is correct
when the following inequality is true:

Π1,i,j < 0, 0 ≤ j ≤ bς − 1, (31)
Π2,i,j < 0, 0 ≤ j ≤ bς − 1, (32)
Πi,j < 0, 0 ≤ j ≤ bς . (33)

In addition, in the light of (23), one can write

He(Pi,jWiMiKi,j)
=He(WiM0iUi,j + (Pi,jWiMi −WiM0iSi,j)S

−1
i,j Ui,j).

(34)

By (34), it is obvious that (31) can be rewritten as
Γ11
1,i,j Pi,jBi Pi,jB̃i Γ14

1,i,j Γ15
1,i,j

∗ L−Q 0 0 0
∗ ∗ −e−ανL 0 0
∗ ∗ ∗ Γ44

i 0
∗ ∗ ∗ ∗ −I


+He(ΠAi,jX

−1
i,j Π

B
i,j) < 0, (35)

where

ΠAi,j = [ (Pi,jWiMi −WiM0iSi,j)
T 0 0 0 0 ]T ,

ΠBi,j = [ Ui,jCi 0 0 0 Ui,j ].

Then according to the projection theorem and Schur’s com-
plement, (35) is ensured by

Γ11
1,i,j Pi,jBi Pi,jB̃i Γ14

1,i,j Γ15
i Ξ16

1,i,j

∗ L−Q 0 0 0 0
∗ ∗ −e−ανL 0 0 0
∗ ∗ ∗ Γ44

i ρUTi,j 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ Γ66

1,i,j

 , (36)

where

Ξ16
1,i,j = Pi,jWiMi −WiM0iSi,j + ρUTi,j ,

Γ66
1,i,j = ρHe(Si,j).

According to (3) and lemma 1, (36) can be re-expressed as

Φ1,i,j +He(Wa,i,jΛi,jWb,i,j) < 0, (37)

where

Π1,i,j=


Γ11
1,i,j Pi,jBi Pi,jB̃i Γ14

1,i,j Γ15
i Γ16

1,i,j

∗ L−Q 0 0 0 0
∗ ∗ −e−ανL 0 0 0
∗ ∗ ∗ Γ44

i ρUTi,j 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ Γ66

1,i,j

 ,
Wa,i,j = [ (Pi,jWiM1i)

T 0 0 0 0 0 ]T ,

Wb,i,j = [ 0 0 0 0 0 I ].

By Schur’s complement, (37) can be rewritten as (18). Using
the same reasoning, it can be inferred that (32) and (33) are
obtained from (19) and (20), respectively.

Finally, we demonstrate the effectiveness of (15) based on
piecewise LKF (25) and (21). There are different derivation
processes for different switching states as follows:

Situation A: Slow-to-Fast Switching.
When switching at time tr(s)+1, assuming tr(s)+1 =

tf , f ∈ Z+, we have

Vtf (x(tf ), tf ) = V0(tf ) + V3,δ(tf )(x(tf ), tf )

= V0(tf ) + xT (t)Pδ(tf ),0x(t),

lim
t→t−tf

Vδ(t)(x(t), t) = lim
t→t−tf

[V0(t) + V2,δ(t)(x(t), t)]

= V0(tf ) + xT (t)Pδ(tr(s),bς)x(t).

Situation B: Rapid Switching.
When switching at time tr(s)+k, assuming tr(s)+k =

tj , j ∈ Z+, we have

Vtj (x(tj), tj) = V0(tj) + V3,δ(tj)(x(tj), tj)

= V0(tj) + xT (t)Pδ(tj),0x(t),

lim
t→t−tj

Vδ(t)(x(t), t) = lim
t→t−tj

[V0(t) + V4,δ(t)(x(t), t)]

= V0(tj) + xT (t)Pδ(tj−1,br,k−1)x(t).

Situation C: Fast-to-Slow Switching.
When switching at time tr(s)+nr+1 = tr(s+1), assuming

tr(s+1) = tl, l ∈ Z+, we have

Vtl(x(tl), tl) = V0(tl) + V1,δ(tl)(x(tl), tl)

= V0(tl) + xT (t)Pδ(tl),0x(t),

lim
t→t−tl

Vδ(t)(x(t), t) = lim
t→t−tl

[V0(t) + V4,δ(t)(x(t), t)]

= V0(tl) + xT (t)Pδ(tl−1,br,nr )
x(t).

Based on the above three scenarios, for all k ∈
{1, 2, . . . , nr + 1}:

Vδ(tr(s)+k)(x(tr(s)+k), tr(s)+k)

≤µ lim
t→t−

r(s)+k

Vδ(t)(x(t), t), k ∈ 1, 2, . . . , nr + 1,

which implies (15). Thus, the proof is finished.

