
 

  

Abstract—The carpooling queue means that the e-hailing can 

continue to match with another passenger when it serves the 

first matched passenger. If the matching is successful, two 

passengers will share the carpooling service, otherwise, the first 

passenger will enjoy the express taxi service. When the 

carpooling probability increases, the expected sojourn time of 

passengers reduces and the benefits of the e-hailing drivers can 

be significantly improved. Motivated by carpooling strategies in 

sharing platforms, this paper constructs the M/M/c+m queueing 

model of ride-sharing matching with variable matching rates. 

The steady-state equilibrium condition, the steady-state 

probability distribution, and the main performance indexes are 

derived by using the matrix geometric solution and iterative 

methods. Furthermore, the sensitivity of the expected queue 

length, the expected length of successfully matched customers, 

and the matching probability are illustrated through sufficient 

numerical experiments. The revenue functions are established 

from the view of the customers, the e-hailing drivers, and the 

e-hailing system, respectively, and the tripartite benefits are 

explicitly analyzed by setting different simulation parameters. 

Finally, the maximal benefits and the optimal arrival rates are 

obtained by using the seagull optimization algorithm. The 

research results can reveal the operation mechanism of the 

sharing platform and provide decisions and implications for 

customers and e-hailing drivers, which have theoretical and 

practical significance. 

Index Terms—M/M/c+m queue, matrix geometric solution, 

e-hailing, shared carpooling, variable matching rate. 

I. INTRODUCTION 

ueuing theory is a powerful mathematical tool to study 

the congestion problems in stochastic service systems, 

which has been widely applied in communication 

networks [1,2], reliability facilities [3,4], transportation 

systems [5,6], and so on. The performance structure of 

complex service systems can be evaluated and optimized by 

solving the statistical rules of the main performance indicators 

in the queueing model. There are many double-ended 

queueing models in practice, which means that when the 
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number of customers is greater than the number of servers, the 

customers form a one-end queue; Instead, the servers form a 

one-end queue. For example, taxi drivers can choose to 

unconstrained setup, and the passengers can wait for a taxi 

randomly as well. Based on the randomness of the queueing 

process, numerous scholars incorporated the Markov chain 

into the comprehensive urban transportation system. Wong et 

al. [7] established a mathematical model to describe the daily 

operation of taxis and analyzed the relationship between 

customers and taxis using the absorbing Markov chains. 

Considering the limit behaviors in the light-traffic and 

heavy-traffic scenarios, Liu et al. [8] established a priority 

polling system consisting of three M/M/1 queues. Wang and 

Yan [9] constructed a taxi-dispatching model for simulating 

the operation scenario of the taxi, and the numerical results 

can be used in station engineering and system management. 

Wang et al. [10] studied the optimal queueing strategy of 

airport taxis under different numbers of drive lanes. Based on 

the Markovian performance analysis methods, Ahmadi et al. 

[11] calculated the queueing model with impatient customers 

and processor sharing. 

Accomplishing the development of information technology 

and the popularization of smartphones, online car-hailing has 

gradually become the mainstream for passengers in recent 

times. In the online car-hailing platform, the system can 

centrally manage and control the number of e-hailing and acts 

as an intermediary for matching between customers and 

e-hailing drivers. The continuous improvement of the online 

car-hailing system means that the dynamics and operations of 

the taxi markets become more visible and competitive. Based 

on the vehicle trajectory data, Cai et al. [12] studied the 

differences in travel patterns between the taxis and the 

customers. Cui et al. [13] proposed a spatial point model for 

random vehicle locations and accurately described diverse 

spatial point patterns in different cities. Król and Król [14] 

established a simplified simulation model for the operation of 

the taxi system, and the optimal number of taxis was 

determined in daily operation. Ooi et al. [15] reviewed the 

results from the perspective of passengers and analyzed the 

operation characteristics and current status of e-hailing. 

In the era of the sharing economy, the rapid development of 

online car-hailing has caused a considerable impact on the 

traditional taxi industry. There has been an upsurge of interest 

in the operation mechanism of online car-hailing, and how to 

balance the tripartite game among passengers, drivers, and 

platforms has received significant attention. Qian et al. [16] 

investigated the incentive strategy of taxi operations and 

analyzed the system benefits when different incentive levels 

were applied to customers and drivers. Braverman et al. [17] 

considered a closed queueing network model with a shared 

system and studied an empty-car routing strategy to optimize 

the utility. Considering the dynamic pricing mechanism, Wu 
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et al. [18] conducted the pricing and revenue distribution of 

the e-hailing system, and the maximal benefits can provide the 

references for the regulation and decision-making of the 

e-hailing market. In an on-demand mobile service platform, 

Sayarshad and Chow [19], Zhang et al. [20], and Xiao and 

Shen [21] applied the queueing theory for urban 

transportation to reduce operation costs. Moreover, Wang 

and Liu [22] considered a dynamic taxi control strategy and 

discussed the relationship between the individual equilibrium 

and socially optimal strategies under the different information 

levels. Recently, Zhang et al. [23] proposed an innovative 

modeling structure for the competitive taxi market and 

constructed a queueing model between the e-hailing and 

urban systems, which feeds back the performance of the road 

network to the e-hailing platforms. Based on the game group 

theory, Nguyen and Tuan [24] analyzed the joining 

probabilities of the taxi queueing system in unobservable 

cases. By constructing a complex queuing system, the 

reasonable configuration of the e-hailing resources and the 

optimization of system efficiency can be achieved by 

exploring the operation mechanism of the online car-hailing 

platform. 

