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Abstract—This paper investigates Pendant Graphs, which
are graphs that contain pendant vertices. It introduces a
new perspective on the regularity and irregularity of pendant
graphs, and discusses their relationship with Highly Irregular
Graphs. Additionally, this work introduces a novel graph based
on the concept derived from (m, k) Regular Graphs. The
(m, k) regular graphs are closely related to Pendant Graph.
The paper also delves into the nature and characteristics of
pendant vertices. By exploring the characteristics of pendant
vertices and defining the Cyclic Dendrimer Graph, the paper
significantly contributes to both Graph Theory and Chemical
Graph Theory.

Index Terms—Chemical Graph Theory, Pendant Graph, Pen-
dant vertices, (1, k) Regular Graph, Cyclic Dendrimer Graph.

I. INTRODUCTION

Chemical Graph Theory is a branch of Mathematical
Chemistry [19] that helps chemists to find out the Quan-
titative Structure-Property Relationship (QSPR) or Quantita-
tive Structure-Activity Relationship (QSAR) of compounds
through its mathematical modeling. The mathematical mod-
eling of compounds/ molecules is practicable with the help
of Graph Theory. The structure of the compound/ molecule
can be converted to graph, with atoms as vertices and bonds
between atoms as edges. The mathematical modeling of
these compounds into graphs is generally known as Chemical
Graphs, in which only hydrogen suppressed graphs are
considered.
Majority of the Chemical Graphs are graphs with pendant
vertices. The presence of the pendant vertices in the Chem-
ical Graph of the underlying compound acknowledges the
existence of functional groups attached to the compounds.
For example, consider the anti cancer drugs Pomalidomide,
Thioguanine, Mercaptopurine, Streptozocin, Anastrozole and
their corresponding Chemical Graphs in Figure 3 to Figure 8.

The functional groups Amino group and Carbonyl group
in Pomalidomide are represented by pendant vertices in the
corresponding chemical graph. The pendant vertices corre-
sponding to the chemical graph of Thioguanine represents
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Fig. 1. Thioguanine

Fig. 2. Pomalidomide

Amino group and Thiocarbonyl group. Similarly, the func-
tional group Cyano group and Propyl group, Alcoholic group
and Carbonyl Amino group of Anastrozole and Streptozocin
are represented by pendant vertices in their corresponding
chemical graphs. In all these cases, pendant vertices repre-
sents functional groups of the underlying compound.
Suji et al. [14] defined graphs with pendant vertices as P
Graphs. Based on the support vertex degrees of pendant
vertices, P Graphs can be mainly classified into Pendant
Regular Graph and Pendant Irregular Graph. This paper gives
a new perspective to the concept on regularity and irregularity
of graphs containing pendant vertices in relation to their
support vertices. Currently, the investigation of graph irreg-
ularity is an active area of research. Utilizing metrics such
as degree distance [16], path of length k [18], neighborhood
degree [3], etc., researchers have identified several classes of
irregular graphs. By defining irregularity indices, different
physico - chemical properties of compound/molecule can
be predicted. The Wiener Index [7], as well as the first
and second Zagreb Indices [5], and the Albertson Index
[2] stand as pioneering irregularity measures/indices. Some
of the applications irregularity indices are discussed in [8],
[20]–[24].
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Fig. 3. Chemical Graphs of Thioguanine and Pomalidomide.

Fig. 4. Streptozocin

II. PRELIMINARIES AND BASIC DEFINITIONS

For a graph G, denote V (G) and E(G) as vertex and edge
set respectively. Denote degree of a vertex u as d(u) and the
neighbourhood of a vertex u as N(u). dd(u) denotes number
of vertices at a distance d from u. Hence d1(u) = d(u)

Definition 1: [14] Support Vertex is the vertex adjacent
to a pendant vertex. Let U denote set of support vertices and
|U | denote its cardinality.

Definition 2: [12] A graph G is (d, k) - Regular , if
dd(v) = k for all vertices v in G. (1, k) - Regular Graph
represents the k - regular graph.

Definition 3: [14] A graph with single pendant vertex is
called a Trivial Pendant Graph. K2 and m - Pangraph are
examples of Trivial Pendant Graph.
Figure 8 is an example of Chemical Graph of compound
which comes under the category of Trivial Pendant Graph.

Definition 4: [14] A Pendant graph is Pendant Regular,
if all the support vertices should have same degree. Pendant
Regular Graph be abbreviated as PR Graph.

