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Abstract—Numerous constrained optimization methods have
been suggested to reduce the X-ray dose in computerized tomog-
raphy. These approaches focus on minimizing a regularizing
function, which gauges the deviation from prior knowledge
about the imaged object. These approaches focus on minimizing
a regularizing function that assesses the lack of consistency
of about the object that is being imaged using some prior
knowledge. This minimization is conducted under the condition
of maintaining a predetermined level of consistency with the
detected X-ray attenuation. Total variation (TV) is a frequently
explored regularizing function. TV minimization techniques
exhibit excellent denoising performance for simple images, yet
they lead to the loss of texture information when employed on
more complex images. Given that medical imaging frequently
involves textured images, utilizing TV may not be advantageous
in such scenarios. Alternative studies propose incorporating
multi-scale geometric transforms into the regularization func-
tion. One recent preference in this regard is the adoption of the
shearlets transform. This work presents a proof-of-concept that
showcases the application of the discrete shearlets transform as
a sparsifying transform in the computed tomography recon-
struction solver. Specifically, the regularization term utilized is
the `1-norm of the shearlets coefficients.

In this work, the algorithm’s iterative computation incorpo-
rates an operation on the shearlets coefficients. Particularly,
the soft-thresholding operator is used with the parameter
adaptively chosen. To improve its relevance for biomedical
imaging, we propose a desired sparsity level of the thresholding
parameter value obtained from a biological object. The effec-
tiveness of the proposed method is assessed using two different
types of data: data from chest dataset generated by MATLAB
and real data collected from X-ray tomographic measurements
of an axial slice of a ladybug.

Index Terms—computed tomography, shearlets, sparsity, reg-
ularization, adaptive, limited data, biomedical imaging

I. INTRODUCTION

COmputed tomography, is widely utilized in diverse
sectors including medicine and industry. In a standard

computed tomography imaging, the scanner detectors capture
projections from various angles. These projections are later
processed to generate a computed tomography image that
approximates the internal distribution of the object’s X-ray
attenuation [1]. Recently, there has been a growing interest
in minimizing X-ray dosage in computed tomography scans.
While there have been suggestions to achieve this by reduc-
ing the current in the X-ray emitting hardware or shortening
the duration of the X-ray pulse, the approach that has
received the most attention involves a substantial decrease
in the number of X-ray projections. The schemes lead to a

Manuscript received March 28, 2024; revised September 9, 2024.
Zenith Purisha is an Assistant Professor at the Department of Mathemat-

ics, Universitas Gadjah Mada, Indonesia. E-mail: zenith.purisha@ugm.ac.id
Imam Solekhudin is a Professor at the Department of Mathematics,

Universitas Gadjah Mada, Indonesia. E-mail: imams@ugm.ac.id
Sumardi is an Associate Professor at the Department of Mathematics,

Universitas Gadjah Mada, Indonesia. E-mail: mardimath@ugm.ac.id

degradation of reconstruction image quality, especially when
employing the filtered back-projection reconstruction algo-
rithm, which is the most widely used method for generating
computed tomography images. As a result, extensive research
has been dedicated to employing constrained optimization
methods.

A mathematical model in a variational form to reconstruct
images is carried out in this work. Previous studies exten-
sively delved into various well-known techniques employing
sparsity-based inversion with a particular focus on under-
sampled computed tomography explored in [2], [3]. In our
investigation, shearlets are considered as the chosen sparsi-
fying transform [4]. Theoretically, shearlets exhibit superior
directional sensitivity and avoid the undesirable staircasing
effect.

Consider the mathematical as follows

fS = argmin
f∈RN2 , f≥0

{
1

2
‖Rf −m‖22 + τ‖Sf‖1

}
. (1)

In detail, R is a measurement matrix, f is an object of
interest, m is the measured data and S is a shearlets matrix.
Parameter τ is used as a regularization parameter.