In a fixed area, the online car-hailing system randomly 

assigns e-hailing riders to customers. If a customer chooses 

the carpooling order, the driver will serve this customer after 

successful matching, and the driver may match another 

customer during the service. If the carpooling is successful, 

two passengers will share the carpooling price. Otherwise, the 

first rider will be charged for the express taxi at the end of the 

service. Based on the above practical background, this paper 

establishes a double-ended queueing model with the variable 

matching strategy, which reflects the carpooling process of 

shared systems realistically. The main performance measures 

of the stochastic service system are derived from the 

quasi-birth-death process and matrix geometric solution 

method, and the comparisons of different system parameters 

on the performance indicators are illustrated by numerical 

examples. Besides, this paper constructs utility functions from 

the perspectives of the customers, e-hailing drivers, and 

e-hailing systems respectively, and the graphical findings can 

be used to evaluate the operation and management of online 

car-hailing systems. 

The remainder of this paper is described as follows. Section 

2 constructs the shared carpooling system with the variable 

matching mechanism. Section 3 explicitly describes the 

M/M/c+m queueing model. Section 4 is devoted to the 

steady-state analysis of the system and obtains the main 

performance indicators. Section 5 illustrates the effects of the 

diverse system parameters on the expected queue length and 

the benefits through sufficient numerical comparisons. Finally, 

in Section 6, we briefly conclude the paper. 

II. MODEL ASSUMPTION 

In this paper, we introduce the shared matching mechanism 

and variable matching probability in the M/M/c queueing 

model. When the servers stay idle, they can serve the 

customers who joined the system at any time. Meanwhile, the 

server can still match new customers while serving the first 

customer. If the match is successful, the first customer will 

share the service with the matched customer. If there is no 

matched customer at the end of the first service, the sharing 

will be considered failed and the first service will be 

performed as the express taxi service mechanism. The 

carpooling successfully probability can be increased when the 

expected queue length of customers increases. The variable 

matching rate based on the shared carpooling queueing model 

is described as follows: 

(1) Customers’ interarrival times follow an exponential 

distribution with parameter  , and the service rule is 

first-come first-served. 

(2) Assume that the server (e-hailing) serves a maximum of 

two customers at the same time. When the idle server accepts 

a shared carpooling order, the server can still match another 

customer while serving the first customer. If the second 

customer is not successfully matched before the first 

customer’s service ends, the server will be idle. If the 

matching is successful, the server will serve two customers 

and no more orders will be accepted. Considering that two 

carpooling customers will have different drop-off locations, 

after serving one of them, the server will continue to serve the 

other and will not match the other customers during the 

service. When the service is finished, the server will serve 

customers again if customers are waiting in line. 

(3) Assume that the service time follows the exponential 

distribution with parameter 1  when the server is serving one 

customer, and follows the exponential distribution with 

parameter 2 2 1( )   when the server is sharing the 

service between two customers.  

(4) Assume states 1 and 2 indicate that the server has 

successfully matched one and two customers in a carpooling 

order, respectively. Assume state 3 represents that the server 

has completed the service of one of the two customers who 

successfully carpooled, but the server cannot match other 

customers until the residual customer completes the service. 

In a fixed area, assuming that there are c servers in the system, 

which means that the system has at most c servers in state 1 or 

2 at the same time. In addition, assume that the system has at 

most m servers in state 3 at the same time. 

(5) Carpooling matching is an independent process that 

follows an exponential distribution. The success rate of 

carpooling matching n  varies dynamically depending on the 

number of waiting customers n. Assume that  n n  = , 

where 

1

1

1

1

1, 0

1
1 ln ln , .

2

1.5,

n

n n

nN
n n N

n n

n N



 


 
= +    

 
 

 

(6) If a customer arrives at the system without idle servers 

or carpooling marching servers with matching capability, the 

customer will join the queue with probability b  or leave the 

system with probability 1 b− , that is, the efficient arrival rate 

is b  in this case. The customers may be impatient and leave 

the system when they wait for a long time in the queue, then 

the departure time follows an exponential distribution with 

parameter n , which varies dynamically depending on the 

number of waiting customers n , assume that  

, 1 ,

, .
n

n n N

N n N






 
= 
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(7) When there are queues in the system, the idle servers 

will join the system, and the joining process follows an 

exponential distribution with parameter q . 