Note 1: Path Graph Pn, n ≥ 3, Star Graph K1,n, n ≥ 2,
Pineapple graph, m-ary tree, Banana graph, n - Sunlet graph,
Webgraphs are some examples of PR Graph. The graph is
Pendant k - Regular, if all the degrees of support vertices
are k, k ∈ N . Figure 9 is an example of Pendant 2-Regular
Graph.

Figure 3 is an example of Chemical Graphs of compounds
which comes under the category of PR Graph.

Definition 5: [14] A pendant graph is Pendant Irregular,
if at least two support vertices have different degree. PIR
graphs refer to Pendant Irregular Graphs.
Pendant Irregular graphs can be classified into two as fol-
lows;

Definition 6: A Pendant Graph is m-Partitioned Pendant
Irregular, if there exist m,m ≥ 2, distinct support vertex
degrees and at least two pendant vertices should have same
support vertex degrees. m - Partitioned pendant irregular
graph can be simply represented as m - PPIR Graph or
simply PPIR Graph.

Fig. 5. Anastrozole

Fig. 6. Chemical Graph of Streptozocin and Anastrozole

Figure 6 is an example of Chemical Graphs of compounds
which comes under the category of PPIR Graph.

Definition 7: A Pendant Graph is Completely Pendant
Irregular, if there exists at least two support vertices with
exactly one pendant edge attached to it and the support
vertex degrees are distinct w.r.t each pendant vertices. That is,
d(ui) ̸= d(uj) for any support vertices ui and uj and for all
i, j. Completely Pendant Irregular Graphs can be abbreviated
as CPIR Graph.

Definition 8: [1] The connected graph G is said to be
Highly Irregular if for every vertex v, there exist u,w ∈
N(v), u ̸= w, implies that d(u) ̸= d(w) .
i.e., every vertex in G is adjacent only to vertices with distinct
degrees.

Proposition 1: [1] For every positive integer n ̸= 3, 5 or
7, there exists a Highly Irregular Graph of order n.
An example of Highly Irregular Graphs is given in Figure II.

Proposition 2: [1] The size of a Highly Irregular Graph

of order n is at most
n(n+ 2)

8
, with equality possible for n

even.
Proposition 3: [1] A Highly Irregular Graph having max-

imum degree d has at least 2d vertices.
This paper establishes the relationship between P-Graphs
and other classes of pendant graphs, such as (1, k) Regular
Graphs and Highly Irregular Graphs.
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Fig. 7. Mercaptopurine

Fig. 8. Chemical graph of Mercaptopurine

III. (1,K) REGULAR GRAPHS AND PENDANT GRAPHS

As mentioned in the introductory part, P - Graph is
Pendant k - Regular if all support vertices have same degree.
Based on the concept of (m,k) - Regular Graph, we can
redefine Pendant k - Regular graph in terms of (1, k) -
Regular Graph. Even though (m, k) - Regular Graph is
defined in terms of all vertices of graph, we restrict this
concept to support vertices only.

Definition 9: A graph is Pendant Regular, if each support
vertices ui, i < n is (1, k) - Regular. In other words,
d1(ui) = k ∀i. That is, number of vertices at a distance
1 from each support vertex is k.

Theorem 4: The smallest order of (1, k) Pendant Regular
Graph containing m Star graphs K1,p is m(p+ 1)

Proof: Let K1,p be star graphs of order 1 + p.
p1, p2, ...pp are the pendant vertices incidents on a support
vertex u1. Let Km

1,p denote m copies of K1,p with vertex set
V (Km

1,p).
V (Km

1,p) = {pm1 , pm2 , pm3 ...pmp , um
i ,m ≥ 1, i ≥ 1}

Let G be a graph with vertex set and edge set as follows:

V (G) =
⋃
m≥1

V (Km
1,p) = {pmi , um

j , 1 ≤ i ≤ p, 1 ≤ j ≤ m}

E(G) =
⋃
m≥1

E(Km
1,p)

⋃
{u1u2, u2u3, u3u4...., umu1}

The resulting graph G contains K1,p as an induced sub graph.
These m copies of K1,p makes the least order of G as m(p+
1).

Corollary 1: The cycle length of smallest graph of (1, k)
- Pendant Regular Graph containing m star graph K1,p is m.