Remark 2. The coupling of the Lyapunov matrices with
the actuator fault uncertainty directly leads to the emergence
of high-order nonlinearities when designing the required
dynamic quantized controller. The handling of such high-
order nonlinearities is quite challenging. To address this
problem, Theorem 1 proposes a method that converts the
solution process of the required gain range and related
parameters ψ of the DSF ψy(t) into the solution of a series of
linear matrix inequalities (LMIs). These LMIs can be easily
solved and verified by the computational software MATLAB.

In Theorem 1, the controller is contingent upon both
the system model and a time scheduler constructed with a
minimum time span. Furthermore, when the feedback gains
depend only on the system mode, as in [28–30], the form of
the controller is changed to

u(t) = Kδ(t)Q(y(t)),
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On this basis, LKF can be set to

Vδ(t)(x(t), t) = xT (t)Pδ(t)x(t)

+

∫ t

t−ν
eα(s−t)hT (x(s))Lh(x(s)) ds.

The following corollary can be established:

Corollary 1. For any i ∈ Nd, given α > 0, µ > 0, φy >
0, ωs > 0, ι > 0, and ρ > 0, suppose there exist scalar
constants φy > 0 and γ > 0, matrices Pi > 0, Q > 0, Si,
Ui, and diagonal matrix R > 0 satisfies

Γ11
i Γ12

i Γ13
i Γ14

i Γ15
i Γ16

i Γ17
i

∗ Γ22
i 0 0 0 0 0

∗ ∗ Γ33
i 0 0 0 0

∗ ∗ ∗ Γ44
i 0 0 0

∗ ∗ ∗ ∗ −I Γ56
i 0

∗ ∗ ∗ ∗ ∗ Γ66
i 0

∗ ∗ ∗ ∗ ∗ ∗ −µI


< 0, (38)

Pi ≤ µPl, (39)
1/ωs ≤

√
φy (40)

hold for any l ∈ Nd − {i}, where

Γ11
i =αPi +He(PiAi +WiM0iUi,j)Ci

+DT
i Di +HQH + ιCTi Ci,

Γ12
i =PiBi,Γ

13
i = PiB̃i,

Γ14
i =PiEi +DT

i Gi,Γ
15
i =WiM0iUi,j ,

Γ16
i =PiWiM0i −WiM0iSi + ρ(Ui)

T ,

Γ17
i =PiWiM1i,Γ

22
i = L−Q,

Γ33
i =− e−ανL, Γ44

i = GTi Gi − γ2I,

Γ56
i = ρUTi ,Γ

66
i = −ρ(Si + STi ) + µI,

H = diag {H1, H2, . . . ,Hn} .

Then, for any PDT ς satisfying (16), the closed-loop SNN is
asymptotically stable with L2-gain no greater than γ∗ given
in (17). Furthermore, the feedback gains and the value range
of parameter ψ associated with DSF ψy(t) of the needed
dynamic quantization controller can be designed as

Ki = S−1
i Ui, i ∈ Nd, j ∈ Nς ,√

ψy ≤ ψ ≤ 2
√
ψy,

respectively.

IV. NUMERICAL EXAMPLES

Consider SNN (1) with some parameters borrowed from
[31]:

A1 =

[
−1 0
0 −1

]
,W1 =

[
−2 1
0 −2

]
,

A2 =

[
−1 0
0 −1

]
,W2 =

[
−2 0.1
0 −2

]
,

B1 =

[
−2 −0.1
−5 4.5

]
, B̃1 =

[
−1.5 −0.1
−0.2 −3

]
,

B2 =

[
2 −0.1
−5 4.5

]
, B̃2 =

[
−1.5 −0.1
−0.2 −2.5

]
,

C1 = C2 =

[
−1 0
0 1

]
, E1 =

[
1
2

]
, E2 =

[
0.12
0.1

]
,

TABLE I
γ∗ VALUES FOR DIFFERENT ν SETTINGS

γ∗ ν

1.00 1.50 2.00 2.50 3.00

Theorem 1 0.7930 0.7932 0.7934 0.7936 0.7939
Corollary 1 0.7939 0.7940 0.7943 0.7945 0.7948

0 5 10 15 20 25 30

0.5

1

1.5

2

2.5

Fig. 1. Switching signal δ(t).

D1 =

[
0.1
−0.1

]T
, D2 =

[
0.6
−0.1

]T
, G2 = G1 = 0.1,

h(x(·)) =
[
tanh(x1(·))
tanh(x2(·))

]
, ϵ(t) = 3.4e−0.25tsin(2.5πt).

Besides, we assign H1 = H2 = 1, ς = 0.9, σ = 3, and
hT = 0.2, and specify the parameter values α = 0.3, ρ =
0.1, µ = 1.1. When m̂ji = 1, m̃ji = 0.2 (i, j = 1, 2), it
solves the matrix inequality in (3).

