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Abstract—This paper investigates the input-to-state stabi-
lization of discrete-time Markov jump systems. A quantized
control scheme that includes coding and decoding procedures is
proposed. The relationship between the error in the system state
before and after encoding and decoding, the quantization range,
and the packet length is established. A criterion for input-
to-state stability of the quantized closed-loop Markov jump
system is obtained using a Lyapunov function and the Schur
complement. The gains of the required quantized controller can
be derived from a feasible solution to linear matrix inequalities.
Finally, the proposed control scheme is validated using an
operational amplifier circuit system.

Index Terms—Markov jump system, Input-to-state stability,
Quantized control, Coding-decoding procedure.

I. INTRODUCTION

MARKOV jump systems (MJSs) consist of multiple
subsystems and a Markov chain that governs the

transitions of the system. Such systems are particularly effec-
tive for characterizing the dynamics of systems that exhibit
sudden and unpredictable alterations in their parameters
or underlying structure [1–3]. Applications of MJSs span
various fields, including power system security [4], secure
chaotic communication [5], oil price analysis [6], the spread
of infectious diseases [7], and automotive power-train control
[8]. MJSs can be categorized into continuous-time models
and discrete-time models, with the latter comprising discrete-
time subsystems. Discrete-time MJSs may be preferred over
continuous-time ones because they can be implemented more
straightforwardly using digital hardware [9].

As network technology advances, networked control sys-
tems enable remote control for distributed devices. Within
these systems, each device is connected through networks
and passes data transmission and control commands to the
target device [10, 11]. Typically, analog signals must undergo
sampling, quantization, and encoding before they can be
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converted into digital signals for digital communication.
Sampling and quantization processes capture the time and
amplitude of a discrete signal from its analog counterpart,
whereas encoding converts the results of quantization into
corresponding binary codes [12]. As network resources are
restricted, signal transmission is affected by channel through-
put. Quantizing the signal to be transmitted can effectively
deal with this problem [13]. Quantizers that produce quan-
tized signals include static and dynamic quantizers. Unlike
static quantizers, dynamic ones can adjust quantization pa-
rameters dynamically to prevent saturation [14, 15]. Using
quantization measurements and input mode correlation in-
terval time delay, Liu et al. [16] considered the dynamic
output-feedback control for MJSs. In [17], Yang et al. studied
the problem of quantized control for MJSs with time delays
and partially known transfer probabilities. Zong et al. [18]
explored finite-time control strategies for MJSs with dynamic
quantization driven by an event-triggered approach. Recently,
Zhou et al. [19] introduced quantized control schemes aimed
at achieving input-to-state stabilization of MJSs under multi-
mode injection attacks.

It is worthwhile to note that the controlled plants in [16–
19] are continuous-time MJSs. Furthermore, most existing
studies on MJSs under quantized control do not include con-
siderations of coding and decoding procedures. In the process
of data transmission through networks, coding and decod-
ing procedures can compress and encrypt data to reduce
transmission bandwidth and storage space requirements [20].
In [21], Dey et al. explored how to develop encoding and
decoding strategies for the linear control of linear systems
with a wireless communication link between the estimator
and the sensor. Yan et al. [22] proposed an observer-based
endec decoder using dynamic uniform quantization to tackle
the N-step model predictive control problem in networked
control systems with constrained communication capabilities.
In [23], Wakaiki proposed a joint design approach utilizing
a coding scheme while was proposed to examine the self-
triggered stability of discrete-time linear systems that depend
on quantized state measurements. Tao et al. [24] explored the
problem associated with quantized iterative learning control
by implementing encoding and decoding techniques in net-
worked control systems facing communication limitations.
In [25], Li et al. introduced a coding and decoding scheme
that utilizes dynamic quantization for discrete-time systems
subject to norm-bounded uncertainties, examining how cod-
ing length affects system performance. To our knowledge,
nevertheless, very little research has been done on quantized
control for MJSs with coding and decoding procedures,
especially in the discrete-time scenario.
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Motivated by the above discussion, this work investigates
the problem of input-to-state stabilization of discrete-time
MJSs. A quantized control scheme with coding and decoding
procedures is proposed. The relationships between the error
in the system state before and after encoding and decoding,
the quantization range, and the packet length are established.
A criterion for input-to-state stability (ISS) of the quantized
closed-loop system is obtained using a Lyapunov function
and the Schur complement. The gains of the required quan-
tized controller can be obtained from a feasible solution
of linear matrix inequalities (LMIs). Finally, the proposed
method is validated using an operational amplifier circuit
system.

