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Abstract–We mainly focus on the willow algorithm which can
be used to solve the optimal dynamic multi-cycle investment
and consumption problem under the jump-diffusion stochastic
volatility model. First we obtain the moment generating func-
tion of the risky asset and then coalescing the Johnson-Curve
transformation theory to generate the willow algorithm, which
solving the multi-cycle dynamic investment and consumption
problem is designed based on the two-dimensional willow frame-
work. Moreover, through comparing our proposed solution with
the optimal investment and consumption display solutions un-
der the geometric Brownian motion model, we further discuss
the analysis of the willow algorithm sensitivity. The willow al-
gorithm for optimal investment and consumption proposed in
this paper is able to extend the willow method which is effective
from the field of option pricing to the field of investment port-
folio, and it also provides a new idea for numerically solving the
multi-period optimal investment and consumption decision.

Index Terms–stochastic volatility model, the willow algo-

rithm, dynamic optimization, consumption-investment, multi-

cycle portfolio.

I. Introduction

The following two parameter index are employed by
Markowitz [1] to measure the return and risk: the ex-

pected return rate of risky assets and the variance of return
rate. The study of portfolio, utilizing mathematical models
and operational optimization theoretical methods, opened
the research of modern portfolio theory and considerably
promoted the development of modern finance. Portfolio re-
search including portfolio selection, pricing and evaluation
has been an influential topic in financial risk management
and corporate finance management for decades.

On the basis of the above study, Mao [2] primarily fo-
cused on single-cycle static portfolios, in which an investor
sets an asset allocation at the beginning of the period and
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holds it until the end, while investment behavior particu-
larly by the institutional investors tends to be long-term.
Long-term investors adjust their portfolio positions in time
as the investment environment changes, rather than locking
into an investment account after the initial construction of
the portfolio. This dynamic portfolio selection behavior led
to the realization that traditional one-cycle portfolio theory
was no longer suitable for flexible and dynamic investment
decisions, prompting the emergence of multi-cycle dynamic
portfolio theory at a pivotal historical moment. The works
of Merton [3][4][5], Samuelson [6], Fama [7], and Hakans-
son [8] marked the beginning of the study of multi-period
dynamic portfolio.

The multi-asset dynamic portfolio problem in continu-
ous time was formulated by Merton [3][4][5]. Assuming
that the assets comply with geometric Brownian motion,
Merton derived dynamical equations for optimal portfolios
with more than one asset and investigated the portfolio
problem for two assets with constant relative risk aversion
or equal elastic marginal utility in detail. The general tech-
niques employed to study uncertainty in a wide range of
intertemporal economic problems can be utilized. In con-
trast, dynamic programming methods were proposed by
Jiang et al. [9], SengPun and Ye [10], Chen et al. [11] for
solving dynamic portfolio problems in discrete time. In the
optimal consumption and security selection problem, it is
assumed in the paper that there are two optional classes
of assets in the investment market: one is a risk-free asset
and the other is a risky asset. To develop more practical
and efficient optimal investment consumption strategies,
simulations of risky assets are particularly crucial. In the
studies of Merton [3] and Samuelson [6], risky assets were
considered to follow geometric Brownian motion, known
as the constant volatility model. But in the real financial
markets, it is often hard to accurately describe the market.
For example, in real markets where asset prices obey peaks
and thick tails, there is difficulty for conventional models of
geometric Brownian motion in describing. In this case, the
stochastic volatility (SV) model was born due to stochastic
trends.

The stochastic volatility model assumes that the fluctua-
tion ratio of asset prices is a stochastic process dominated
by factors like asset prices, the mean reversion trend of
volatility and the variance of volatility. It has the capacity
of effectively characterizing and capturing the features of
the peaks and thick tails of the price distribution in finan-
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cial markets. Heston [12] proposed the stochastic volatility
model (Heston model) in which the fluctuation ratio of as-
sets follows the Cox-Ingersoll-Ross (CIR) process. Owing
to its exceptional analytical properties, the Heston model
has been extensively studied and applied. Furthermore,
Heston [13] presented a fresh inverse CIR process called
the 3/2 model. Unlike the CIR process, the instantaneous
fluctuation ratio of this model exhibits a relatively rapid
recovery when asset prices are highly elevated or severely
depressed, aligning more closely with real-world conditions.
Grasselli [14] brought forward the idea of combining the
Heston model and 3/2 model. The fluctuation ratio of

the two models is linearly superimposed by
(
a
√
Vt +

b√
Vt

)
,

where a and b are greater than 0, and Vt is the CIR pro-
cess. This model was named the 4/2(= 1/2+3/2) stochas-
tic volatility model. Moreover, it is shown in documents of
Jacod [15], Barndorff-Nielsen [16], Hu and Wang [17], Han
and Wang [18], Chang and Li [19] that there are uninter-
rupted jumps happening in the price of risky assets.