Proof: If we take m copies of K1,p from the above

Fig. 9. Example for k - Regular Graphs

Fig. 10. Highly Irregular Graphs of order 8 and 9

theorem 4, we get

V (G) =
⋃
m≥1

V (Km
1,p) = {pmi , um

j , 1 ≤ i ≤ p, 1 ≤ j ≤ m}

E(G) =
⋃
m≥1

E(Km
1,p)

⋃
{u1u2, u2u3, u3u4...., umu1}

The edges u1u2, u2u3, u3u4...., umu1 will generate a cycle
whose length is m.

Corollary 2: Any (1, k) - Pendant Regular Graph with r
support vertices has at least rk vertices.

Proof: By theorem 4, G contains induced sub graph
K1,p with V (G) =

⋃
m≥1 V (Km

1,p). This makes order of G
as at least r(p+1). In general, order of any (1, k) - Pendant
Regular Graph has at least rk vertices.
Since the graph resembles to dendrimers, we name the above
constructed graph as Cyclic Dendrimer Graph. An example
of Cyclic Dendrimer Graph is given in Figure 11.

Fig. 11. The Cyclic Dendrimer Graph K8
1,3

Proposition 5: The general pattern of adjacency matrix of
Cyclic Dendrimer Graph is as follows:
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

u1 u2 u3 u4 ... um−1 um p1
1 p1

2 p1
3 p1

4 ... p1
p p2

1 p2
2 p2

3 p2
4 ... p2

p ... pm
1 pm

2 pm
3 pm

4 ... pm
p

u1 0 ∗ 0 0 ... 0 ∗ ∗ ∗ ∗ ∗ ... ∗ 0 0 0 0 ... 0 ... 0 0 0 0 ... 0
u2 ∗ 0 ∗ 0 ... 0 0 0 0 0 0 ... 0 ∗ ∗ ∗ ∗ ... ∗ ... 0 0 0 0 ... 0
u3 0 ∗ 0 ∗ ... 0 0 0 0 0 0 ... 0 0 0 0 0 ... 0 ... 0 0 0 0 ... 0
u4 0 0 ∗ 0 ... 0 0 0 0 0 0 ... 0 0 0 0 0 ... 0 ... 0 0 0 0 ... 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .
um ∗ 0 0 0 ... ∗ 0 0 0 ... 0 ... 0 0 0 0 0 ... 0 ... ∗ ∗ ∗ ∗ ... ∗
p1
1 ∗ 0 0 0 ... 0 0 0 0 0 0 ... 0 0 0 0 0 ... 0 ... 0 0 0 0 ... 0

p1
2 ∗ 0 0 0 ... 0 0 0 0 0 0 ... 0 0 0 0 0 ... 0 ... 0 0 0 0 ... 0

p1
3 ∗ 0 0 0 ... 0 0 0 0 0 0 ... 0 0 0 0 0 ... 0 ... 0 0 0 0 ... 0

p1
4 ∗ 0 0 0 ... 0 0 0 0 0 0 ... 0 0 0 0 0 ... 0 ... 0 0 0 0 ... 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .
p1
p ∗ 0 0 0 ... 0 0 0 0 0 0 ... 0 0 0 0 0 ... 0 ... 0 0 0 0 ... 0

p2
1 0 ∗ 0 0 ... 0 0 0 0 0 0 ... 0 0 0 0 0 ... 0 ... 0 0 0 0 ... 0

p2
2 0 ∗ 0 0 ... 0 0 0 0 0 0 ... 0 0 0 0 0 ... 0 ... 0 0 0 0 ... 0

p2
3 0 ∗ 0 0 ... 0 0 0 0 0 0 ... 0 0 0 0 0 ... 0 ... 0 0 0 0 ... 0

p2
4 0 ∗ 0 0 ... 0 0 0 0 0 0 ... 0 0 0 0 0 ... 0 ... 0 0 0 0 ... 0

. . . . . . . . . . . . . . .. . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .
p2
p 0 ∗ 0 0 ... 0 0 0 0 0 0 ... 0 0 0 0 0 ... 0 ... 0 0 0 0 ... 0