Notation. In this paper, the notation Ra refers to an a-
dimensional real vector space. The Euclidean vector norm
is represented by ∥·∥, while sup{·} denotes the supremum,
and λmin(·) and λmax(·) are used to represent the minimum
and maximum eigenvalues. The term He{Q} refers to the
sum of the matrix Q and its transpose. The notation diag{·}
indicates a block-diagonal matrix, and E{·} denotes the ex-
pected value operator. For any matrix Q > 0, this means that
Q is symmetric positive-definite. The symbol “∗” represents
a symmetry block in a square matrix.

II. PRELIMINARIES

A. System model

Consider the following discrete-time MJS:

x(k + 1) = Aδ(k)x(k) +Bδ(k)u(k) +Dδ(k)w(k), (1)

where x(k) ∈ Rnx , u(k) ∈ Rnu , and w(k) ∈ Rnw mean the
state, control input, and external disturbance, respectively.
Matrices Aδ(k), Bδ(k), and Dδ(k) denote the given system
parameters, where δ(k) is determined by a Markov jump
process that utilizes a transition probability matrix denoted
as Ψ = (φij)n×n,

φij = Pr{δ(k + 1) = j | δ(k) = i}, i, j ∈ N (2)

for φij ∈ [0, 1] [26–28], which satisfies
n∑

j=1

φij = 1, ∀i, j ∈ N = {1, 2 . . . , n}.

B. Dynamic quantizer

Now, assume that the system state x(k) undergoes uni-
form quantization before passing through the communication
network. We recall the uniform quantization process and
then apply it to the coding and decoding procedures. For
the system state x(k) to be quantized, there exists the
quantization error bound Θ > 0 and quantization range
Λ > 0 to satisfy the following conditions:

∥q(x(k))− x(k)∥ ≤ Θ, ∥x(k)∥ ≤ Λ, (3)
∥q(x(k))− x(k)∥ > Θ, ∥x(k)∥ > Λ. (4)

The range of quantization error described in (3) applies
when the quantizer is not in a state of saturation, while the
condition in (4) suggests a feasible way to detect whether
saturation is occurring.

Unlike the static quantizers with a fixed saturation thresh-
old [29–31], we propose the use of a dynamic parameter

µ(k) > 0 within the uniform quantizer qµ(k)(x(k)). This
adaptation allows for an expanded quantization range and a
reduced bound on quantization error as described in (18) and
(23):

qµ(k)(x(k)) = q (v(k))µ(k), v(k) =
x(k)

µ(k)
. (5)

Based on the above two conditions, the following modifica-
tions are made:∥∥qµ(k)(x(k))− x(k)

∥∥ ≤ Θµ(k), ∥x(k)∥ ≤ Λµ(k),∥∥qµ(k)(x(k))− x(k)
∥∥ > Θµ(k), ∥x(k)∥ > Λµ(k).

With no saturation, the quantization error e(k) of the dy-
namic quantizer is in the range of [−Θµ(k),Θµ(k)] [32–
34]. In cases of positive or negative saturation, we set the
quantization state to be fixed to the maximum or minimum
value that the quantizer can represent.