III. MODEL DESCRIPTION 

Based on the above assumptions, let ( )N t  be the number 

of customers waiting in the queue at time t , let ( )K t , ( )J t  

and ( )S t  be the number of servers in state 1, 2 and 3 at time t , 

respectively. The four-dimensional Markov chain {( ( ),K t  

( ), ( ), ( )), 0}J t S t N t t   has state space {( , , , ) | 0k j s n k =   

,0 , 0}j c s m n+     . According to the lexicographical 

order of states, the infinitesimal generator Q  of the 

quasi-birth-death (QBD) process has the following form 

0 0

1 1 0

2 2 0

0

0

.

N N

N N

 
 
 
 

=  
 
 
 
 

A C

B A C

B A C

Q

B A C

B A C

 

Its submatrices are as follows: 

⚫ 0A  is a square matrix of order ( 1)( 2) / 2m c c+ + , and 

0 0

0 0
0 0 0

1 1 1
0 0 0

2 2 2
0

0 0 0

1 1 1
0 0

m m m

m m

− − −

 
 
 
 =
 
 
 
  

Y X

Z Y X

Z Y X
A

Z Y X

Z Y

， 

where 0 0 0(0 1), (0 ), (1 )s s ss m s m s m  −    X Y Z  are 

square matrices of order ( 1)( 2) / 2c c+ + . 

(1) 0 (0 )s s m Y  are partitioned as 

0

0, 0

0

1 1, 1

0
0 2 2, 2

0

1 1, 1

0

,

,

s

s

s
s

c c s c

c c s

D

− − −

 
 
 
 

=  
 
 
 
 

S

F D S

F D S
Y

F D S

F D

 

a) 0

, (0 )k s k c D  are square matrices of order ( 1)k + , and 

0

0, 1( ),sD b s  = − + +  

0

0, 0

0

1, 1

0

,

0

1, 1

0

,

,1

s

s

k s

k s k

k s

h l

h l

k c

h l

h

− −

 
 
 
 =  
 
 
 
 

D ， 

when 1 1,0 1k c s m  −   − ,  

1 2 10

,

1 2 1

[ ( ) ( ) ], 0 1,

[ ( ) ( ) ], ,
i s

k i i k i s i k
h

b k i i k i s i k

    

     

− + − + + − +   −
= 

− + + − + + − + =

  

( ) , 0 1,il k i i k= −   −  

when 1 1,k c s m  − = ,  

1 10

,

1 1

[ ( ) ( ) ], 0 1,

[ ( ) ( ) ], ,
i s

k i k i s i k
h

b k i k i s i k

   

    

− + − + − +   −
= 

− + + − + − + =

 

( ) , 0 1,il k i i k= −   −  

when ,0 1k c s m=   − ,  

1 2 1

,0

1 2 1

[( ) ( ) ], 0 1,

[ ( ) ( ) ], ,
i

k i i k i s i k
h

b k i i k i s i k

   

    

− − + + − +   −
= 

− + − + + − + =

( ) , 0 1,il k i i k= −   −  

when ,k c s m= = ,  

1 1

,0

1 1

[( ) ( ) ], 0 1,

[ ( ) ( ) ], ,
i

k i k i s i k
h

b k i k i s i k

  

   

− − + − +   −

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( ) , 0 1.il k i i k= −   −  

b) (0 )k k c S  are -by-( 1)k k +  matrices, and 

     0 1[ 0],   diag( , ,..., ), , 1 1.k k k c    = =   −0S S  

c) (1 )k k c F  are ( 1)-by-k k+  matrices, and 

   
1 1 11

1

1

diag( , ( 1) ,..., )
,   , 2 1

0 k

k

k k
k c

  



−  
= =   −     0

F F . 

(2) 0 (0 )s s m Z  are partitioned as 

0

0,

0
0 1,

0

,

,

s

s
s

c s

 
 
 =
 
 
 

z

z
Z

z

 

where 0

, 1 1 1diag( , ,..., ), 0i s s s s i c  =  z  are square 

matrices of order ( 1)i + . 

(3)
0 (0 1)s s m  −X  are partitioned as 

1

0 2

1

,s

c

c

−

 
 
 
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 
 
 
 

L

L
X

L

L

0

0

0

0

0

 

 where (1 )i i c L  are ( 1)-by-i i+  matrices, and 

2

1 2
2

2

0

0
0

,   = , 2 .2 0

0

i i c

i








 
 
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 
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L L  

⚫ 0C  is a square matrix of order ( 1)( 2) / 2m c c+ + , and 

0,0

0,0
0

0,0

,

 
 =
 
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C
CC
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where 

0,0

0,1

0,0 0,2

0,

,

c

 
 

=  
 
  

c
c

C c

c

 

0, (1 )i i c c  are square matrices of order ( 1)i + , and 

0, diag(0,...,0, ,0,...,0).i b=c  
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⚫ (1 )n n N A  are square matrices of order ( 1)(m c c+ +  

2) / 2 , and 

0

0 0
0 0

1 1 1
0 0

2 2 2

0 0

1 1 1
0

,

n

n

n

n

n

m m m
n

m m

− − −

 
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 
 

=
 
 
 
 
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Y X

Z Y X
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where (0 )n

s s m Y  are square matrices of order 

( 1)( 2) / 2,m c c+ +  
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1 1, 1
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1 1, 1