In this paper, the willow method will be employed to
model risky assets under the jump-diffusion model. Con-
sidered an optimized binary tree algorithm, the willow
method differs from the binary tree algorithm in that it
fixes the number of willow nodes at each step once the
number of nodes is determined. Initially proposed by Cur-
ran [20], the willow method was subsequently enhanced
by Xu et al. [21], who improved the point-taking strat-
egy and extended its application to the pricing problem
of path-dependent options. Intuitive, efficient, accurate,
and widely applicable, the willow method provides a novel
tree structure for simulating Brownian motion based on
the concept of discrete Markov chains. Rich research re-
sults in the field of option pricing have been achieved us-
ing the willow method. A method for solving multi-order
moments was provided by Wang et al. [22], which utilizes
corresponding stochastic processes during the pricing of the
stochastic interest rate model in the form of non-geometric
Brownian motion. Furthermore, in conjunction with the
content concerning the Johnson curve in the research by Xu
et al. [23], a willow frame constructed for any continuous
random variable. Additionally, Ma et al. [24] developed
a general two-dimensional willow framework and studied
the pricing of American options and singular options un-
der the existing stochastic volatility model. However, it
is important to note that the approximation of the trape-
zoidal formula in the stochastic integral of the fluctuation
ratio introduces significant errors and does not encompass
the study of the jump diffusion model as well.

The aim of this paper is to investigate the willow method
under the stochastic volatility model of jump diffusion.
Taking the Heston model as an example, an efficient
point selection strategy for sample points is designed, and
the multi-period dynamic optimal investment consumption
problem is addressed based on the two-dimensional willow
framework. This will significantly broaden the scope of ap-
plications of the willow algorithm. The main contributions

of this paper are as follows:

• The traditional optimal investment consumption prob-
lem is predicated on the assumption that the risky
asset follows a constant volatility and non-jump diffu-
sion process. The characteristic function of the under-
lying asset with stochastic volatility and jump diffu-
sion is derived in this paper. Through the application
of the moment matching method and Johnson curve
transformation theory, we achieved precise sampling
of the underlying asset process, thereby overcoming
the approximations made in the differential integra-
tion approach outlined in [24]. This has resulted in
an enhancement of the accuracy and efficiency of the
sampling process. Subsequently, we successfully con-
structed a two-dimensional willow framework for the
asset indexed by a jump-diffusion stochastic volatility
model.

• In traditional research methods, the most commonly
used approach to address dynamic optimal investment
and consumption decision problems is the stochastic
control method. However, there are two limitations to
its application: on one hand, stochastic control meth-
ods can only be employed when the value function
is continuous and differentiable. On the other hand,
solving for the optimal solution requires addressing
nonlinear HJB (Hamilton-Jacobi-Bellman) equation.
In practice, obtaining a closed-form or numerical so-
lution to this equation poses significant challenges.
In this paper, an optimization algorithm is proposed
for solving the multi-period dynamic optimal invest-
ment and consumption problem under a discrete state
framework within a two-dimensional risk asset setting.
This algorithm avoids the complex process of solving
the HJB equation and the closed-form utility function,
and is applicable to any stochastic volatility model and
complex utility functions. Furthermore, the compu-
tational complexity of this method increases linearly
with the number of time discretization steps, making
it superior to various numerical methods.

• Based on the multi-period investment and consump-
tion framework for two assets proposed by Samuel-
son [6], this paper introduces the Willow algorithm for
solving multi-period investment and consumption de-
cisions. This algorithm meticulously considers the risk
assets and risk accounts during each segment and opti-
mizes the consumption and investment ratios. A novel
numerical method is provided for solving the multi-
period optimal investment and consumption decision
problem in discrete cases. Additionally, this approach
offers insights for solving other optimal investment and
consumption problems, such as the optimal investment
and consumption problem with dividend reinvestment.

The paper is structured as follows: In Section II., the
characteristic function of the logarithmic asset price is de-
rived using the 4/2 model as an example based on affine
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structure theory. Section III. presents the construction of
the two-dimensional willow frame. In Section IV., the opti-
mal investment consumption willow algorithm is designed
based on the two-dimensional willow structure of the prices
of risky assets. Section V. concerns numerical experiments
so as to validate the effectiveness of the proposed algo-
rithm and analyze its sensitivity. Section VI. is devoted to
a summary.

II. Stochastic volatility model and moment generation
function

Consider a complete domain manifold and probability
space (Ω,F ,P,Q), where the risky asset process St is
a measurable process adapted to the domain manifold
{Ft}t≥0. The information flow {Ft}0≤t<∞ satisfies the
general assumptions that F0 contains all Q-null subsets of
F , F is right-continuous and the Q is a risk-neutral pricing
measure. The following stochastic process is defined on the
probability space (Ω,F ,F ,Q).

For the classical Heston model with jump diffusion. As-
set prices and volatility is represented by{

dSt

St
= (r − λμ)dt+

√
VtdB

1
t +

(
eJ − 1

)
dNt,

dVt = κ(θ − Vt)dt+ σ
√
VtdBt,

(1)

where B1
t and Bt are Wiener processes with correlation ρ,

Nt is a Poisson process with frequency λ, J is a random
jump in the price of risky assets, Nt and J are independent
of B1

t and Bt, ρ ∈ [−1, 1], r is the risk-free rate and μ =
E
[
eJ
]−1 is the compensation for jumping. Moreover, σ is

the volatility corresponding to the stochastic state variable
Vt, κ and θ represent the regression speed and mean of Vt,
respectively.

