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Abstract—This paper presents the concept of pseudo-Ehoops,
which serves as an extension of both pseudo-hoop algebras
and Ehoops. Some essential properties of pseudo-Ehoops are
obtained. In addition, we define ideals, congruences and filters
on pseudo-Ehoops. The relations between them are investigat-
ed. We find a one-to-one correspondence between ideals and
congruences on a pseudo-Ehoop A with the pDN condition.
Moreover, our results indicate that every proper pseudo-Ehoop
contains at least one maximal filter and each maximal ideal is
prime. Prime ideal theorem is also given. Furthermore, using
prime state filters, we establish a topology.

Index Terms—pseudo-Ehoop, pseudo-hoop, ideal, filter, con-
gruence, state.

I. INTRODUCTION

HOOPS are naturally ordered commutative residuated
integral monoids, first introduced in [15], [16] and

further defined in an unpublished paper [14] by Büchi and
Owens. The concept of hoops was introduced to explore
the properties of certain algebraic systems that resemble
groups but have distinct characteristics. Hoops, as defined by
their associativity and an idempotent operation, allow for a
deeper exploration of ordered structures. Researchers sought
to expand this notion by investigating pseudo-hoops, which
relax some of the assumptions inherent in traditional hoops,
leading to a more versatile framework.

Pseudo-hoop algebras, as non-commutative generalization-
s of hoops, were proposed by Georgescu, Leutean and
Preoteasa in [1]. Pseudo-hoops are algebraic structures that
generalize the concept of hoops, a specific kind of mathemat-
ical structure formed by a set equipped with two binary op-
erations. The study of pseudo-hoops is significant in various
branches of mathematics, including lattice theory, universal
algebra, and the study of ordered sets, due to their intriguing
properties and applications. In [2], it is demonstrated that
bounded basic pseudo-hoops and pseudo-BL algebras are
point-by-point equivalent. A pseudo-BL algebra with the
pDN property is termwise equivalent a pseudo-MV algebra.
Notably, pseudo-BL algebras and pseudo-MV algebras rep-
resent specific instances of pseudo-hoops. Recent years have
seen significant scholarly interest in the theories of ideals,
filters, and states on pseudo-hoops, as evidenced by works
in [5], [7], [9], [10], [12], [13].

In [11], Dvurečenskij and Zahiri introduced EMV-
algebras, extending the concept of MV-algebras. They de-
fined ideals, congruences, and filters on EMV-algebras while
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examining their interrelations. In [8], introducing EBL-
algebras, which extend the concepts of both BL-algebras and
EMV-algebras. He defined ideals, filters, and congruences
and demonstrated a one-to-one correspondence between ide-
als and congruences in an EBL-algebra. Xie and Liu inves-
tigated Ehoop in [6], further extending the notion of hoops
and presenting various properties of Ehoops.

Motivated by these foundational works, we aim to extend
the concepts of pseudo-hoop algebras and Ehoops, which
we will refer to as pseudo-Ehoops. In Sect.II, we recall some
fundamental definitions and properties of pseudo-hoops. Sec-
t.III introduces the definition of pseudo-Ehoops and explores
several essential properties of this new structure. In Sect.IV,
we give ideals and congruences on pseudo-Ehoops, showing
that congruences can be constructed by ideals. We prove that
if A is a pseudo-Ehoop satisfying the pDN condition, a one-
to-one correspondence between ideals and congruences on A
exists. Sect.V presents the concept of filters and discusses the
relation between filters and congruence in pseudo-Ehoops,
demonstrating that every proper pseudo-Ehoop contains at
least one maximal filter. In Sect.VI, we define the notions of
prime ideals and maximal ideals, proving that every maximal
ideal is prime and presenting a prime ideal theorem for
A. In Sect.VII, we introduce implicative filters and positive
implicative filters of pseudo-Ehoops, showing that every
positive implicative filter that is also normal is an implicative
filter. In Sect.VIII, we define internal states of pseudo-Ehoops
and establish a topological space through prime state filters
on state pseudo-Ehoops.

II. PRELIMINARIES

This section will review essential concepts and results
related to pseudo-hoop algebras, which will be pertinent for
the discussions that follow in this paper.

Definition 2.1. [1] An algebra (A,�,→, , 1) of type
(2,2,2,0) is defined as a pseudo-hoop algebra if: any elements
s, t, w ∈ A,
(PH1) s� 1 = 1� s = s;
(PH2) s→ s = s s = 1;
(PH3) (s� t)→ w = s→ (t→ w);
(PH4) (s� t) w = t (s w);
(PH5) (s→ t)�s = (t→ s)�t = s�(s t) = t�(t s).