,

,

n

s

n

s

n
n s

s

n
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n
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 

S

F D S

F D S
Y

F D S

F D

 

and , (0 )n

k s k c D are ( 1) thk + -order square matrices 

0, 1

0, 0

1, 1

,

1, 1

,

( ),   

,1

n

s

n

s

n

s
n

k s
n

k s k

n
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D b n q s

h l

h l
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h

   
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 
 
 
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  
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1 2 1

,

1 2 1

[ ( ) 2( ) ], 0 1,

[ ( ) ] ,

n
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k i i k i s q i k
h
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    

     
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,
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( ) , 0 1.il k i i k= −   −  

⚫ (1 )n n N B are square matrices of order ( 1)(m c c+ + , 

2) / 2 , and 

n

n
n

n

 
 =
 
 

G
GB

G

， 

where nG  is square matrix of order ( 1)( 2) / 2c c+ + , and 

0, 0

1, 1

1, 1

,

.

n

n

n

c n c
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r
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 
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(1) , (0 )k n k c r  are ( 1)k + -order square matrices 

0, ,

0

0 ( 1)

,   , 1 .

0

n

n

n k n

n

k

k

r n k c

n











 
 −
 
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(2) (0 1)k k c  −v  are ( 1)-by-( 2)k k+ +  matrices 

0 ( 1) 1[ 0],   diag( , ,..., ), , 1 1.k kq q q q k c+ 
 = =   − 0v v  

IV. STEADY-STATE ANALYSIS 

Considering that the Markov process {( ( ), ( ), ( ),K t S t J t  

( )), 0}N t t  is a QBD process, the steady-state distribution of 

the system exists when the Markov process is positive 

recurrent. 

The sufficient and necessary condition that the Markov 

process is positive recurrent is that the matrix quadratic 

equation 
2

0N N+ + =R B RA C 0                             (1) 

has a minimal non-negative solution R , and the spectral 

radius ( ) 1sp R . The ( 1)( 1)( 2) / 2m N c c+ + + -order square 

matrix  

0 0

1 1 0

2 2 0

1 1 0

[ ]

N N

N N N

B

− −

 
 
 
 =
 
 
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A C

B A C

B A C
R

B A C

B RB A

 

has a left zero vector x , that is, [ ]B =x R 0  has a positive 

solution. 

The steady state distribution is denoted by  

, , lim { ( ) , ( ) , ( ) , ( ) },

                                                       ( , , , ) ,

n

k j s
t

P K t k J t j S t s N t n

k j s n


→

= = = = =


 

the steady-state probability vector is 

0 1, , , , 0,n n n

n m n =  Π π π π  

0,0, 1,0, 0,1, 2,0, 1,1, 0,2,

,0, 1,1, 1, 1, 0, ,

, , , , , ,

       , , , , , , 0 .

n n n n n n n

s s s s s s s

n n n n

c s c s c s c s s m

     

   − −

= 

  

π
 

Hereafter, e  is an appropriate dimension column vector 

with all element ones, I  is an appropriate order unit matrix. 

Based on the matrix geometric solution method in [25], we get 

 0 1 2( , , , , ) [ ] ,N B =Π Π Π Π R 0                        (2) 

 , ,n c

n N n c−= Π Π R                                (3) 

 
1

1

0

( ) 1.
N

n N

n

−
−

=

+ − =Π e Π I R e                     (4) 
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In order to derive the steady-state distribution and obtain 

the performance indices of the system, the expression of the 

matrix R  needs to be solved. However, the analytical 

solution of the matrix R  cannot be directly accomplished by 

ordinary mathematical methods because the equation (1) is 

arduous to be solved. The iterative method is used to 

approximate R  by using [26], and the specific iterative 

procedure is as follows: 

Step 1 Determine system parameters 1 1 2, , , , , , ,c m n N     

, , ,q b  , and the error precision 10

1 10 −= . 

Step 2 Input 0 0, , NC B A . Define ( ) ,n =R R  2( )= − +R C R B  

1, ( 1)N n− + =A R R , and perform iterations. 

Step 3 If 1|| ( 1) ( )|| , ( 1),n n n+ −  = +R R R R  the iteration 

ends, else go to step 2. 

After solving the matrix R  by the above algorithm, the 

following recursive equations can be derived from equations 

(2)-(4). 
1

0 1 1 0 1 1= ( ) ,−− =Π Π B A Π ω                            (5) 

1

1 1 0 1 1[ ( )] ,  1 1,n n n n n n n n N−

+ + + += − + =   −Π Π B ω C A Π ω  (6)                

,N N N N N+ + = 0Π ω C Π A Π RB                         (7) 

 1

0 1

( ) 1.
N N

n N i
i n

n n


−

=
= =

 
=  + − = 

 
 Π e Π ω I R e                   (8) 

Then the steady-state probability vector 
0 1 2( , , , ,=Π Π Π Π  

, )NΠ  can be obtained by (5)-(8). 

The performance indices of the system can be further 

obtained as follows. 