The idea to control the regularization parameter is carried
out in this work to solve the problem 1. Specifically, the
algorithm determines the parameter τ automatically to obtain
a specified level of sparsity for the shearlets coefficients [5].
Both artificial and real data are used to conduct the numerical
experiments. To support the rationale presented in this work,
an axial slice of a ladybug is measured for the real data.
While the under-sampled computed tomography problem has
been a subject of ongoing interest, the application of shearlets
with an automatically chosen thresholding parameter (τ ) for
biological tissue images is a novel contribution. Additionally,
the introduction of prior information regarding the desired
sparsity level based on biological matter is a new concept.
The reconstructed images using the algorithm are compared
with those using the filtered back-projection [6], [7], [8].

The model of the computed tomography problem and the
algorithm are addressed in Section III and Section V. The
image reconstructions and the discussions are reported in
Section VII and Section VIII.

II. 2D SHEARLETS

The key concepts related to shearlets are discussed in
this section. Shearlets are designed to enable directional
representation systems for multidimensional data [9], [10].
A key feature of shearlets is their capacity to manage
directional orientations via the shearing parameter. Images
with anisotropic singularities can be detected well by the
element of shearlets system, namely various scales, locations,
and orientations [11]. It is important to highlight that the
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shearlets system operates as a frame rather than a basis.
To enhance readability, we concentrate on presenting the
general concepts and encourage interested readers to the
cited literature for more details and precise formulations. The
following definition specifies a class of functions to model
the image containing anisotropic singularities.

Definition II.1. The class E 2(Rd) of cartoon-like image is
the set of functions f : R2 → C of the form

f = f0 + f1χB , (2)

being B ⊂ [0, 1]2 is a set with ∂B being a closed C2-curve
with bounded curvature and fi ∈ C2(R2) are functions with
suppf0 ⊂ [0, 1]2 and ‖fi‖C2 ≤ 1 for each i = 0, 1.

In the following, a discrete shearlets system is derived. It
allows us to encode anisotropic features in the digital realm.
The discrete sheartets system associated with ξ ∈ L2(R2) is
defined by

{ξj,k,m = 23/4ξ(SkA2j · −m) : j, k ∈ Z,m ∈ Z2}, (3)

where

Sk =

[
1 k

0 1

]
, is a shearing matrix,

A2j =

[
2j 0

0 2j/2

]
, is a parabolic scaling matrix and being

j is the scale index, k is the orientation index and m is the
position index.

Furthermore, the discrete shearlet transform is defined as
the mapping

L2(R2) 3 f → SH(f) = 〈f, ξj,k,m〉, (j, k,m) ∈ Z×Z×Z2.
(4)

The cone-adapted two-dimensional discrete shearlets sys-
tems are introduced by partitioning the frequency plane
into four cones to avoid the shear parameters to become
excessively large.

Definition II.2. Let φ, ξ, ξ̃ ∈ L2(R2). The cone-adapted
discrete shearlets system SH(φ, ξ, ξ̃; c) is defined by

SH(φ, ξ, ξ̃; c) = Φ(φ; c1) ∪ Ξ(ξ; c) ∪ Ξ̃(ξ̃; c)

where

Φ(φ; c1) = {φm = φ(· − c1m) : m ∈ Z2},
Ξ(ψ; c) = {ξj,k,m = 2

3
4 jξ(SkA2j · −Mcm) :

j ≥ 0, |k| ≤ d2j/2e,m ∈ Z2)},
Ξ(ξ; c) = {ξj,k,m = 2

3
4 jξ(SkA2j · −Mcm) :

j ≥ 0, |k| ≤ d2j/2e,m ∈ Z2)},
Ξ̃(ξ; c) = {ξ̃j,k,m = 2

3
4 j ξ̃(STk A2j ·

−M̃cm) : j ≥ 0, |k| ≤ d2j/2e,m ∈ Z2)},

with c = (c1, c2) ∈ (R+)2, Mc =

[
c1 0

0 c2

]
and

M̃c =

[
c2 0

0 c1

]
.

f̃11 f̃12 f̃13

f̃21 f̃22 f̃23

f̃31 f̃32 f̃33

-

-

-

-

-

Detector

Fig. 1. An illustration of the measurement model.

III. VARIATIONAL MODEL

In computed tomography, a detector captures incoming
X-ray photons, and the measurement data are collected by
taking into account the intensity reductions of X-rays across
various projections. In this context, the available projections
are limited.