Let (A,�,→, , 1) denote a pseudo-hoop and s, t ∈ A.
According to [1], we define s ≤ t as equivalent to s→ t =
1⇐⇒ s t = 1. Therefore, ≤ constitutes a partial order. If
there is 0 ∈ A satisfying s ≥ 0, we refer to A as a bounded
pseudo-hoop. In bounded pseudo-hoops, define s− = s→ 0
and s∼ = s  0. A is good if the condition s−∼ = s∼−

holds. Furthermore, if s−∼ = s∼− = s, then A has the
pseudo double negation property (for short pDN). Lastly, if
a good pseudo-hoop satisfies (s� t)−∼ = s−∼ � t−∼, then
A is a normal pseudo-hoop.
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Proposition 2.2. [1][7] Set (A,�,→, , 1) represent a
pseudo-hoop. The subsequent statements are valid: any el-
ements s, t, w ∈ A,
(1) s� t ≤ w ⇐⇒ s ≤ t→ w ⇐⇒ t ≤ s w;
(2) (A,≤) is a meet-semilattice with s ∧ t = (s→ t)� s =
s� (s t);
(3) s� t ≤ s ∧ t ≤ s, t;
(4) s ≤ t implies s� w ≤ t� w and w � s ≤ w � t;
(5) s ≤ t implies w → s ≤ w → t and w  s ≤ w  t;
(6) s ≤ t implies t→ w ≤ s→ w and t w ≤ s w;
(7) (t→ w)� (s→ t) ≤ s→ w, (s t)� (t w) ≤ s 
w;
(8) w → (s ∧ t) = (w → s) ∧ (w → t);
(9) s  (t → w) = t → (s  w), s → (t  w) = t  
(s→ w);
(10) s ≤ (s→ t) t, s ≤ (s t)→ t;
(11) s� t = s� (s (s� t)) = (s→ (s� t))� s.

Proposition 2.3. [2] Set (A,�,→, , 1) be a pseudo-hoop.
Any elements s, t ∈ A,
(1) s� 0 = 0� s = 0;
(2) s ≤ s−∼, s ≤ s∼−;
(3) s−∼− = s, s∼−∼ = s.
If A is good,
(4) (s−∼  s)− = (s−∼ → s)∼ = 0;
(5) (s→ t)−∼ = s−∼ → t−∼, (s t)−∼ = s−∼  t−∼;
(6) (s ∧ t)−∼ = s−∼ ∧ t−∼;
(7) s→ t− = s−∼ → t−, s t− = s−∼  t−.

Let (A,�,→, , 1) denote a pseudo-hoop. An element
e ∈ A is termed idempotent if it satisfies the condition e�e =
e. We define Id(A) as the set of all idempotent elements. Any
s ∈ A and e ∈ Id(A), the equation s�e = s∧e = e�s hold
([3]). ∅ 6= S ⊆ A is a subalgebra of A if it is closed under �,
→ and . Consider two pseudo-hoops (A1,�A1

,→A1
, A1

, 1A1
) and (A2,�A2

,→A2
, A2

, 1A2
). According to [4], if

a map φ : A1 → A2 preserves the operations, then φ is a
pseudo-hoop homomorphism. Furthermore, if f : A1 → A2

is a pseudo-hoop homomorphism, then f(1A1
) = 1A2

. In
cases where A1 and A2 are bounded, we also have f(0A1

) =
0A2

.
For any bounded pseudo-hoop A and s, t ∈ A, we

introduce the operations of left addition � and right addition
;: s� t = t−  s, s; t = s∼ → t.

Definition 2.4. [5] Suppose that A is a bounded pseudo-
hoop. ∅ 6= I ⊆ A is an ideal if it satisfies:
(1) s, t ∈ I implies s� t, s; t ∈ I;
(2) s ≤ t and t ∈ I imply s ∈ I .

Set A be a pseudo-hoop and s, t, u, v ∈ A. An equivalent
relation θ is a congruence if it is compatible with �, → and
 . That is, (s, t) ∈ θ and (u, v) ∈ θ together imply that
(s � u, t � v) ∈ θ, (s → u, t → v) ∈ θ and (s  u, t  
v) ∈ θ ([5]).

Definition 2.5. [1] Set A be a pseudo-hoop. ∅ 6= F ⊆ A is
a filter if any elements s, t ∈ A,
(1) s, t ∈ F =⇒ s� t ∈ F ;
(2) s ≤ t and s ∈ F imply t ∈ F .

III. PSEUDO-EHOOPS

In this section, we extend the notions of pseudo-hoops and
Ehoops and called it pseudo-Ehoops. In addition, some basic

properties are given.

Definition 3.1. A pseudo-Ehoop is an algebra (A,∧,�) of
type (2,2) satisfying
(PEH1) (A,∧) is a ∧-semilattice;
(PEH2) (A,�) is a semigroup;
(PEH3) for all e ∈ Id(A), set Ae = {s ∈ A|s ≤ e}, any
elements s, t ∈ Ae, the elements s →e t = max{w ∈
Ae|w � s ≤ t} and s  e t = max{w ∈ Ae|s � w ≤ t}
exist, and (Ae,�,→e, e, e) is a pseudo-hoop algebra;
(PEH4) for every s, t ∈ A, there is an element e ∈ Id(A)
satisfying s, t ≤ e.

A is said to be proper if it has no the largest element.