(1) The expected queue length of customers waiting in the 

queue is 
1

1

1

1 2

2

+

( 1) ( ) ( ) ,

N
j N

q j N

j j N

N N

N j
i j

j

L j j

j N

− 
− +

= =

− −

=
=

=

 
= −  + − + − 

 

 



Π e Π R e

Π ω I R R I R e

 

(2) The expected number of servers successfully matching 

one customer is 

1

1 1

0 1

( ) ( ) ,
N N

j N i
i n

j n

E K


−

=
= =

 
= =  + − 

 
 Π t Π ω I R t  

where  ( )T

1 1 11 11 11, , ,=t t t t t  is ( 1)( 2) / 2-m c c+ + dimensional 

column vector, and ( )T

11 11 [0,1,0,2,1,0, , , 1, ,1,0]c c= −t t  

is ( 1)( 2) / 2-c c+ + dimensional column vector. 

(3) The expected number of servers successfully carpooling 

matching two customers is 

1

2 2

0 1

( ) ( ) ,
N N

j N i
i n

j n

E D


−

=
= =

 
= =  + − 

 
 Π t Π ω I R t  

where  ( )T

2 2 22 22 22, , ,=t t t t t  is ( 1)( 2) / 2-m c c+ + dimensional 

column vector, and ( )T

22 22 [0,0,1,0,1,2, ,0,1,2, , , 1, ]c c= −t t  

is ( 1)( 2) / 2-c c+ + dimensional row vector. 

(4) The expected number of servers that have finished serving 

one of two carpooling customers is 

1

3 3

0 1

( ) ( ) ,
N N

j N i
i n

j n

E S


−

=
= =

 
= =  + − 

 
 Π t Π ω I R t  

where  
T

3 03 13 3 3, , , , ,0 .m s s s m= =  t t t t t e  

(5) The probability of the successfully carpooling is 

( )
.

( ) ( ) ( )
s

E D
P

E D E K E S
=

+ +
 

V. NUMERICAL ANALYSIS 

In the actual operation of the carpooling system, the 

order commission percentage can greatly affect the variation 

of the system parameters. Considering that the high demand 

for travel during holidays or peak commuting periods, the 

customers prefer to carpool in higher arrival rate to reduce the 

waiting time and commuting costs. This section first analyzes 

the impacts of different parameters on the system 

performance indicators through numerical examples, then 

establishes the functions to analyze the effects of various 

parameters on the benefits of customers, e-hailing taxis, and 

the system, respectively. 

A. Sensitivity analysis 

In order to intuitively discuss the influence of system 

parameters on the performance indexes, assuming that 

3, 3, 10, 0.5c s N b= = = =  and 1 5n =  in this section.    

  Assuming that 1 20.3, 0.5, 0.3  = = = , Figure 1 

indicates that qL  increases with the arrival rate   when n  

is constant. If   is given, qL  also increases as n  increases. 

This is because the carpooling matching success rate is low 

and the probability of successful carpooling is small when n  

is relatively small. If there are customers waiting in the queue, 

the new servers will join the system and accept the service 

directly. When the carpooling matching success rate is larger, 

more servers can serve two customers at the same time, which 

can prevent some servers from joining the system. 

Furthermore, the carpooling service rate 2  is slower than 

the rate 1 , which leads to the increase of qL . However, the 

increase of qL  has slight fluctuations with parameter n . 

This is because when n  reaches a certain level, the 

probability of successful carpooling is large enough, and the 

growth of the successful probability and the expected queue 

length qL  grow slowly. 

 

Fig. 1. qL  vs.   and n  

Assuming that 1 20.5, 0.3, 0.5, 0.3   = = = = , Figure 2 

reflects the relation between ( ), ( ), ( )E K E D E S  with  . 
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With the increasing of  , ( ), ( )E K E D  and ( )E S  all 

increase in different degrees. This is because when a new 

server joins the system, the probability that the server is in 

state 2 is increasing due to the increase of  . Besides, the 

expected number of ( )E S  increases with the arrival rate  . 

This is because the server state entering the system can only 

be transferred from state 1 to state 2, and state 2 to state 3. 

Therefore, ( )E S  will continue to increase until it is greater 

than ( )E D  when the server states are continuous. 

    

Fig. 2.  ( ), ( ), ( )E K E D E S  vs.   

Due to the actual background of online car-hailing, 

customers may choose to leave the system at any time and 

choose other modes of transportation. In the following, we 

discuss the impact of the arrival rate   and the departure rate 

n  on the system performance. 

Figure 3 demonstrates that qL  decreases as n  

increases, and the decrement of qL  increases as   increases. 

This indicates that more customers join the system when   

increases, and qL  increases accordingly, which makes more 

customers choose to leave the system. In this case, the system 

should take some incentives to make the idle servers join the 

system. When the service rates 1  and 2  increase, the 

expected sojourn time of customers is reduced. Therefore, the 

system may consider its own benefits, and some incentives 

should be taken to make the idle server outside the system. 

Besides, the expected waiting time of customers can be 

reduced when improving the service rate. The system can also 

take discounts and other strategies for orders when customers 

wait longer, which make customers more willing to wait for 

service within the system. 