Let Ω ⊂ R2 and f : Ω ⊂ R2 → R+. The object of
interest is an unknown non-negative attenuation coefficient
function, f(x1, x2), which represents an inner structure of
the object at point (x1, x2). The beam of X-ray L denotes a
straight line carrying intensity that passes through the object.
The measurement data is characterized by a line integral
of f(x1, x2), and the object is reconstructed based on this
integral.

In practice, f(x) is expressed by a matrix f = [f̃ij ] ∈
RN×N (see Figure 1).

The mathematical model of the problem is as follows∫
L

f(x) ds =

N∑
i=1

N∑
j=1

aij f̃ij , (5)

In detail, the X-ray beam L passes through aij where
index-ij associated with the pixel (i, j). The Equation 5 is
then formulated as

m = Rf , (6)

where R = [aij ] ∈ RM×N2

is the measurement matrix and
m ∈ RM is the vector of the measurement data.

It is widely acknowledged that in the case of under-
sampled data, the linear system in Equation 6 gives rise to a
discrete inverse problem that is highly ill-posed. Therefore,
regularization is required to address this problem. Consider
a variational functional of the form

argmin
f∈RN2 , f≥0

1

2
‖Rf −m‖22 + τ‖Sf‖1 (7)

where τ is the regularization parameter, S is the shearlets
transform in the form of matrix. We take into account
the prior knowledge of f , which quantifies the incoming
photons without generating new photons by enforcing the
non-negativity constraint for f .

IAENG International Journal of Applied Mathematics

Volume 55, Issue 1, January 2025, Pages 74-79

 
______________________________________________________________________________________ 



IV. ADAPTIVE THRESHOLDING PARAMETER τ

We consider to alter the parameter τ in the problem
7 adaptively using the concept of proportional-integral-
derivative (PID) controllers [12], [13], [14], [15]. Given a
vector of shearlets coefficient {wi} ∈ RN2

for 1 ≤ i ≤ N2.
The shearlets coefficients that larger than ν is defined by

Cν = {wi||wi| > ν}.

The goal is to find a value of ν such that the shearlets
give the best approximation for a given image. Let us write
the problem as follows

ν? = arg min
ν
‖fpr − ST (Cν)‖,

where fpr is an object that similar to the target. The desired
sparsity level of shearlets from the target is given by

Cpr = dim{wi||wi| > ν?}. (8)

Let β equals to the mean of the absolute values of the
shearlets coefficients, then the parameter τ alters as follows:

τ(k+1) = τ(k) + β(C(k) − Cpr),

where Ck is the degree of sparsity at kth iteration.

V. CONTROLLED SHEARLETS DOMAIN SPARSITY
ALGORITHM

The idea implementing the automatic chosen the regu-
larization parameter τ in the shearlets coefficient domain
is considered in this work [16], [17], [5]. The parameter
τ is chosen automatically using the algorithm outlined in
Algorithm 1. The computation to minimize the problem (1)
uses a primal-dual method used in [18] as follows:

m(k+1) = PC
(
f (k) − µ∇g(f (k))− λSTw(k)

)
w(k+1) =

(
I − Tτ

)(
Sm(k+1) + w(k)

)
f (k+1) = PC

(
f (k) − µ∇g(f (k))− λSSTw(k+1)

) (9)

where µ and λ are positive parameters, here 0 < µ < 2/µl
where µl is the Lipschitz constant for g(f), g(f) = 1

2‖Rf−
m‖22 and the operator T reads as

Tτ (x) =


x+ τ

2 for x ≤ − τ2
0 for |x| < τ

2

x− τ
2 for x ≥ − τ2 .

(10)

In detail, let λmax is the maximum eigenvalue, 0 <
λ < 1/λmax(SST ). Notation PC represents the Euclidean
projection on C where C = RN2

+ .

VI. NUMERICAL EXPERIMENTS

In this work, two types of measurement data from artificial
phantom and real target are used. The data are acquired for
two different types of data (see section VI-A) using thirty
and fifteen projection view of angles. The computational
implementation is conducted using Matlab 9.11 (R2021b)
on an Apple M1 with 8GB of CPU memory. Spot–A Linear-
Operator Toolbox [19] is used to generate the shearlets matrix
S. The number of scales is 2. The stopping criterion is
controlled by parameters ε1 and ε2 and both are set equal to
10−2.