In dynamic quantizer (5), the interval [−Λ,Λ) is parti-
tioned into β regions subject to

v(k) ∈ Rτ = [−Λ +
2(τ − 1)Λ

β
,−Λ +

2τΛ

β
),

with τ ∈ {1, 2, . . . , β}, and the quantized state q(v(k)) is
denoted by:

q (v(k)) = −Λ +
(2τ − 1)Λ

β
. (6)

Taken together, when the quantized state v(k) lies in the
region [−Λ,Λ], the quantization error satisfies the following
condition:

∥q (v(k))− v(k)∥ ≤ Θ =
Λ

β
. (7)

In the case where the quantizer (5) is not saturated, a state-
dependent adjustment strategy for the quantization parame-
ters is introduced due to the limited network resources. In the
case the quantizer (5) is saturated, the quantization parameter
cannot be infinitely small due to the limitation of the network
resources, and the minimum quantization parameter is:

θ1 ∥x(k)∥ ≤ µ(k) ≤ θ2 ∥x(k)∥ , if ∥x(k)∥ ≥ Λϕmin, (8)
µ(k) = ϕmin, if ∥x(k)∥ < Λϕmin, (9)

where Λϕmin is the minimum quantization region, and the
parameters θ1 and θ2 satisfy the condition θ1 = 1

2θ2. Specific
adjustment strategies for the quantizer parameters to ensure
that µ(k) satisfies conditions (8) and (9) are given below:

µ(k) =

{
2h, if ∥x(k)∥ ≥ Λϕmin

2−l̄ι , if ∥x(k)∥ < Λϕmin

(10)

where

h =


jι, if θ1 ∥x(k)∥ > 1

0, if θ1 ∥x(k)∥ ≤ 1 ≤ θ2 ∥x(k)∥
−lι, if θ2 ∥x(k)∥ < 1

(11)

with

jι = max
{
jι ∈ J |θ2 ∥x(k)∥ × 2−jι ≥ 1

}
(12)

lι = min
{
lι ∈ L|θ2 ∥x(k)∥ × 2lι ≥ 1

}
(13)
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Fig. 1. The bits allocation.

and J = {1, 2, . . . , j̄ι}, L = {1, 2, . . . , l̄ι}. The parameters j̄ι
and l̄ι are the maximum and minimum values for the integer
h, respectively. The minimum quantizer’s parameter is

ϕmin = min{µ(k)} = 2−l̄ι .

When

∥x(k)∥ ≥ Λϕmin,

the dynamic quantizer’s parameter µ(k) satisfies (11). By
similar lines to [25], (11) can be ensured.

C. Coding procedure

The signal to be encoded has the following two com-
ponents, including the quantization state q(v(k)) and the
dynamic quantizer parameter µ(k). The quantization process
maps the signal to a discrete set of ranges of values, which
are subsequently encoded into a binary string by the encoder:

x̆(k) = f
(
qµ(k)(x(k))

)
= x̃(k)µ̃(k)

=m (q (v(k))) g(µ(k)). (14)

The quantizer (5) maps the quantized state signals x̃(k)
by the corresponding encoder function to a finite number of
discrete values τ ∈ {1, 2, . . . , β}

x̃(k) = m (q (v(k))) = τ. if v(k) ∈ Rτ ,

Then, according to the adjusting rules (10)-(13), the quan-
tizer maps the adaptive quantization parameter µ(k) via the
encoder function g(µ(k)) as:

µ̃(k) = g(µ(k)) =

{
h, if ∥x(k)∥ ≥ Λϕmin

−l̄ι. if ∥x(k)∥ < Λϕmin

(15)

It is assumed that the encoded quantization state x̃(k) and
the encoded dynamic parameters µ̃(k) are represented using
X-bits and Y -bits, respectively. Thus, the length of the whole
packet is (X+Y )-bits. The packet lengths for the quantized
state and dynamic parameters by binary coding are shown in
Fig. 1.

In this paper, X is viewed as the minimum number of
bits required to encode the integer β and the number β of
quantization level determined by:

β = 2X . (16)

Based on (10), (11), and (15), we can conclude that
µ̃(k) ∈ {−l̄ι, . . . , 0, . . . , j̄ι}. Because the coding length of
µ̃(k) is Y -bits, the selection of parameters l̄ι and j̄ι meets
the requirements:

l̄ι + j̄ι + 1 = 2Y . (17)

Ensure that the quantizer does not saturate by setting

SensorPlant Quantizer Encoder

Network

DecoderController

Actuator

Fig. 2. The framework of the system model under the controller.