 

Fig. 3. qL  vs. n  and   

Figure 4 means that ( ) ( )E K E D，  and ( )E S  decrease 

as n  increases, but the decreasing rate of ( )E S  is 

significantly larger than the ( )E D . The reason is that the 

service rate of the servers in state 3 is larger than the servers in 

state 2, and the server in state 3 will serve the customers faster. 

Therefore, when there are more customers in the system, the 

system can increase the carpooling matching probability n  

to reduce the number of reneging customers. When there are 

fewer customers in the system, the system can decrease the 

joining rate q  of the servers to reduce the operation costs and 

increase the overall profits. 

 

Fig. 4. ( ), ( ), ( )E K E D E S  vs. n  

B. Benefit analysis 

In the analysis of customer benefit, the customers are 

interested in the price factors and waiting costs. Customers 

will choose the optimal way to travel by considering their time 

costs and price preferences. There is a certain difference 

between the price of an express taxi service and a carpooling 

service. If the carpooling benefit is significantly smaller than 

the express taxi benefit, it will affect the enthusiasm of the 

e-hailing to join the carpooling system, and the benefits of the 

system may be reduced. Therefore, the system can make 

reasonable pricing standards, and dynamically adjust the 

commission ratio of the e-hailing. 

Customer benefit analysis 

Assume that the customer benefit function 

     1 2

1 2 00 01

1 2 1

1
(1 )c s sR C WC C P C P

 

  

 +
= − − + − 

 
，        (9) 

where 00C  is the price of the carpooling service, 01C  is the 

price of the express taxi service, 1C  is the reward of the 

customer received after service, and 2C  is the expected 

waiting cost of the customer,W is the expected waiting time 

of the customer. 

Assuming that 00 01 1 21.5, 4, 10, 4, 3,C C C C c= = = = =  

13, 10, 0.5, 5s N b n= = = = , the effects of the arrival rate  , 

carpooling matching success rate n , service rates 1 2,  , 

and the joining rate q  on the customer’s benefit cR  are given 

in Figures 5 and 6. When 10.3, 0.5 = =  and 2 0.3 = , 

Figure 5 shows the relationship of cR  with q  and  , and the 

benefit cR  decreases as   increases. When the probability 

q  is larger, the decreasing rate of cR  decreases with the 

arrival rate   increases. The arrival rate   increases can 
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extend the waiting time of customers, but the probability q  

can attract more servers to join the system faster and reduce 

the overall sojourn time customers.  

Assuming that 1 23, 0.3, 0.5, 0.3,q   = = = =  Figure 

6 indicates that cR  keeps increasing with the increasing of n  

when 2 = , but the variation is slight. The benefit cR  

decreases with the increasing of n  when   becomes larger, 

but the decreasing rate of cR  changes sharply. This is because 

the expected waiting time of customers is lower when   is 

small, then the corresponding waiting cost is lower. Therefore, 

if the success rate of carpool matching n  increases, the 

probability of carpooling increases and the traffic cost of the 

customer will be reduced, then cR  will keep increasing. 

However, the expected waiting time of customers will become 

longer when   is larger, and the service time will be longer 

when customers choose carpooling services. Then the time 

cost of customers will continue to increase and the benefit cR  

keeps decreasing. Besides, the increasing of n  can reduce 

the traffic cost of customers and lower the decreasing rate of 

cR . Therefore, when   is relatively small, the customers 

prefer carpooling services. When   is relatively large, if the 

increment of the waiting cost is greater than the price 

discounts resulting from carpooling, the customers may 

choose the express taxi service to reduce their waiting cost 

and improve the individual benefits. 

 

Fig. 5. cR  vs.   and q  

 

Fig. 6. cR  vs. n  and   

E-hailing driver benefit analysis 

If an e-hailing accepts a carpooling order, the success of 

carpool matching will affect the benefits of drivers. If there is 

a significant difference in the benefits of these two types of 

orders, it will greatly affect the operation of the online 

car-hailing system. Therefore, it is significant to balance the 

benefits between the two types of orders. 

In the e-hailing queueing system with the success rate n  

of carpool matching, the expected profit dR  per unit time of 

the server (driver) is defined by  

1

3 4 5 4

1 1 1 1 2

1 1 1
,n

d

n n

R C C C C


      

    
= − + − +    

+ +      

    (10) 

where 3C  is the server’s benefit when the carpooling is 

unsuccessful, 4C  is the cost per unit time of the server in state 

1, 5C  is the server’s benefit when the carpooling is 

successful. 

Theorem 5.1. dR  is a monotone function of n . 

Proof. The first-order derivative of the function dR  with 

respect to n  is given by 

1

5 4 32

21

d 1

d ( )n n

R
C C C



  

 
= − − 

+  
. 

dR  is a monotonically increasing (decreasing) function if 

5 4 2 3/ 0 ( 0)C C C− −   . 

In the following, we discuss how to adjust the system 

parameter n  to balance the benefits of two types of orders 

under different situations. 