Algorithm 1 The controlled shearlets domain sparsity algo-
rithm

1: Inputs: measurement data m, measurement matrix R,
parameters τ, λ > 0 to ensure convergence, a priori de-
gree of sparsity Cpr, initial thresholding parameter τ(0),
maximum number of iterations Nmax > 0, parameter
tolerances ε1, ε2 > 0 for the stopping rule, and control
stepsize β > 0.

2: f (0) = 0, k = 0, e = 1, and C(0) = 1
3: while k < Nmax and |e| ≥ ε1 or ε ≥ ε2 do
4: e = C(i) − Cpr
5: if sign(e(k+1)) 6= sign(e(k)) then
6: β = β(1− |e(k+1) − e(k)|)
7: τ(k+1) = max{0, τ(k) + βe}
8: m(k+1) = max{0,f (k) − γ∇g(f (k))− λSTw(k)}
9: w(k+1) = (I − Tτ(k)

)(Sm(k+1) + w(k))

10: f (k+1) = max{0,f (k)−γ∇g(f (k))−λSTw(k+1)}
11: C(k+1) = 1

N2 dim{Sf (k+1)|abs(Sf (k+1)) > 10−6}
12: ε = ‖f (k+1) − f (k)‖2/‖f (k+1)‖2
13: k := k + 1

A. Experimental data

A chest dataset is generated with Matlab (see Figure 2)
as an artifical phantom and it is used to produce artificial
data. The phantom size is 128 × 128. The artificial data is
simulated using noisy measurements.

Fig. 2. The artificial chest phantom used as a ground truth.

For the real data, X-ray projections of an axial slide a
ladybug (see Figure 3) that contains biological matters are
acquired. In detail, the dataset is available at here and the
geometry setup is documented in [20].

B. Numerical results

This section presents numerical results of X-ray tomo-
graphic image reconstructions using a controlled shearlets
domain sparsity as a proposed method. Two datasets: artifi-
cial data and real data as provided in VI-A are tested.

As discussed in Section IV, the proposed method imple-
ments the Algorithm 1. Matrix R contains the measurement
model of 5. Data m is obtained using measured data in VI-A.
The parameter τ = 1 and the parameter λ = 0.99 to ensure
the convergence. The reconstructions using the controlled
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Fig. 3. Th reconstructed image of the axial slice of ladybug using filtered
back-projection from complete projections.

TABLE I
COMPARISON OF RECONSTRUCTION METHODS FOR 30 PROJECTIONS

Methods Relative Error PSNR SSIM
Filtered back-projection 0.252 52.789 0.992

Proposed approach 0.208 54.45 0.996

shearlets domain sparsity method are reported in Figure 7(b)
and Figure 8(b).

Figure 4(a) presents the reconstructed image of chest
phantom by employing filtered back-projection method for
30 projections data and Figure 4(b) presents the reconstructed
image from the same data using the controlled shearlets
domain sparsity method. The average quality measures on
the reconstructed images are reported in Table I. Using the
proposed algorithm, to reconstruct the images, the computa-
tion requires 126 iterations and takes 45 seconds.

The reconstructed images of the axial slice of the la-
dybug using the filtered back-projection and the proposed
method using 30 projections are shown in Figure 7. Figure 8
shows the 15-projections reconstruction. The filtered back-
projection reconstructions from complete projections data are
presented as a ground truth for a qualitative analysis. The
reconstructed images of the axial slice of the ladybug using
the filtered back-projection are shown in Figure 7(a) and
Figure 8(a).

In this work, the fpr is the reconstructed image of the
axial slice of the ladybug using filtered back-projection using
complete projections, namely 360 projections.. The shearlets
sparsity levels as the iteration progresses are plotted in the
Figure 6 and Figure 9. According to 8, the sparsity level
Cpr equals to 60%. The stopping rule ε1 is set to be 10−2.
it is shown that the level of sparsity converges to the desired
sparsity level Cpr. The computational complexity of the
controlled shearlets domain sparsity algorithm is higher than
the filtered back-projection method. The computation time is
reported in Table II.