. . . . . . . . . . . . . . .. . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .
pm
1 0 0 0 0 ... 0 ∗ 0 0 0 0 ... 0 0 0 0 0 ... 0 ... 0 0 0 0 ... 0

pm
2 0 0 0 0 ... 0 ∗ 0 0 0 0 ... 0 0 0 0 0 ... 0 ... 0 0 0 0 ... 0

pm
3 0 0 0 0 ... 0 ∗ 0 0 0 0 ... 0 0 0 0 0 ... 0 ... 0 0 0 0 ... 0

pm
4 0 0 0 0 ... 0 ∗ 0 0 0 0 ... 0 0 0 0 0 ... 0 ... 0 0 0 0 ... 0

. . . . . . . . . . . . . . .. . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .
pm
p 0 0 0 0 ... 0 ∗ 0 0 0 0 ... 0 0 0 0 0 ... 0 ... 0 0 0 0 ... 0



,

where * denotes the non zero element 1.
The determinant of the matrix of any size can
be calculated through the determinant calculator :
https://m.matrix.reshish.com/determinant.php

Note 2: The order of a Cyclic Dendrimer Graph is
(m+ pm)× (m+ pm)

Theorem 6: Determinant of Cyclic Dendrimer Graph with
K1,p, p ≥ 2 is always zero.

Proof: The result is trivial from the adjacency matrix. In
the adjacency matrix of Cyclic Dendrimer Graph, the rows of
each pi1, p

i
2...p

i
p, i ≥ 1 is same. Since two rows are identical,

determinant is zero.
Theorem 7: The spectrum of smallest Cyclic Dendrimer

Graph is 6.5
Proof: The smallest Cyclic Dendrimer Graph G is

constructed with three copies of K1,1. The adjacency matrix
of such a graph is as follows;

A :



u1 u2 u3 p1 p2 p3
u1 0 1 1 1 0 0
u2 1 0 1 0 1 0
u3 1 1 0 0 0 1
p1 1 0 0 0 0 0
p2 0 1 0 0 0 0
p3 0 0 1 0 0 0


Arrange the rows through the following steps. Swap the
first and second rows inversing determinant sign. Eliminate
elements in the first column under first element. Eliminate
elements in the second column under second element. Elim-
inate elements in the third column under the third element.
Eliminate elements in the first column under fourth element.
Swap the fifth and sixth rows inversing determinant. This
makes the triangle into an upper triangular matrix with

diagonal elements 1, 1, (−2), (
−1

2
), (−1), (−1). Since the

spectrum is sum of absolute values of eigenvalues, here it
is 6.5.

Theorem 8: The adjacency matrix of Cyclic Dendrimer
Graph is non singular iff p = 1 for each K1,p.

Proof: Consider a Cyclic Dendrimer Graph G with
vertex set

V (G) =
⋃
m≥1

V (Km
1,p) = {pmi , um

j , 1 ≤ i ≤ p, 1 ≤ j ≤ m}

Assume that adjacency matrix of Cyclic Dendrimer Graph
is non singular. p1i represents the pendant vertices p11, p12,
p13...p1p which incidents on the support vertex u1 in K1

1,p. p2i
represents the pendant vertices p21, p22, p23...p2p which incidents
on the support vertex u2 in K2

1,p etc. In the adjacency

matrix of G, u1p
1
1, u1p

1
2, ...u1p

1
p and u2p

2
1, u2p

2
2, ...u2p

2
p etc

is 1. The rows representing pendant vertices contains only
a single element. Thus the column representing u1 contains
m identical elements or otherwise the rows representing p11,
p12, p13...p1p are identical so that the adjacency matrix become
singular. Since we assumed that graph is non singular, this
is not possible.Therefore there should exist only one pendant
vertex p11 w.r.t u1 in K1

1,p. Similarly for K2
1,p, K3

1,p,...Km
1,p.

Conversely assume that p = 1 in each Km
1,p. Each of K1,p

has exactly a single pendant edge. The support vertices
and pendant vertices in Km

1,p makes an adjacency matrix as
explained in Theorem 8. The determinant value -1 makes the
adjacency matrix as a non singular matrix.

Theorem 9: The chromatic number of Cyclic Dendrimer

Graph is χ(G)=

{
2, m = even, m ϵN

3, m = odd, m ϵN

Proof: Since the chromatic number of star graph is 2,
assign colour 1 for u1. Assign colour 2 to p11, p12, p13...p1p
and for um and u2. Assign colour 1 to p21, p22, p23...p2p and
u3. Assign colour 2 to p31, p32, p33...p3p and u4. Continue
this process of colouring. As mentioned in corollary 1 of
Theorem 4, the cycle length of Km

1,p is m. The chromatic
number of a cycle graph is 2, if cycle length is even and 3,
if cycle length is odd. Thus the chromatic number of cyclic
dendrimer graph exactly depends on the length of the cycle.