If the order profit of successful carpooling is 

significantly greater (less) than that of unsuccessful 

carpooling in the online car-hailing system, then 

Case1 If 5 4 2 3/ 0C C C− −  , the system should reduce 

(increase) the success rate n  of carpooling matching, and 

reduce (increase) the carpooling order benefit of e-hailing taxi 

drivers. 

Case2 If 5 4 2 3/ 0C C C− −  , the system should increase 

(reduce) the success rate n  of carpooling matching and 

reduce (increase) the carpooling order benefit of e-hailing taxi 

drivers. 

System benefit analysis 

The benefits of the e-hailing system are obtained by 

taking a percentage of the order price, and the system can set 

different commission percentages for different types of orders 

to adjust the choices of customers and drivers.  

Assume that the expected benefit function per unit time 

of the online car-hailing system is 

6 7 8( ) ( ) ( ),sR C E K C E D C E S= + +                   (11) 

where 6 7 8, ,C C C  respectively represents the benefit per unit 

time of the server in state 1, 2 or 3. 

Assuming that 6 7 810, 14, 8, 3, 3,C C C q c s= = = = = =  

3, 10, 0.5N b= = , the effects of arrival rate  , carpooling 

matching success rate n , service rate 1 2,   and server 

joining rate q  on the expected system benefit per unit time 

sR  are demonstrates in Figures 7 and 8, respectively. 

Assuming that 10.3, 0.5 = = and 2 0.3 = , Figure 7 

indicates that sR  increases as   increases, that is, the more 

customers, the greater the system profit. Especially, when 

1n = , sR  increases slowly with the increase of the arrival 

rate  . This is because if the success rate n  of carpooling 

matching is large, more customers will choose to carpool, and 

the lower overall price of carpooling orders will have a certain 
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impact on the system profits. Therefore, the platform will 

consider reducing the dispatch rate of carpooling orders if 

there is no excessive customer waiting in the system, and the 

success rate n  of carpool matching decreases accordingly. 

When the number of customers gradually increases, the 

platform may increase the dispatch rate of carpooling orders 

to reduce customer losses, and the success rate of carpool 

matching n  continuously increases to ensure the optimal 

operation of the system. 

Assuming that 0.3, 0.5 = = and 2 =  0.3, Figure 8 

shows that sR  decreases slowly as 1  increases when 3 =  

and 5 = . When the arrival rate is 7 = , sR  increases 

slowly as 1  increases. This is because when   is relatively 

small, the increasing of 1  enables the server to serve new 

customers faster. However, the benefits of the system are 

lower due to the lower price of carpooling. Consequently, the 

increase of 1  may have a negative impact on the system 

benefit. Therefore, the system should reasonably adjust the 

express taxi service rate 1  according to the expected queue 

length to maximize the system benefit. 

 
Fig. 7. sR  vs.   and n  

 
Fig. 8. sR  vs.   and 1  

Benefit strategy based on seagull optimization algorithm 

This section mainly uses the seagull optimization 

algorithm to compare and analyze the maximal benefit of 

customers and the servers. 

The Seagull Optimization Algorithm (SOA) was 

proposed by Gaurav Dhiman and Vijay Kumar in [27]. The 

basic criterion is to perform multiple iterations to find the 

optimal value by simulating the migration and attack behavior 

of seagulls in nature. According to the change of seasons, 

seagulls always migrate to the most suitable location for 

survival, and the migration behavior affects the global 

exploration ability of SOA algorithm. When attacking prey, 

the seagulls shows a spiral motion pattern, and the attack 

behavior affects the local development ability of the SOA 

algorithm. As a swarm intelligence optimization algorithm, 

the simple algorithm structure of the seagull algorithm can 

bring lower algorithm complexity and efficient computing 

power. The seagull optimization algorithm is used to optimize 

the shared carpooling matching queueing model based on 

variable matching rate, which can ensure the maximization of 

benefits in the carpooling queuing system. The algorithm 

parameters are set as follows: the population size is 60, and 

the threshold boundary is 10. In order to balance the quality 

and efficiency of the solution, the accuracy of 1010 −=  is 

selected as the termination condition of the algorithm. 

According to sections 5.2.1 and 5.2.2, the optimal arrival 

rate *

c  that maximizes customer’s benefit *

cR  and the 

optimal arrival rate *

d  that maximizes server’s benefit *

dR  

are obtained respectively. 

* 1 2

1 2 00 01
0 1 2 1

1
arg max (1 )c s sC WC C P C P



 


  

  + 
= − − + −  

   
， 

* 1

3 4 5 4
0 1 1 1 1 2

1 1 1
arg max .n

d

n n

C C C C





      

      
= − + − +     

+ +        

    The sensitivity analysis of the maximal benefit and the 

optimal arrival rate of customers under different carpool 

matching success rates is shown in Table 1. The maximal 

benefit of customers is gradually reduced with the increase of 

the success rate of carpool matching. This is because when the 

success rate of carpooling matching increases, the expected 

sojourn time of customers and the service time when 

customers choose carpooling service will increase, and the 

benefit of customers will continue to decrease, but the 

downward trend is weak. In addition, with the increase of the 

success rate of carpooling matching, customers may choose to 

reduce the individual arrival rates in order to maximize their 

own benefits. When the threshold boundary of the seagull 

optimization algorithm is 10, the maximal benefit of 

customers and the optimal arrival rate are obtained as 
* 1.9011cR =  and * 10c =  when the carpool matching success 

rate is 0.5n = . 