the parameter of the quantizer ϕmax = max{µ(k)} large
enough, i.e., ∥x(k)∥ < Λϕmax. The maximum coding range
is denoted as:

Λmax = Λϕmax = 2j̄ιΛ. (18)

D. Decoding procedure

The decoder converts the received digital signal into an
analog signal, and the decoding function at the controller
side is constructed as follows:

x̂(k) = f−1(x̆(k)) = m−1(x̃(k))g−1(µ̃(k))

= q (v(k))µ(k). (19)

Remark 1. It can be seen from (14) and (19) that the
encoding and decoding processes are reciprocal, i.e., x̆(k) =
x̂(k)−1. The encoding process converts the original infor-
mation into a digital form suitable for storage, transmission,
and processing. The decoding process converts the received
digital signal back to the original data to maintain the
integrity and consistency of the overall information.

E. Problem statement

The controller u(k) is given by

u(k) = Kδ(k)x̂(k), (20)

where Kδ(k) ∈ Rnu×nx is the control gain to be designed
later.

Combining system (1) with controller (20), the quantized
closed-loop system can be obtained as:

x(k + 1) =Aδ(k)x(k) +Bδ(k)u(k) +Dδ(k)w(k)

=Aδ(k)x(k) +Bδ(k)Kδ(k)x̂(k) +Dδ(k)w(k)

=
(
Aδ(k) +Bδ(k)Kδ(k)

)
x(k)

+Bδ(k)Kδ(k)e(k) +Dδ(k)w(k), (21)

where

e(k) = x̂(k)− x(k) = q(v(k))µ(k)− x(k). (22)

The framework of the quantized closed-loop system is
shown in Fig. 2.

For the error e(k) in the system state before and after
encoding and decoding, as derived from formulas (16), (17),
and (22), we can obtain

e(k) ≤ Λϕmin = 2−X−2−l̄ι
Λ. (23)

Remark 2. Through (23), the relationship between the error
in the system state before and after encoding and decoding,
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the quantization range, and the packet length can be estab-
lished by following a given minimum error bound. When
the coding length X increases, the error e(k) in the system
state before and after encoding and decoding decreases. To
investigate the effect of length of the whole packet on the
error e(k) in the system state before and after encoding
and decoding, we keep the minimum value of the dynamic
quantizer parameter min{µ(k)} = 2−l̄ι , and the quantization
range Λ fixed, and observe its effect on the error while
varying the length X .

Definition 1. [19] If there are functions θ1(s) ∈ K and
θ2(s, k) ∈ KL such that for any initial state x(0) and external
disturbance w(k) ∈ Rnw , the state x(k) exists for all k ≥ 0
and fulfills the following inequality:

E {∥x(k)∥} ≤ θ1

(
sup

0<s<k
{∥w(s)∥}

)
+ E {θ2 (∥x(0), k∥)} ,

then the closed-loop system is deemed to exhibit ISS.

Now, the objective of this work can be accurately stated
as follows: For the discrete-time MJS, design a quantized
controller (20) with coding and decoding procedures to
ensure that the closed-loop system (21) has ISS.

III. MAIN RESULTS

To propose our main results, which rely on the following
lemmas:

Lemma 1. [35] For a real scalar ζ > 0 and matrices W1

and W2 with appropriate dimensions

WT
1 W2 +WT

2 W1 ≤ ζWT
1 W1 + ζ−1WT

2 W2,

hold.

Lemma 2. [36] Given symmetric matrices

H =

[
H11 H12

∗ H22

]
,

which H11 is n× n dimensional, the following three condi-
tions are equivalent:

(i)H < 0;

(ii)H11 < 0, H22 −HT
12H

−1
11 H12 < 0;

(iii)H22 < 0, H11 −HT
12H

−1
22 H12 < 0.

Lemma 3. [37] For any two matrices Z1 and Z2 with
appropriate dimensions

−ZT
1 Z

−1
2 Z1 ≤ Z2 − ZT

1 − Z1,

hold ture.

Lemma 4. [38] For two random variables X and Y , the law
of total expectation can be expressed as:

E {E{Y |X}} = E{Y }.