Corollary 3: The girth of cyclic dendrimer graph is m.
Theorem 10: The chromatic polynomial of Cyclic Den-

drimer Graph is; Pn(λ) = λ(λ− 1)

Proof: By theorem 9, the chromatic number of Cyclic
Dendrimer Graph is 2,

∴ Pn(λ) =
n∑

i=1

(
λ

i

)
ci

∵ χ(G) = 2, c1 = 0 and i = 2

Pn(λ) = 0 +

(
λ

2

)
c2 = λ(λ− 1)

Theorem 11: For a Cyclic Dendrimer Graph, the cardinal-
ity of vertex cover is |M | = m

Proof: The construction of Cyclic Dendrimer Graph is
from m -copies of K1,p. For a star graph, to cover all the p
edges, only support vertices are enough. This yields that |M |
= 1, for star graphs. Since Cyclic Dendrimer Graph have m
copies of K1,p, m support vertices will cover the edges of
the graph. ∴ |U | = |M | = m.

IV. HIGHLY IRREGULAR GRAPHS AND PENDANT
GRAPHS

In this section, we discuss how Highly Irregular Graphs
are related to pendant vertices. Some properties related to
Highly Irregular Graphs are also explored here.

Theorem 12: Every Highly Irregular Graphs are P -
Graphs.

Proof: In Highly Irregular Graph, if v is a vertex of
maximum degree d in a Highly Irregular Graph G, then v is
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adjacent to exactly one vertex of degree k for 1 ≤ k ≤ d.∑
i

d(vi) = d+ (d− 1) + ...+ 1

=
d(d+ 1)

2
≤ 2d

A Highly Irregular Graph G with maximum degree d has at
least 2d vertices. That is, the graph G should have at least two
vertices of same degree. Hence the graph G should contain
at least two vertices with degree 1. Therefore G is a graph
with pendant vertices and hence G is a P - Graph.

Theorem 13: Every Highly Irregular Graphs are either
pendant k - regular or m - partitioned pendant irregular.

Proof: The construction of Highly Irregular Graphs is
obtained as in [1]. Two vertices have maximum degree n

2
and these vertices are support vertices with a single pendant
edge. Since both support vertices have same degree n

2 , the
graph becomes an Pendant n

2 -Regular Graph.
There exists trees in which at least degrees of two vertices are
repeating which are also Highly Irregular Graphs. Figure IIis
an example of Highly Irregular Graph and at the same time
the graphs are 2- PPIR Graph and Pendant 2-Regular Graph.

Theorem 14: The Highly Irregular Tree with o(G) mini-
mum is the pendant 1 - regular or simply PR graph.

Proof: K2 is the Highly Irregular Tree and PR Graph
in which o(G) is minimum. The next minimum tree is P4 in
which for every vertex, neighbourhood degrees are different
and two support vertices have same degree. Thus P4 is the
highly irregular and also 2 - regular graph.

Theorem 15: The least Highly Irregular Graph which has
at least one cycle is the pendant 3 - regular graph.

Proof: If we consider the least cycle C3 with two
pendant edges attached to two vertices, we get a 3 - regular
P Graph. But this graph won’t be highly irregular. Instead
of C3, if we consider C4 the graph becomes highly irregular
with at least one cycle and at the same time 3 regular Pendant
Graph also.

Theorem 16: The chromatic number of Highly Irregular
Graph is

χ(G) =

{
2, n = even, n ϵN

3, n = odd, n ϵN

Proof: From the construction of Highly Irregular Graph
G, it is clear that G is bipartite for n ≥ 3. For a bipartite
graph, χ(G) = 2. Thus for n = even, χ(G) = 2. To colour
the vertex v2 on the subdivision of the edge v2ud−1, one
more colour is needed. Thus for n = odd, χ(G) is one more
than number of colours required for n = even.
∴ χ(G) = 2 + 1 = 3

Theorem 17: The chromatic polynomial of Highly Irreg-
ular Graph is

Pn(λ) =

{
λ(λ− 1), n = even, n ϵN

λ(λ2 − 3λ+ 2), n = odd, n ϵN

Proof: From Theorem 16, χ(G) = 2, n = even. Hence
c1 = 0 and i = 2
Therefore

Pn(λ) =
n∑

i=1

(
λ

i

)
ci

= 0 +

(
λ

2

)
c2 = λ(λ− 1)

For n = odd, c1 = c2 = 0 and i = 3
∴

Pn(λ) =
n∑

i=1

(
λ

i

)
ci = 0 + 0 +

(
λ

3

)
c3

=
λ(λ− 1)(λ− 2)

3!
3!