To transform

X(t) = ln

(
S(t)

S(0)

)
− ρ

σ
(v(t)− v(0))−

(
r − λκ− ρηθ

σ

)
t,

(2)
the correlation between the two Brownian motions is elim-
inated. According to the Itô’s lemma, the Equation (1) is
rewritten as{

dX(t) =
(

ρη
σv

− 1
2

)
v(t)dt+

√
(1− ρ2) v(t)dB⊥

t + JdNt,

dV (t) = η(θ − V (t))dt+ σ
√

V (t)dBt,
(3)

where dB⊥
t and dBt are independent of each other and both

are standard Brownian motions. Integrating both sides of
tn from tn+1 to X(t) yields

X(tn+1) =X(tn) +

(
ρη

σ
− 1

2

)∫ tn+1

tn

V (s)ds

+
√
1− ρ2

∫ tn+1

tn

√
V (s)dB⊥

s +

N(tn+1)∑
i=N(tn)+1

ln yi,

(4)

where
∫ tn+1

tn

√
v(s)dB⊥

s follows normal distribution

N
(
0,
∫ tn+1

tn
v(s)ds

)
. Affine processes have extremely

pleasant properties with

Lemma 1. If the conditional characteristic function of
Y (T ), with respect to the domain σ of Ft, is an exponential
affine form of Y (t), then it is an existential function

φ(t,u) : R+ × iRd → C,ψ(t,u) : R+ × iRd → Cd,

where φ(t,u),ψ(t,u) are continuously distinguishable with
respect to t. Such that the diffusion process Y (t) for any
u ∈ iRd, t ≤ T,y ∈ χ and the state space χ ⊂ Rd satisfies

E
[
exp

(
uTY (T )

) |Ft

]
= exp(φ(T − t,u)

+ψ(T − t,u)TY (t)),
(5)

then Y (t) is called an affine process.

Let dY1(t) = v(t), dY2(t) = lnS(t), then Heston’s model
is written as⎧⎪⎨

⎪⎩
dY1(t) = η (θ − Y1(t)) dt+ σv

√
Y1(t)dBt,

dY2(t) =
(
r − 1

2Y1(t)
)
dt

+
√
Y1(t)

(
ρdBt +

√
1− ρ2dB⊥

t

)
,

write it as a vector, then it is{
dY (t) = b(Y (t))dt+ ρ(Y (t))dB(t),
Y (0) = y,

(6)

where b(y) =
(
ηθ − ηy1, r − 1

2y1
)T

, ρ(y) =(
σv

√
y1 0√

y1ρ
√
y1(1− ρ2)

)
, then we have

b(y) = b+ y1β1 + y2β2,

a(y) = ρ(y)ρ(y)T = a+ y1α1 + y2α2,
(7)

where a,α1,α2 is the null matrix of 2 × 2: b = (ηθ, 0)
T
,

α1 =

(
σ2
v ρσv

ρσv 1

)
.

Using the definition of Lemma 1, we can obtain the fol-
lowing theorem.

Theorem 1. The conditional characteristic function of
X(t) of the Heston-jump diffusion model after substitution
of Equation (2) is

E
[
ezX(t)|F0

]
= exp{g(− ρ

σ
z) + f(− ρ

σ
z)v0

+ z

[
ρ

σ
V0 +

ρηθ

σ
t

]
+ λt

[
eαJz+

1
2σ

2
Jz

2 − 1
]
},

where z = iω, ω ∈ R and

g(ζ) =
ηθ

A
ln

2δe
1
2 (δ−B)t

(δ −B − 2Aζ)eδt +B + δ + 2Aζ
;

f(ζ) =
[2C + (B + δ)ζ]eδt + ζ(δ −B)− 2C

(δ −B − 2Aζ)eδt +B + δ + 2Aζ
;

A =
1

2
σ2;

B = ρσz − η;

C =
1

2
(z2 − z);

δ =
√
B2 − 4AC.
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Proof. According to Equation (7), a(y) and b(y) have
affine form, i.e.

b(y) = b+
d∑

i=1

yiβi, a(y) = ρ(y)ρ(y)T = a+

d∑
i=1

yiαi,

where a,αi is a d × d-dimensional constant matrix and
b,βi is a d× 1-dimensional constant column vector.

The Ricatti equations for φ(t,u) and ψ(t,u) =

(ψ1(t,u), ψ2(t,u), . . . , ψd(t,u))
T
are

⎧⎪⎪⎨
⎪⎪⎩

∂φ(t,u)
∂t = 1

2ψ(t,u)Taψ(t,u) + bTψ(t,u),
φ(0,u) = 0,
∂ψi(t,u)

∂t = 1
2ψ(t,u)Tαiψ(t,u) + βT

i ψ(t,u), 1 ≤ i ≤ d,

ψ(0,u) = u = (u1, u2, . . . , ud)
T
.