We study the analysis of the ISS of closed-loop system
(21) with coding and decoding procedures and present the
following sufficient condition:

Lemma 5. Given constants ζ > 0, Θ > 0, if there exist
scalars θ2 > 0, ρ > 0, λmin(P ) > 0, and λmax(P ) > 0, and
matrices Pi > 0 and Ki, i ∈ N such that

Λθ2 ≥ 2, (24)

λmin(P )I2nx < Pi < λmax(P )I2nx , (25)
Υ = P̃ + (1 + ζ)ÂT

i P̄iÂi < 0, (26)

hold, where

P̃ = diag
{
−Pi + 2ρΘ2θ22,−ρI

}
,

Âi =
[
Ai +BiKi BiKi

]
, P̄i =

n∑
j=1

πijPj .

Then, the quantization controller in (20) can ensure that the
closed-loop system (21) has ISS.

Proof: Firstly, it is found from (10)-(13) that{
µ(k) ≥ θ1 ∥x(k)∥ , ∥x(k)∥ ≥ Λϕmin

µ(k) = ϕmin > θ1 ∥x(k)∥ , ∥x(k)∥ < Λϕmin

(27)

When ∥x(k)∥ < Λϕmin, according to (10)-(13), we have

θ1 ∥x(k)∥ < ϕmin < θ2 ∥x(k)∥ .

Then, the error e(k) in the system state before and after
encoding and decoding is analyzed in two cases:

Case I: ∥x(k)∥ ≥ Λϕmin

In this case, due to

µ(k) ≤ θ2 ∥x(k)∥ , ∥e(k)∥ ≤ Θµ(k),

one has

∥e(k)∥ ≤ ∥Θµ(k)∥ ≤ ∥Θθ2x(k)∥ .

Case II: ∥x(k)∥ < Λϕmin

In this case, due to

min{µ(k)} = ϕmin,

one has

∥e(k)∥ ≤ ∥Θϕmin∥ ≤ ∥Θθ2x(k)∥ .

We derive the following by merging Cases I and II:

eT (k)e(k) ≤ xT (k)Θ2θ22x(k) + ϕTminΘ
2ϕmin

≤ 2xT (k)Θ2θ22x(k).
(28)

Now, we select the Lyapunov function as:

V (k) = xT (k)Pδ(k)x(k). (29)

Utilizing the law of total expectation as demonstrated in
Lemma 4, we can drive from equations (2) and (29) that

E{△V (x(k), δ(k) = i)}
=E {V (x(k + 1), δ(k + 1))− V (x(k), δ(k) = i)}

=E
{
E {V (x(k + 1), δ(k + 1)) |x(k), δ(k) = i}

− V (x(k), δ(k) = i)
}

=E

{
n∑

j=1

Pr {δ(k + 1) = j|δ(k) = i}xT (k + 1)Pj

x(k + 1)− xT (k)Pix(k)

}

=E

{
n∑

j=1

πijx
T (k + 1)Pjx(k + 1)− xT (k)Pix(k)

}
=E

{
xT (k + 1)P̄ix(k + 1)− xT (k)Pix(k)

}
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= ηT (k)ÂT
i P̄iÂiη(k) +He{ηT (k)ÂT

i P̄iDiw(k)}
+ wT (k)DT

i P̄iDiw(k)− xT (k)Pix(k).

By utilizing Lemma 1, which can be reformulated as:

ηT (k)ÂT
i P̄iDiw(k) + wT (k)DT

i P̄iÂiη(k)

≤ ζηT (k)ÂT
i P̄iÂiη(k) + ζ−1wT (k)DT

i P̄iDiw(k). (30)

Then, from (28) and (30) we have

E{△V (x(k), δ(k) = i)}

≤ ηT (k)
(
P̄ + (1 + ζ)ÂT

i P̄iÂi

)
η(k)

+ (1 + ζ−1)wT (k)DT
i P̄iDiw(k)

+ 2ρxT (k)Θ2θ22x(k)− ρeT (k)e(k)

≤ ηT (k)Υη(k) + (1 + ζ−1)wT (k)DT
i P̄iDiw(k)

≤ (1 + ζ−1)wT (k)DT
i P̄iDiw(k)

≤ψwT (k)w(k),

where

P̄ = diag{−Pi, 0}, η(k) =
[
xT (k) eT (k)

]T
,

ψ = sup
i∈N

(
λmax

(
(1 + ζ−1)DT

i P̄iDi

))
.