= λ(λ2 − 3λ+ 2)

Theorem 18: For n ≥ 8, every Highly Irregular Graph
have

α = |M | =

{
n
2 , n = even, n ϵN

⌈n
2 ⌉, n = odd, n ϵN

Proof: Since Highly Irregular Graph is bipartite,
n

2
ver-

tices are needed to cover

n

2

(n
2
+ 1

)
2

edges, for n = even.
In the case of n = odd, one more vertex is needed to cover
n

2

(n
2
+ 1

)
2

+ 1edges. The vertex v2 on the subdivision of
edge v2ud−1 is sufficient to cover the edges incident on v2

and ud−1. Thus for n = odd,
n− 1

2
+ 1 vertices or simply

⌈n
2 ⌉ vertices are needed to cover all edges.

∴

α = |M | =

{
n
2 , n = even, n ϵN

⌈n
2 ⌉, n = odd, n ϵN

V. NATURE OF PENDANT VERTICES

As mentioned in introductory part, the motivation for the
study of Pendant graphs [14] is from the Chemical Graphs of
anticancer drugs. Designing new drugs in cancer treatment
is inevitable. The majority of the anticancer drug compounds
are pendant graphs. Counting the pendant vertices will
give somewhat an idea of the number of functional groups
attached to a compound. Functional groups are atoms or
clusters of atoms within a compound. The naming, behavior
and properties of a compound depend on the functional
groups present in that compound [9]. Since pendant vertices
represent functional groups, counting the pendant vertices is
a matter of concern. In organic compounds, various studies of
even and odd numbers of carbon atoms are executed [6], [10],
[11], [13], [15], [17]. In this section, the nature of pendant
vertices is revealed. Before that, the following facts should
be remembered: 1. Sum of an even number of degrees is
even. 2. The sum of an odd number of degrees is odd. 3.
The sum of even number of odd degrees is even.

A. Pendant Vertices in PR Graphs

In PR Graphs, the degree of all support vertices are same.
From the first theorem of graph theory,∑

v∈V (G)

d(v) = 2e (1)

The vertex set V can be partitioned into 3 sets; P , U and
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W . Set of pendant vertices as P , support vertices as U and
all other vertices as W . Thus P ∪U ∪W = V and P ∩W =
P ∩ U = U ∩W = ϕ. Let p ∈ P , u ∈ U and w ∈ W .
By equation 1,

|P |+
∑
u∈U

d(u) +
∑
w∈W

d(w) = 2e

|P | = 2e−
∑
u∈U

d(u)−
∑
w∈W

d(w) (2)

Now we shall consider two cases; Pendent graph with vertex
sets (i) P and U , (ii) P , U and W

a) Case-i: PR Graphs with P&U From 2, we have,

|P | = 2e−
∑
u∈U

d(u)−
∑
w∈W

d(w)

If W = ϕ,
|P | = 2e−

∑
u∈U

d(u) (3)

For PR Graphs, all support vertices have same degree. Let k
be the number of support vertices.

Then |P | = 2e− kd(u)
Subcase-1 : k = even & d(u) = even =⇒ |P | is even
Subcase-2 : k = even & d(u) = odd =⇒ |P | is even
Subcase-3 : k = odd & d(u) = odd =⇒ |P | is even
Subcase-4 : k = odd & d(u) = odd =⇒ |P | is odd
It can be understood from the following representation;

|P | =
d(u) = even d(u) = odd( )

k = even even even
k = odd even odd

b) Case ii: PR Graph with P , U and W
We have,

|P | = 2e−
∑
u∈U

d(u)−
∑
w∈W

d(w)

= 2e− kd(u)−
∑

d(w)=even

d(w)−
∑

d(w)=odd

d(w)

Let ∑
d(w)=even

d(w) = s and
∑

d(w)=odd

d(w) = t

|P | = 2e− kd(u)− s− t

s is always even. The above expression is depending on k,
d(u) and number of odd degrees of w.