VII. DISCUSSION

This work presents a method for reconstructing computed
tomography images from under-sampled measurement data
through the application of an adaptive shearlets domain
sparsity algorithm. Our approach incorporates the use of
shearlets. We evaluate our proposed method using both

(a)

(b)
Fig. 4. (a) The reconstructed images of the chest phantom using filtered
back-projection and (b) controlled shearlets domain sparsity algorithm (b)
from 30 projections.

0 20 40 60 80 100 120 140

0

0.005

0.01

0.015

0.02

0.025

Fig. 5. Line profiles of Figure 2 (thin line) and Figure 4(b) (thick line)

TABLE II
COMPUTATION TIME (IN SECONDS)

Methods 30 projections 15 projections
FBP 1.4 0.17

Proposed approach 64 96
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Fig. 6. The nonzero shearlets coefficients of the reconstruction of the chest
phantom as the iteration progresses for 30 projections.

(a)

(b)
Fig. 7. (a) The reconstructed images of the axial slice of the ladybug
using filtered back-projection and (b) controlled shearlets domain sparsity
algorithm from 30 projections.

artificial chest data and real data as detailed in VI-A. The
projections are quite sparse, consisting of fifteen and thirty
projections. The mathematical model is framed as an `1-
minimization problem, employing a sparsifying shearlets
transform as `1-regularization in the penalty term. To solve
this, the parameter in the regularization term is selected
automatically.

The reconstructed images of the chest phantom using
filtered back-projection from 30 projections shows artifacts
in almost every region. In contrast, employing the proposed

(a)

(b)
Fig. 8. (a) The reconstructed images of the the axial slice of the ladybug
using filtered back-projection and (b) controlled shearlets domain sparsity
algorithm (b) from 15 projections.

(a)

20 40 60 80 100
0

0.5

1

(b)
Fig. 9. The nonzero shearlets coefficients of the reconstruction for the axial
slice of the ladybug as the iteration progresses using (a) 30 projections and
(b) 15 projections.
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method for chest reconstruction with the same number of
projections effectively recovers singularities, capturing edges
of the inner structures of the object as well as the background
of the object. The resulting reconstructed image is less
predominantly characterized by artifacts.

Image reconstructions of filtered back-projection are sig-
nificantly dominated by artifacts. Additionally, the lack of
a non-negativity constraint in the filtered back-projection
algorithm leads to poor representation of pixels with zero or
very low attenuation values. In contrast, the artifacts in the
image reconstructions of the proposed method are reduced.
A closer look indicates that the non-negativity constraint
improves the quality of the reconstructions. For instance, in
the filtered back-projection reconstruction, a thin, elongated
line in the lower chest area is covered by line artifacts,
primarily due to angular sub-sampling. However, with the
proposed method, this thin line is restored well.

A line profile of the reconstruction using the proposed
method using 15 projections is reported in Figure 5. It shows
that the profile follows the shape of the profile of the ground
truth image with a small difference in the intensity value.

In real data, the axial slice of the ladybug is reconstructed
using 15 and 30 projections. A greater presence of artifacts
is shown in the filtered back-projection reconstruction com-
pared to the controlled shearlets domain sparsity strategy.
Particularly, the reconstructions from the proposed method
capture finer details with fewer artifacts. Additionally, be-
cause the non-negativity penalty is carried out in the model,
the reconstruction image is enhanced. Dominant features of
the ladybug also accurately represented.

VIII. CONCLUSION

Reconstructed computed tomography images of the bio-
logical object is presented in this paper. The reconstruction
uses under-sampled measurement data through the appli-
cation of an adaptive shearlets domain sparsity algorithm.
The results indicate that images reconstructed from artificial
data using the proposed method exhibit better quality than
those generated by the filtered back-projection algorithm. We
evaluate image quality using metrics such as PSNR, SSIM,
and relative error.

Reconstructed images of the axial of the ladybug using the
controlled shearlets domain sparsity effectively captures the
details for the features of it by leveraging the information
of the desired sparsity level. Furthermore, this value could
be considered to obtain X-ray tomographic reconstructions
from various biological object. Importantly, the algorithm
and its procedures could be extended to a wide range of
other tomographic applications.
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