Li et al. [26] pointed out that there exists a distinct
solution (φ, ψ) to this system of equations, where

φ(t,u) =
ηθ

A
ln

(
2δe

1
2 (δ−B)t

(δ −B − 2Au1) eδt +B + δ + 2Au1

)
,

+ rtu2,

ψ1(t,u) =
(2C + (B + δ)u1) e

δt + u1(δ −B)− 2C

(δ −B − 2Au1) eδt +B + δ + 2Au1
,

ψ2(t,u) = u2,

where A = 1
2σ

2, B = ρσu2 − η, C = 1
2

(
u2
2 − u2

)
, δ =√

B2 − 4AC and this particular solution is non-negative for
all real parts of t > 0, φ(t, u) + ψ(t, u)Ty, thus Equation
(6) is an affine process.

Letting u2 = z, u1 = − ρ
σ z and Mul-

tiplying both sides of Equation (5) by

exp
{
z
[

ρ
σv

v0 − (r − ρηθ
σ )T

]
+ λT

[
eαJz+

1
2σ

2
Jz

2 − 1
]}

,

Equation (5) is derived as

E
[
ezX(T )|Ft

]
= exp{g(− ρ

σ
z) + f(− ρ

σ
z)vt

+ z

[
ρ

σ
vt +

ρηθ

σ
T

]
+ λT

[
eαJz+

1
2σ

2
Jz

2 − 1
]
},
(8)

and then, if we take t = 0 and rewrite T as t, the Equation
(8) is rewritten as

E
[
ezX(t)|F0

]
= exp{g(− ρ

σ
z) + f(− ρ

σ
z)v0

+ z

[
ρ

σ
v0 +

ρηθ

σ
t

]
+ λt

[
eαJz+

1
2σ

2
Jz

2 − 1
]
},

So the theorem is proven.

Since the 3/2 model does not meet the requirements of
affine structure, we treat the 3/2 model under the more
general 4/2 model. Asset prices and volatility in the 4/2
model that similar to the parameter setting of Equation

(9) is represented by⎧⎪⎨
⎪⎩

dSt

St
= (r − λμ)dt+m (Vt)

(
ρdB⊥

t +
√
(1− ρ2)dBt

)
+
(
eJ − 1

)
dNt,

dVt = α(Vt)(θ − Vt)dt+ β(Vt)dBt,
(9)

where m (Vt) represents the volatility of St, α(Vt) repre-
sents the drift term of Vt, β(Vt) represents the volatility
of Vt and we take α(v) = κ(θ − v), β(v) = σ(v)

√
(v),

m(v) = a
√

(v) + b√
(v)

. It is essential to note that a = 1,

b = 0 corresponds to Heston model and a = 0, b = 1
corresponds to 3/2 model.

According to Theorem 1 and Zeng et al. [25], We can
directly compute the fourth moment of X(t) at time t
and then use the transformation theory of Johnson [29]
to directly generate X(t)-nodes by exact sampling. This
method is more accurate because it does not approximate
the integral

∫ tn
0

v(s)ds.

As the calculation of the transition probability of X(t)
still relies on the value of v(t), we cannot simply discard the
willow tree of volatility v(t) and utilize the one-dimensional
willow tree of X(t) for the computation. This is because
there is no apparent relationship between X(t) and v(t)
during node generation. Therefore, it is necessary to couple
the X(t) generated in this manner with v(t). We adopt a
direct ”splicing” approach for coupling (refer to section III.
for details).

III. Build a two-dimensional willow architecture

This section will describe how to use the two-dimensional
willow method to simulate the price of risky assets when
the price of risky assets follows the 4/2 stochastic volatility
model with Merton jump.

The stochastic volatility model consists of two main
parts: the first part is a stochastic process of the price of
the risky asset S(t), which follows a geometric Brownian
motion when the volatility value is given. the second part
is the stochastic process followed by volatility Vt. Under
the model of 4/2, volatility follows the square root pro-
cess. Based on the characteristics of the above two parts,
the two-dimensional willow method under the stochastic
volatility model is constructed according to the following
steps:

• The correlation between asset price St and volatility
Vt is removed to facilitate later calculations;

• Construct a one-dimensional willow of random volatil-
ity Vt;

• Put the one-dimensional willow of volatility into the
one-dimensional willow structure of price St, and then
form the two-dimensional willow of St;

• Finally, after constructing all nodes of the two-
dimensional willow tree, the optimal investment and
consumption strategies are solved.
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Figure 1: Volatility one-dimensional willow node diagram.

The 4/2 model under jump diffusion is expressed as⎧⎪⎨
⎪⎩

dSt

St
=
(
a
√
Vt +

b√
Vt

)(
ρdBt +

√
1− ρ2 dB⊥

t

)
+(r − λμ)dt+

(
eJ − 1

)
dNt,

dVt = κ (θ − Vt) dt+ σ
√
Vt dBt,

(10)
where a, b, r, κ, θ, σ ∈ R+, a = 1, b = 0 corresponds to He-
ston model and a = 0, b = 1 corresponds to 3/2 model.
Under the 4/2 model, assets with the elimination of corre-
lation are denoted as Xt and the expression of Xt is derived
by

Xt = ln

(
St

S0

)
− ρ

σ

(
a (Vt − V0) + b ln(

Vt

V0
)

)
− (r − λμ)t.