We can have

λmin(P )E
{
∥x(k)∥2

}
≤E {V (x(k), δ(k))}

≤E {V (x(0), δ(0))}+ E

{
k∑

s=0

△V (x(s), δ(s))

}

≤E

{
xT (0)Pix(0) +

k∑
s=0

{
ψwT (s)w(s)

}}
≤λmax(P )E

{
∥x(0)∥2

}
+ sup

0<s<k

{
ψwT (s)w(s)

}
,

which means

E {∥x(k)∥}

≤

√
λmax(P )

λmin(P )
E {∥x(0)∥}+

√
ψ

λmin(P )
sup

0<s<k
{∥w(s)∥} .

From this and Definition 1, we can determine the ISS.
Now, we provide feasible solutions based on certain in-

equality methods to ensure the stability analysis of Lemma
5 in (24) and (26). Next, we present the following result
regarding the ISS synthesis:

Theorem 1. Given constants ζ > 0, Θ > 0, if there exist
scalars θ2 > 0, ρ > 0, λmin(P ) > 0, and λmax(P ) > 0, and
matrices P̂i > 0 and Ki, i ∈ N such that (25), and

2ρ− θ̄2Λ < 0, (31)
P̂i − 2I 0 Υ1

√
2Θθ̄2

∗ −ρI Υ2 0
∗ ∗ −(1 + ζ)−1P 0
∗ ∗ ∗ −ρI

 < 0, (32)

hold, where

θ̄2 = ρθ2,

P = diag
{
P̂1, P̂2, . . . , P̂n

}
,

100 200 300 400 500 600 700 800 900 1000

0

20

40

60

80

100

120

140

Fig. 3. State trajectories of the open-loop system.

Υ1 =
[√

πi1 (Ai +BiKi)
√
πi2 (Ai +BiKi) . . .

√
πin (Ai +BiKi)

]
,

Υ2 =
[√

πi1 (BiKi)
√
πi2 (BiKi) . . .

√
πin (BiKi)

]
.

Then, the quantized closed-loop system (21) has ISS. Fur-
thermore, the gains Ki of the required quantized controller
in (20) can be obtained from a feasible solution of LMIs.

Proof: The equivalence between (24) and (31) can be
seen by taking θ̄2 = ρθ2. Next, we show that (26) can be
guaranteed by (32). Denote P̂i = P−1

i by Lemma 3, and
notice that the inequality

(I − Pi) P̂i (I − Pi)
T
= Pi + P̂i − 2I ≥ 0,

holds, which implies

−P̂i ≤ Pi − 2I. (33)

By (33), the following inequality can be obtained from (32):
−Pi 0 Υ1

√
2Θθ̄2

∗ −ρI Υ2 0
∗ ∗ −(1 + ζ)−1P 0
∗ ∗ ∗ −ρI

 < 0, (34)

where

P = diag {P1, P2, . . . , Pn} .

Then, with (34) and Lemma 2, we can obtain (26). Thus,
all the conditions in Lemma 5 hold true, confirming that the
quantized closed-loop system (21) has ISS.

IV. EXAMPLE

Considering the operational amplifier (OPA) circuit system
in [39] and applying Kirchoff’s current law to v1 and v2
based on the features of their ”virtual short” and ”virtual
off,” we obtain the following equation of state:

v̇1 = − 1

R1C1
v1 +

1

R1C1
v2,

v̇2 =
1

R1C2
v1 +

(
R3

R2R4C2
− 1

R1C2

)
v2 −

R3

R2R4C2
u.
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Fig. 4. The system state with quantized under code length Y = 2 and
Y = 4.
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Fig. 5. The control input with quantized under the coding length Y = 2
and Y = 4.