Generally speaking, the smaller the L2-gain, the better the
anti-interference performance. Table I delineates the mini-
mum allowable L2-gain corresponding to various time delay
settings ν. It can be seen that as the time delay increases,
the interference suppression performance decreases. Further-
more, the value of γ∗ derived from Theorem 1 is always
better than Corollary 1, which means that the controller
design with dual dependence on mode and scheduler is better
than the method that only depends on mode.

In the following, we set ν = 1. The static quantizer is
chosen as

Q(ψ(t)) =

{
ψ(t) + ωqsin(ψ(t)), |ψ(t)| ≤ ωs,
ψ(t) + sign(ψ(t)), |ψ(t)| > ωs.

We set quantization error bound ωq = 0.01, quantization
saturation threshold ωs = 30. By employing Lemma 2, we
can get the parameter φy = 0.0011 and the feedback gains:

K1,0 =

[
22.5099 1.7468
−9.8223 18.4985

]
,

K1,1 =

[
20.1494 4.7567
−10.0982 20.0629

]
,

K1,2 =

[
20.1218 4.8122
−10.1416 20.1153

]
,

K1,3 =

[
20.1473 4.8075
−10.1269 20.1045

]
,

K1,4 =

[
20.1627 4.8071
−10.1182 20.1012

]
,
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Fig. 2. Phase-plane trajectory of SNN (1) without control.
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Fig. 3. Trajectories of Qe1 (t) and Qe2 (t).

K2,0 =

[
28.4558 −11.2574
−10.1306 29.8037

]
,

K2,1 =

[
25.3922 −14.4730
−12.7879 26.6355

]
,

K2,2 =

[
25.3877 −14.4860
−12.7908 26.6588

]
,

K2,3 =

[
24.6422 −14.8047
−13.4990 26.3834

]
,

K2,4 =

[
24.0152 −15.0421
−14.0861 26.1603

]
.

When the initial condition is x(s) = col {0.4, −0.4},
Fig. 1 represents the phase-plane plot of Fig. 2 under the
above switching signal without a control input, revealing the
presence of the singular attractor.

Now we set initial condition x(0) = col {0.3,−0.3}.
According to (5) and (24), we can know when y(t) = 0,
ψy(t) = 1, when y(t) ̸= 0,

√
0.0011∥y(t)∥ ≤ ψy(t) ≤ 2

√
0.0011∥y(t)∥,

then, the dynamic quantizer (4) can be derived as

Q(y(t)) =

{
0, y(t) = 0,

y(t) + ωqψy(t) + sin( y(t)ψy(t)
), y(t) ̸= 0.

According to (8), we set

Qe1(t) =
√
nyψy(t)ωq−∥ey(t)∥,

Qe2(t) =ψy(t)ωs−∥y(t)∥.

0 2 4 6 8 10

0.3

0.31

0.32

0.33

0.34

0.35

0.36

Fig. 4. Trajectory of γ(t).
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Fig. 5. State trajectories of the closed-loop SNN.

Then, the trajectories of Qe1(t) and Qe2(t), depicted in
Fig. 3, remain non-negative, signifying the efficacy of the
dynamic quantizer in preventing saturation.

In the condition of x(h) = col {0, 0}, h ∈ [0, ν), the
trajectories of γ(t) are drawn in Fig. 4, and the L2-gain
formula designed in this article is as follows:

γ(t) =

√∫ t

0

∥z(s)∥2 ds/
∫ ∞

0

∥w(s)∥2 ds,

this suggests that γ(∞) = 0.3178(< γ∗ = 0.7930). With the
calculated feedback gains, the state trajectories of closed-
loop SNN (12) are plotted in Fig. 5, showcasing rapid
convergence.

From above, it can be seen that the system can still
ensure the asymptotic stability of the system and maintain
the L2-gain performance in the presence of faults, further
illustrating the effectiveness of the feedback control scheme
with dynamic output quantization given in this paper.

V. CONCLUSION

The problem of fault-tolerant quantized control for SNN
(1) under PDT switching in the presence of actuator faults
and dynamic output quantization was investigated. DSF
ψy(t) was constructed as a segmentation function, as shown
in (5), to prevent the occurrence of division by zero of
the output signal. To reduce conservatism, the controller
is designed to combine the system model δt with a time
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scheduler rt constructed with a minimum time span. A
sufficient condition (see Theorem 1) for asymptotic stability
and L2-gain in the closed-loop SNN is derived using a
piecewise LKF (25) and decoupling methods. The needed
feedback gains and the parameter range associated with the
DSF can be determined by exact mathematical expressions
(23) and (25) when the condition is satisfied. For comparison
purposes, the feedback gains that depend only on the system
mode δt are also studied, and the corresponding design
method is proposed in Corollary 1. The numerical simulation
results demonstrate the effectiveness of our proposed control
scheme.
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