(11)

There are two key points in the construction of the fluc-
tuating willow, one is the generation of the willow nodes
and the other is the computation of transition probabili-
ties between nodes. Assume that the current time is 0, the
investment time limit is T and divide the time T into N
segments on average. The fluctuating willow tree has mv

distinct time nodes at each time node. The fluctuating wil-
low tree constructed using N = 3,mv = 2 as an example
is shown in 1.

In Figure 1, vab represents the b volatility value under the
a time node (as the node of the willow tree) and v0 is given
as a parameter. The arrows indicate transferability, so that
from t = 0 to t = t1 one needs to compute a probability
transition vector for 1 × mv and from t = t1 to t = t2
one needs to compute a probability transition matrix for
mv ×mv. Going from t = t2 to t = t3 is also a probability
transition matrix of mv ×mv.

In contrast to the binary tree method, the number of
willow nodes at each step remains fixed when the param-
eter mv is given. Moreover, the total number of nodes
in the willow tree method does not increase at each step,
but grows linearly instead of quadratically as in the binary
tree, significantly improving the efficiency of the numerical
method. Additionally, it is important to note that the gen-
eration of the willow nodes at each step is not directly re-
lated to the node values from the previous step, but rather
depends solely on the model parameters and moments at

the current step, as detailed in the followings.

At time t, we will adopt the Johnson Curve-moment
matching method to generate mv nodes. According to
Wang and Xu [22], we calculate the fourth moment of Vt.

After the fourth moment of each step is obtained (by sub-
stituting t = ti, i = 1, 2, · · ·N), the transformation theory
of Johnson [29] transformation theory is considered. Ac-
cording to Wang and Xu [22], the conditional probability
density function of vi+1 under vi is

p (ν (ti+1) | v (ti)) = 1√
2ασ2

vv (ti)Δt

× e
− (v(ti+1)−v(ti)−κ(θ−v(ti))Δt)2

2σvv(ti)Δt ,

(12)

where Δt = ti+1 − ti = T/N is the step size. Then, we
get one-dimensional willow structure of price St based on
Johnson [29] and Equation (12).

According to Equation (11), under the 4/2 jump diffu-
sion model, the expression of asset price eliminating corre-
lation is

Xt = Yt−Yu− ρ

σ

(
a (Vt − vu) + b ln(

Vt

vu
)

)
−(r−λμ)(t−u),

(13)
and just to make it easier, we take K1 =

−Yu − ρ
σ

(
a (Vt − vu) + b ln( Vt

vu
)
)

− (r − λμ)(t − u).

K1 is constant given Vt. In the case of unknown Vt,
it can be viewed as a function of Vt denoted K1(v

′),
K2(v

′) = ez(r−λμ)(t−u)+zρ[f(v′)−f(v)]+(λμz+C)(t−u).
Using the conditional expectation for-
mula, we have E

[
ezXt | xu = x, vu = v

]
=∫

R
ezK1(v

′)+zK2(v
′) φ(v)

φ(v′)p
Q̂ (t− u, v, v′) dv′, the trans-

fer density pQ̂ (t− u, v, v′) is

pQ̂ (t− u, v, v′) =
2κ̂e

κ̂(t−u)
2

(
2κ̂θ̂
σ2 +1

)

σ2
[
eκ̂(t−u) − 1

] (v′

v

) 1
2

(
2κ̂θ̂
σ2 −1

)

× e
− 2κ̂(v+eκ̂(t−u)v′)

σ2(eκ̂(t−u)−1)

I 2κ̂θ̂
σ2 −1

⎛
⎝ 2κ̂

√
vv′

σ2 sinh
(

κ̂(t−u)
2

)
⎞
⎠ ,

assuming the form φ(x) = e−w1x+w2 , then κ̂ = κ + σ2w1,

θ̂ = κθ+σ2w2

κ+σ2w1
. See Zeng et al. [25] for a concrete analytical

solution of E
[
ezXt | xu = x, vu = v

]
.

Based on Theorem 1 and Zeng et al. [25], we obtain the
first four moments ofXt. For the 4/2 jump diffusion model,
it is impractical and analytical solutions of the derivatives
can only be obtained from moment generating functions
under a special equation. The first four moments are solved
by numerical inversion with adaptive modification of the
moment generating function proposed by Choudhury et al.
[30]. Then, the simulation of Xt at each time node can
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be completed by using the Johonson curve method [29]
mentioned.

Next, we need to couple the nodes of Xt and Vt together.
Define a two-dimensional willow tree (mv = 3,mx = 3 as
an example). The vtnp indicates that this is the p volatil-
ity(obtained from the volatility willow) under time node tn,
n = 1, 2 . . . N, p = 1, 2, . . .mv, where N = 3,mv = 3; Stn

pq

implies that this is the q that X-point of the p fluctuation
at the node of time tn. k = pq, Sk

pq is called Stn
k .

Stn
k = exp{Xtn

q + lnSu +
ρ

σ

(
a
(
V tn
p − Vu

)
+ b log(

V tn
p

Vu
)

)
+ (r − λμ)(t− u)},

the above expression yields the two-dimensional willow
node value of the asset price.