Define x1(k) = v1 and x2(k) = v2. Assuming that C2

is a small ”parasitic” capacitance, it can be considered a
perturbation parameter, i.e., C2 = ϵ, which is taken as
ϵ1 = 0.1 and ϵ2 = 0.3, respectively. Suppose the circuit
parameters are selected as R1 = R4 = 2Ω, R2 = 3Ω,
R3 = 1Ω, C1 = 0.3F . Then, the system parameters can
be written as

A1 =

[
1− 1.2927ϵ1 0.9921ϵ1

0.4252 0.7165

]
,

A2 =

[
1− 1.2927ϵ2 0.9921ϵ2

0.4252 0.7165

]
,

B1 =

[
−0.1247ϵ1
−0.1417

]
, B2 =

[
−0.1247ϵ2
−0.1417

]
,

D1 =

[
−0.1247ϵ1
−0.1417

]
, D2 =

[
−0.1247ϵ2
−0.1417

]
.

The matrix Ψ is selected as:

Ψ =

[
0.3 0.7
0.8 0.2

]
.

In addition, the other parameter and external disturbance are
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Fig. 6. The error e2(k), e3(k), e4(k) with quantized under the coding
length X = 2, 3, 4.

given, respectively, as ζ = 0.1 and

w(k) = 0.1sin(k).

Under the case of quantized signals, the quantization range
and coding length are set as Λ = 3.2 and X = 3 bits. It
is calculated as Θ = 0.4 by the formula Θ = Λ/2X . By
solving the LMIs in Theorem 1, we can obtain θ2 = 0.6250,
λmin(P ) = 1.5135 and λmax(P ) = 2.1665 to satisfy the
condition of Definition 1. The control gains are obtained as
follows:

K1 =
[
3.3622 2.3501

]
,

K2 =
[
3.8539 2.5227

]
.

We set the initial state as x(0) = [ 0 0 ]T , set j̄ι = 2 and
establish a maximum coding range of Λmax = 12.8000 to
encompass the state signal. The coding length of µ̃(k) is set
to Y = 2 bits. Then, the parameter l̄ι = 1 can be obtained
from (17) and (23), and the minimum error is Θϕmin =
0.2. Fig. 3 and Fig. 4 show the open-loop and closed-loop
state trajectories, respectively. From the simulation plots, it
is evident that the open-loop state trajectories diverge rapidly
under the influence of bound perturbation inputs whereas the
closed-loop state trajectories remain bound.

The trajectory plots of the closed-loop system’s state for
various coding lengths are presented in Fig. 4, where x(k)
and x̄(k) correspond to coding lengths Y = 2 and Y = 4,
respectively. Fig. 5 depicts the trajectory of the control input
based on the quantization signal, where u(k) and ū(k) corre-
spond to coding lengths Y = 2 and Y = 4, respectively. The
figure illustrates that the convergence region with a smaller
coding length is larger compared to that with a larger coding
length. Thus, coding length significantly impacts system
performance. Fig. 6 shows the trajectory plots of the system
state error e2(k), e3(k), and e4(k) before and after encoding
and decoding for encoding lengths X = 2, 3, 4. It is observed
that a larger packet length reduces the convergence region of
the system state due to unavoidable errors, which adversely
affect system performance. In essence, a larger coding length
mitigates the impact of errors before and after coding and
decoding, thereby enhancing system performance.
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V. CONCLUSION

This work investigated the problem of input-to-state stabi-
lization of discrete-time MJSs. A quantized control scheme
involving coding and decoding procedures was proposed.
The relationship between the error in the system state before
and after encoding and decoding, the quantization range,
and the packet length was established in (23). A criterion
on ISS of the quantized closed-loop system was presented
in Theorem 1, utilizing a Lyapunov function and the Schur
complement. The gains of the required quantized controller
can be obtained from a feasible solution of LMIs (25),
(31), and (32). Finally, the proposed method was validated
using an operational amplifier circuit system. Since network
systems share data transmission links and are vulnerable
to attacks, communication security is crucial. Future work
should explore how to integrate data encryption with the
encoding and decoding procedures.
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