Subcase 1:- k = d(u) = t = even =⇒ |P | is even
Subcase 2:- k = d(u) = even, t = odd =⇒ |P | is odd
Subcase 3:- k − t = even, d(u) = odd =⇒ |P | is even
Subcase 4:- k = even, d(u) = t = odd =⇒ |P | is odd
Subcase 5:- d(u) = t = even, k = odd =⇒ |P | is even
Subcase 6:- d(u) = even, k = t = odd =⇒ |P | is odd
Subcase 7:- t = even, d(u) = k = odd,=⇒ |P | is odd
Subcase 8:- k = d(u) = t = odd =⇒ |P | is even
The subcases can be represented as follows;


t = odd t = even

k = d(u) = even odd even
k = even, d(u) = odd odd even
k = odd, d(u) = even odd even
k = d(w) = odd even odd



B. Pendant Vertices in CPIR Graphs

From equation 2,

|P | = 2e−
∑
u∈U

d(u)−
∑
w∈W

d(w)

Case i CPIR Graph with vertex set P,U, and W = ϕ
Therefore,

|P | = 2e−
∑
u∈U

d(u)

For CPIR Graph, degree of support vertex will never repeat.
They may be even or odd.

|P | =
∑

d(u)=even

d(u)−
∑

d(u)=odd

d(u) (4)

Let ∑
d(u)=even

d(u) = s and
∑

d(u)=odd

d(u) = t

s is always even and t is depending on the number of odd
degrees.

|P | = 2e− s− t

Subcase 1 :- t = odd =⇒ |P | is odd
Subcase 2 :- t = even =⇒ |P | is even
Case ii CPIR Graph with vertex set P , U and W

Using equation 4;

|P | = 2e−
∑

d(u)=even

d(u)−
∑

d(u)=odd

d(u)−
∑

d(w)

∑
d(w) may be even or odd.

Let ∑
d(w)=even

d(w) = x and
∑

d(w)=odd

d(w) = y

|P | = 2e− s− t− x− y

s and x are always even. Nature of P is depending on the
number of odd degrees.
Subcase 1:- k = odd, y = even =⇒ |P | is odd
Subcase 2:- t = y = odd, =⇒ |P | is even
Subcase 3:- t = y = even =⇒ |P | is even
Subcase 4:- t = even, y = odd =⇒ |P | is odd

The representation of subcases are as follows:

|P | =
y = even y = odd( )

t = odd odd even
t = even even odd

C. Pendant Vertices in PPIR Graphs

Let u1
m1 , u2

m2 , ...uk
mk be the support vertices of PPIR

Graph. m1,m2...mk be the repeating number of support
vertices of u1, u2...uk respectively.
Case i PPIR Graph with vertex set P,U and W = ϕ
From equation 3,

|P | = 2e−
∑
u∈U

d(u)

= 2e−m1d(u1)−m2d(u2)...mkd(uk)
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Add separately the even support vertex degrees and odd
support vertex degrees.

|P | = 2e−
∑

d(ui)=even

d(ui)−
∑

d(uj)=odd

d(uj), i ̸= j

Let ∑
d(ui)=even

d(ui) = s and
∑

d(uj)=odd

d(uj) = t

|P | = 2e− s− t (5)

Since s is even, |P | is depending on t.
Subcase 1:- t = even =⇒ |P | is even
Subcase 2:- t = odd =⇒ |P | is odd
Case ii PPIR Graph with vertex sets P , U and W
Using equation 5,

|P | = 2e− s− t−
∑

d(w)=even

d(w)−
∑

d(w)=odd

d(w)

As in the case of CPIR Graph, let∑
d(w)=even

d(w) = x and
∑

d(w)=odd

d(w) = y

The subcases are similar as in the case of CPIR Graph.

|P | =
y = even y = odd( )

t = odd odd even
t = even even odd

The graph theoretical work related to the nature of pendant
vertices will help in generating new compounds or drugs
with given properties. An algorithm to identify all functional
groups in an organic compound is discussed in [4].

VI. CONCLUSION

This paper explores a new angle on graph regularity and
irregularity by focusing on pendant graphs. The relation
between pendant graphs with existing graph classes like
Highly Irregular Graphs, (m, k) regular graphs is established.
By delving into the nature of pendant vertices and introduc-
ing the Cyclic Dendrimer Graph, the paper offers valuable
contributions to both graph theory and Chemical Graph
Theory. Future research directions include exploring further
graph-theoretic properties of Cyclic Dendrimer Graphs.
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