IV. Optimization algorithm design for optimal
investment-consumption problem

The financial investment market is assumed to be com-
plete with two types of assets available to investors. One
is a riskless asset (bank deposits) whose price Rt at time
t(t ≥ 0) satisfies

dRt

Rt
= r dt,

where r > 0 is the bank yield. The other is a risky asset
(stock) whose price St at time t follows Equation (10).
The wealth of the investor Wt at the moment is t, the
consumption process is Ct and the proportion invested in
risky assets is αt ∈ [0, 1]. That is, αtWt invests in risky
assets and (1− αt)Wt invests in riskless assets, then the
process of shifting the wealth of the investor is

dWt = (
dSt

St
)αtWt + r (1− αt)Wt dt− Ctdt, (14)

substituting Equation (10) into Equation (14), then Equa-
tion (14) is rewritten as

dWt = (rWt − αtWtλμ− Ct) dt+ αtWt((e
J − 1)dNt

+ (a
√
Vt +

b√
Vt

)(ρdBt +
√
1− ρ2 dB⊥

t )),

the initial conditions Wt0 = w, t0 are the initial times; The
value w ≥ 0 is the initial wealth.

Samuelson [6] is used to discretize Equation (14) on
[tn−1, tn], where n > 1,tn = T

N ∗ n, can be obtained as
follows

Wtn −Wtn−1
= αtn−1

Wtn−1

Stn

Stn−1

+ r
(
1− αtn−1

)
Wtn−1

(tn − tn−1)− Ctn−1
,

where Ctn−1
=

⎡
⎣Wtn−1

− Wtn[
(1−αn−1)(1+r)+αn−1

Stn
Stn−1

]
⎤
⎦. An

investor’s investment strategy (αt, Ct) at time t satis-
fies Wt ≥ 0. This strategy is called an admissi-
ble strategy. Let us call all allowed policies Σ =

{(α,C) : α = {αt, t ≥ t0} , C = {Ct, t ≥ t0}}, the purpose
of investors is to choose the optimal investment and con-
sumption strategy, so as to maximize the expected con-
sumption utility function(called objective function) in the
whole investment period, namely

J = max
C

E

(∫ T

0

e−ρtU (Ct) dt

)
, (15)

where E denotes the mathematical expectation, the inter-
est rate ρ > 0 is the discount rate for future consumption,

U (Ct) =
Cγ

t

γ is the utility function of consumption and

γ ∈ (0, 1) is the relative risk aversion parameter.

This paper adopts the framework of Samuelson [6] to
discretize the problem:

J = max
C

E

(∫ T

0

e−ρtU (Ct) dt

)

= max
C

E

(
T∑

t=0

e−ρtU (Ct)

)
,

s.t. Ct =

⎡
⎣Wt − Wt+Δt[

(1− αt) (1 + r) + αt
St+Δt

St

]
⎤
⎦ ,

(16)

during the investment period [0, T ], the time interval for
policy adjustment between periods is chosen to be con-
sistent with the time step of the two-dimensional willow
method in the previous sections. Namely, Δt = T/N and
N denote the time steps in the willow algorithm, ti = Δt∗i,
i = 0, 1, 2, 3, · · · , N . The optimal investment consumption
problem is solved by a forward recursion in the framework
of the willow tree.

Based on the above results, Algorithm A for solving the
optimal investment strategies and consumption using the
willow tree method is designed, with the pseudocode pro-
vided in Appendix as shown. It is worth noting that the
final investment-consumption strategy obtained by the al-
gorithm is a top-dimensional array of M ∗ K ∗ (N + 1),
where C(m, k, n) represents the optimal consumption value
at time t = tn when the wealth is Wtn,k, and the corre-
sponding investment value is Wtn,k − C(m, k, n) when the
price of risky assets is Stn,k. α(M,K,N+1) represents the
proportion of investment in risky assets under the above
conditions. In particular, at time t = t0, when the risky
asset has only one price S0 and the wealth account has only
one valueW0, then the values of C(M,K, 1) and α(M,K, 1)
reduce to a single value W0. When t = tN , the end of the
investment, α(M,K,N +1) is a zero-matrix. While at the
end of the investment, C(M,K,N + 1) be a matrix such
that each column is the same when we run out of accounts.

V. Numerical experiment

In this section, the analysis utilizing Algorithm A (Solv-
ing the optimal investment-consumption algorithm gen-
eration algorithm) based on the two-dimensional willow
method is conducted, commonly denoted as WT .

IAENG International Journal of Applied Mathematics

Volume 55, Issue 1, January 2025, Pages 34-44

 
______________________________________________________________________________________ 



Figure 2: Difference surface graph of the optimal invest-
ment strategy with WT and Merton’s analytical solution
under model GBM .

Figure 3: Difference surface plots of the optimal consump-
tion strategy with WT and the Merton solution under the
GBM model.

To validate the effectiveness of Algorithm A, the subse-
quent analysis considers the scenario where the risky asset
follows a geometric Brownian motion (GBM), and com-
pares the results of Algorithm A with the analytical solu-
tion from Merton’s literature. Subsequently, an extension
of the risky asset model is conducted to explore the optimal
investment-consumption strategy when the risky asset fol-
lows the Heston model, the 3/2 model, and the 4/2 jump-
diffusion model, respectively. Finally, a numerical analysis
is performed to examine the sensitivity of this strategy to
parameters.