Table 1 The maximal benefit of customers *

cR  and the optimal 

arrival rate *

c  under different carpool matching success rates 

n  0.5 1.0 1.5 2.0 2.5 

*

cR  1.9011 1.3653 1.1369 1.0161 0.9423 

*

c  10 8.4077 7.2484 6.7569 6.4874 

Table 2 shows the sensitivity analysis of the maximal 

benefit of servers and the optimal arrival rate of customers 

under different carpool matching success rates. The maximal 

benefit of online car-hailing is gradually reduced with the 

increase of the success rate of carpooling matching, which is 

consistent with the results of Table 1. However, with the 

increase of the success rate of carpooling matching, online 

car-hailing will choose to increase the individual arrival rate 

of customers in order to maximize their own benefits. When 

the threshold boundary of the seagull optimization algorithm 

is 10, the maximal benefit of servers is * 6.3141dR =  when the 

carpool matching success rate is 0.5n = , and the optimal 
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customer arrival rate is * 8.4650d =  when the carpool 

matching success rate is 2.5n = . 

Table 2 The maximal benefit of servers *

dR  and the optimal 

arrival rate *

d  under different carpool matching success rates 

n  0.5 1.0 1.5 2.0 2.5 

*

dR  6.3141 5.2315 4.6196 4.2262 3.9520 

*

d  4.1627 5.9416 5.4980 7.3400 8.4650 

Based on the numerical analysis and the main research 

content of this paper, the research results and corresponding 

suggestions are summarized as follows: 

(1). In order to comply with the development of the sharing 

economy, carpooling has become one of the main ways of 

fast-paced travel in medium and large cities. From the 

perspective of customers, the original intention of customers 

to choose carpooling is to save time and get more benefits. 

However, the results show that the greater the success rate of 

carpool matching, the lower the service rate of customers, 

resulting in longer waiting time and reduced benefits for 

customers. From the point of view of the carpooling system, 

the higher the success rate of carpooling, the higher the 

system benefits. Therefore, in order to encourage customers 

to choose carpooling, the platform should offer carpooling 

coupons and corresponding discounts for customers. 

(2). The greater the arrival rate of customers, the greater the 

waiting time of customers. From the perspective of the 

non-cooperative game, the arrival rate of the customer group 

will reduce its own benefit. As a result, customers often 

choose to carpool in areas with less passenger traffic. On the 

contrary, from the perspective of social benefit, the arrival 

rate of customers will increase the individual revenue of the 

server (driver). This creates a contradiction between the 

distribution of servers (drivers) and the concentration of 

customers. Significantly improving the work efficiency of the 

servers (drivers) can effectively alleviate this contradiction.  

(3). With the increase in service rates, the overall revenue 

of the system shows a decreasing trend, but the decrease rate 

is slow. This shows that although improving the service rate 

may cause a certain loss in system costs, it can also effectively 

increase the willingness of customers to join the queue, which 

can fully offset the cost pressure. Considering the benefits of 

customers comprehensively, it is suggested that the system 

managers appropriately increase the service rate of the servers 

(drivers), which can be exchanged for a larger system benefit 

with a smaller cost loss to a certain extent. 

(4). The numerical results show that the greater the 

matching rate, the smaller the benefits for customers and 

servers (drivers), but the greater the benefits for the 

ridesharing system. In order to obtain higher benefits, servers 

(drivers) usually choose places with higher matching rates and 

arrival rates. This will make remote areas no one to take 

orders, resulting in an imbalance in vehicle resources. 

Therefore, it is suggested that the platform increase some 

subsidy measures for servers (drivers) in places with low 

passenger flow, so that the shared carpooling resources are 

evenly distributed. 

VI. CONCLUSIONS 

This paper focuses on the online car-hailing queueing 

model with variable carpooling matching and shared 

matching strategies. Different from the classical double-end 

queueing model, the server in the e-hailing carpooling system 

can also match with the second customer when the first 

customer is served. When the matching is successful, the cost 

and the expected sojourn time of customers are decreased, 

and the benefit of the platform can increase accordingly. The 

main performance indexes of the system are investigated 

using the matrix geometric solution and iterative methods. 

Furthermore, this paper establishes the corresponding benefit 

functions from different perspectives, and the effects of 

various parameters on profits are explicitly illustrated by 

numerical comparisons. The research results provide a 

performance analysis method and useful insights for the 

simulation and control of shared car-hailing systems. Further 

extension of this work may explore the spatial heterogeneity 

and information diversity in complex carpooling scenarios. 

The circular carpooling in shared systems for multi-arrivals 

could be constructed and analyzed reasonably based on the 

varying incentive levels, which is also an intriguing and 

challenging direction. 
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