The difference between the optimal investment consump-
tion strategy and Merton’s analytical solution is investi-

Figure 4: The interpolation between the optimal consump-
tion in the Heston Mmodel at r = 0.02 and r = 0.01 risk-
free interest rates.

Figure 5: The interpolation between the optimal invest-
ment in the Heston model at r = 0.02 and r = 0.01 risk-free
interest rates.

gated using a 3D graph. The method in this paper is com-
monly denoted as WT . The axis X represents the nodes of
risky asset prices, the axis Y represents the node of the ac-
count, the axis OI and OC denote optimal investment and
optimal consumption in the following figures, respectively.
The parameters are chosen as follows S0 = 100; μ = 0.02;
σ = 0.3; T = 10; M = 30; γ = 0.5; ρ = 0.8; K = 30;
W0 = 100; r = 0.015.

In Figure 2, the WT represents the willow tree method
value and the MT represents Merton’s analytical solution
respectively. The optimal investment strategy obtained by
the willow algorithm is in excellent agreement with the
Merton solution, with a relative error within 4%. Similarly,
in Figure 3, the WT represents the willow tree method
value and the MT represents Merton’s analytical solution
respectively. The optimal consumption strategy proposed
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Figure 6: The interpolation in optimal investment for the
Heston model with consumption discounting coefficients of
ρ = 0.8 and ρ = 0.2.

Figure 7: The interpolation in optimal comsumption for
the Heston model with consumption discounting coeffi-
cients of ρ = 0.8 and ρ = 0.2.

by the Willow algorithm differs slightly from the Merton so-
lution, with the relative error essentially maintained within
10%.

Through the analysis of Figure 2 and Figure 3, the ef-
fectiveness of using the WT method to solve the optimal
investment consumption problem can be observed. Gener-
ally, optimal control theory combined with the HJB equa-
tion is used to solve the optimal investment consumption
problem with stochastic volatility and jump-diffusion pro-
cesses. However, this method usually cannot derive exact
solutions for the corresponding optimal investment strat-
egy and optimal consumption. In this paper, the WT
method based on the asset price moment-generating func-
tion and the willow tree method can be used to simulate
this type of problem. Next, we will use the WT method
to analyze the optimal investment consumption problem

Figure 8: The interpolation between the optimal invest-
ment in the 3/2 model with absolute risk aversion coeffi-
cients of γ = 0.7 and γ = 0.3.

Figure 9: The interpolation between the optimal consump-
tion in the 3/2 model with absolute risk aversion coeffi-
cients of γ = 0.7 and γ = 0.3.

for assets with stochastic volatility and jump-diffusion pro-
cesses.

By examining Figures 5 through 12, the variations in the
sensitivity of the optimal investment and consumption to
the risk-free interest rates r, the discounting coefficients of
ρ, the absolute risk aversion coefficients of γ and the jump
intensity λ were correspondingly obtained. A numerical
analysis of the simulation results was then conducted, in-
corporating insights from behavioral economics.

Firstly, using the Heston model as an example, we inves-
tigate the variations in optimal investment and consump-
tion strategies for r = 0.01 and r = 0.02. In order to better
illustrate the differences, we plot the net value of the opti-
mal strategy for r = 0.02 subtracted by the strategy value
for r = 0.01. The parameters for the Heston model are
as follows: T = 10;V0 = 0.03;S0 = 100;μ = 0.05; ρ =

IAENG International Journal of Applied Mathematics

Volume 55, Issue 1, January 2025, Pages 34-44

 
______________________________________________________________________________________ 



Figure 10: Optimal consumption in Heston’s jump diffu-
sion model with jump intensity λ = 1.

Figure 11: Optimal consumption in Heston’s jump diffu-
sion model with jump intensity λ = 2.

−0.3;κ = 2; θ = 0.04;σ = 0.12; a = 1; b = 0. By analyzing
Figure 4 and Figure 5, we can see that when the risk-free
rate increases, the overall optimal consumption decreases
and the optimal proportion of investments in risky assets
decreases.

Similarly, we plot the net value of the optimal strat-
egy for ρ = 0.8 subtracted from the strategy value for
ρ = 0.2. As can be seen in Figure 6 and Figure 7, when
the discount factor of consumption increases, consumption
increases considerably during the intermediate period of
investment. However, while the risk of the investment will
be reduced depending on the value of the asset, the propor-
tion of the investment in risky assets will not be modified
much overall.

Next, the 3/2 model is taken as an example to inves-
tigate the sensitivity of the optimal portfolio in the pro-
posed algorithm to different absolute risk aversion coeffi-
cients. Here, the parameter values of the 3/2 model are:

T = 10;V0 = 0.04;S0 = 100;μ = 0.04; ρ = −0.3;κ =
1.8; θ = 0.04;σ = 0.2; a = 0; b = 1;, where γ is 0.3 and 0.7
respectively, and the remaining portfolio parameters are
the same as above. Figure 8 and Figure 9 is γ = 0.7 sub-
tracted from the strategy value corresponding to γ = 0.3.
The surface reflects that when the risk aversion coefficient
increases, the proportion of investments in risky assets in-
creases, and the optimal consumption increases.

When the jump strength is inconsistent, the risk asset
prices at the willow price nodes are also inconsistent. Con-
sequently, the corresponding price values and account val-
ues at each point do not align during the graph plotting
process. Therefore, they are plotted separately.

The sensitivity of the optimal investment strategy to
jump intensity is investigated under the Heston model
of jump diffusion. The parameters are as follows: T =
10;V0 = 0.03;S0 = 100;μ = 0.05; ρ = −0.3;κ = 2; θ =
0.04;σ = 0.12; a = 1; b = 0. The relevant parameters
of the jump are as follows: the mean value of the jump
is αJ = −0.05, the standard deviation of the jump is
σJ = 0.05, and the strength of the jump is λ = 1 and
λ = 2, respectively.

Based on Figure 10 and Figure 11, the variations in
optimal consumption of the Merton jump-diffusion model
are presented for jump intensities λ of 1 and 2, respec-
tively. The consumption value under the optimal strat-
egy increases as the jump strength of risky asset prices
increases. This suggests that with increased uncertainty
from risky assets, the optimal strategy leans more towards
spending and less towards investing.

VI. Conclusion

This study derives the moment generating function of
risky asset prices based on Ito’s lemma and the measure
transformation formula. By combining the properties of
the willow structure with transition probabilities, a two-
dimensional willow framework is constructed to simulate
the wealth process. In the case of asset prices exhibiting
stochastic volatility and jump diffusion models, integrating
the two-dimensional willow framework with optimal con-
trol theory yields the willow method for tackling complex
optimal investment and consumption problems.

The paper constructs nodes of a wealth account based on
the willow algorithm for pricing risky assets, enabling the
derivation of optimal investment and consumption strate-
gies at each time node. The effectiveness of the willow algo-
rithm is verified by comparing it with Merton’s analytical
solution. Subsequently, the paper conducts numerical anal-
ysis with different parameters to demonstrate that the wil-
low algorithm can adjust strategies based on current mar-
ket and account conditions, making it a practical method
for addressing dynamic programming problems. While the
willow algorithm has traditionally been used as a beneficial
tool for studying derivative pricing in past research, this
paper contributes by extending its application to optimal
investment and consumption problems in a multi-period
discrete setting. Additionally, the time-discrete structure
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of the willow algorithm provides advantages by helping to
avoid the need to solve the HJB equation for complex asset
price models and utility functions.

To better validate the effectiveness of the proposed al-
gorithm, future research can involve parameter calibration
of the risk asset model based on market conditions. Fur-
ther substantiation of the innovative and practical value
of the willow algorithm can be achieved through analyzing
investment returns in real-world applications.

Appendices

Algorithm A: Solving the optimal investment consump-
tion algorithm. The algorithm for solving the optimal in-
vestment strategies and consumption using the willow tree
method is presented as follows.

1: Input: Given the number of willow nodesM , the num-
ber of account nodes K, the number of time steps N ,
and the investment period T ; The input risk asset wil-
low nodenodes St, which is a M ∗N matrix.

2: Output: [α,C], where α represents the proportion of
investment in risky assets and C represents the optimal
consumption.

3: for i = 1 n do
4: end for
5: α = zeros(M,K,N + 1), C = zeros(M,K,N + 1);
6: J points = zeros(K, 2,M);
7: for n=N:-1:1 do
8: tn = T

N ∗ n;
9: Stn,max = max(nodes St(:, tn));

10: Wtn,max = W0 · Stn,max

S0
;

11: for i=1:M do
12: for k=1:K do
13: Wtn,k = W0 · k · Wtn,max

K ;
14: if n = N then
15: C∗

(tn,ik)
= Wtn,k;

16: α∗
(tn,ik)

= 0;
17: if n=N-1 then

J i
1(Wtn,k) = max

{C(tn,ik);α(tn,ik)}
U [Ctn,ik]

+

m∑
j=1

Pij(1 + ρ)−ΔtU [(Wtn,k − Ctn,ik)

× {(1− αtn,ik)(1 + r) + αtn,ik
Stn+1,j

Stn,i
}];

18: Pointslist(k, i) = [Wtn,k, J
i
1(Wtn,k)];

19: end if
20: else
21: for j=1:M do
22: x = Points list(:, 1, j);
23: Jj = Points list(1, :, j);
24: Jj(x) is obtained by cubic spline in-

terpolation of K points;

25: end for

J i
(N−n)(Wtn,k) = max

{C(tn,ik);α(tn,ik)}
U [Ctn,ik]

+

M∑
j=1

Pij(1 + ρ)−ΔtJj
(N−n+1)

× [(Wtn,k − Ctn,ik){(1− αtn,ik)(1 + r)

+ αtn,ik
Stn+1,j

Stn,i
}];

26: Pointslist(k, i) = [Wtn,k, J
i
N−n(Wtn,k)];

27: end if
28: C(i, k, n+ 1) = C∗

(tn,ik)
;

29: α(i, k, i+ 1) = α∗
(tn,ik)

;
30: end for
31: end for
32: end for
33: return [α,C].
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