Remark 3.2. (1) For any s, t ∈ A, denote s ≤ t⇐⇒ s∧t =
s. Then ≤ is a partial order on A.

(2) For every e ∈ Id(A), Ae is a pseudo-hoop. Set s, t ∈
Ae. s ≤e t ⇐⇒ s →e t = e ⇐⇒ s  e t = e is a partial
order on Ae. For any s, t ∈ A and e, b ∈ Id(A) satisfying
s, t ≤ e ≤ b, we find s ≤e t⇐⇒ s ≤ t⇐⇒ s ≤b t. Indeed,
if s ≤ t, then e � s ≤ s ≤ t. It follows e = max{w ∈
Ae|w � s ≤ t} = s→e t and so s ≤e t. If s ≤e t, we have
s →e t = e, which implies e � s ≤ t. Then s = e ∧ s =
e� s ≤ t. This proves that ≤ and ≤e are consistent on Ae.

Example 3.3. Pseudo-hoops and pseudo-Ehoops with a top
element are termwise equivalent.

Proof: Suppose that (A,�,→, , 1) is a pseudo-hoop.
For every e ∈ Id(A) satisfying s, t ∈ Ae, we obtain s� t ≤
e � e = e. It follows s � t ∈ Ae. Also, we assert that
(s → t) ∧ e = max{w ∈ Ae|w � s ≤ t}. Indeed, ((s →
t)∧e)�s = (s→ t)�(e�s) = (s→ t)�s ≤ t. Let w ∈ Ae
and w�s ≤ t. We have w ≤ s→ t and so w ≤ (s→ t)∧e.
Thus, s →e t = max{w ∈ Ae|w � s ≤ t} = (s → t) ∧ e.
Similarly, we can prove that s  e t = (s  t) ∧ e. Thus,
s→e t, s e t ∈ Ae.

From e ∈ Id(A) and s, t, w ∈ Ae, it follows s � e =
e � s = s. Also, s →e s = (s → s) ∧ e = e and s  e s =
(s s) ∧ e = e. (PH1) and (PH2) hold.

s→e (t→e w) =(s→ ((t→ w) ∧ e)) ∧ e
=(s→ (t→ w)) ∧ (s→ e) ∧ e

(Proposition 2.2 (8))
=(s→ (t→ w)) ∧ e
=((s� t)→ w) ∧ e
=(s� t)→e w.

Analogously, (s � t)  e w = t  e (s  e w). This proves
(PH3) and (PH4).

(s→e t)� s = ((s→ t) ∧ e)� s
= (e� (s→ t))� s
= e� ((s→ t)� s)
= e� ((t→ s)� t)
= (e ∧ (t→ s))� t
= (t→e s)� t.

Similarly, we show s�(s e t) = t�(t e s). In addition,

(s→e t)� s = ((s→ t) ∧ e)� s
= (e� (s→ t))� s
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= e� (s� (s t))

= (s� e)� (s t)

= s� (e� (s t))

= s� (s e t).

This prove that (PH5) holds. Ae is a pseudo-hoop. For any
elements s, t ∈ A, there is 1 ∈ Id(A) that satisfies s, t ≤ 1.
Consequently, we conclude that A is a pseudo-Ehoop.

Conversely, it is obvious.

Example 3.4. Let {(Ai,�,→, , 0, 1)}i∈I be a fam-
ily of bounded pseudo-hoops and A = {φ ∈∏
i∈I Ai|supp(φ) is finite}, where supp(φ) = {i ∈

I|φ(i) 6= 0}. Define � and ∧ as follows: for all φ =
(φi)i∈I , ψ = (ψi)i∈I ∈ A,

φ� ψ = (φi � ψi)i∈I , φ ∧ ψ = (φi ∧ ψi)i∈I .

Clearly, A is closed under � and ∧. Then

m = (mi)i∈I =

{
1, i ∈ supp(φ) ∪ supp(ψ),
0, otherwise

is an idempotent element and φ, ψ ≤ m. Thus, we have that
the condition (PEH4) holds and Id(A) = {(mi)i∈I |mi ∈
Id(Ai)}. Similar to the proof of Example 3.3 in [6],
(A,∧,�) is a pseudo-Ehoop.

Example 3.5. Suppose that A is a pseudo-Ehoop and X 6= ∅
is finite. AX represents the set of all functions from X to
A. Define � and ∧: for all φ, ψ ∈ AX and s ∈ X ,

(φ� ψ)(s) = φ(s)� ψ(s), (φ ∧ ψ)(s) = φ(s) ∧ ψ(s).

Obviously, (PEH1) and (PEH2) hold. For all s ∈ X , there is
e ∈ Id(A) such that φ(s), ψ(s) ≤ e. Let me : X → e, we
have that me is an idempotent of AX and φ, ψ ≤ me. AX has
enough idempotent elements. For any φ, ψ ∈ AXme = {φ ∈
AX |φ ≤ me}, we define (φ →me ψ)(s) = φ(s) →me(s)

ψ(s) and (φ me ψ)(s) = φ(s) me(s) ψ(s). Then AX is
a pseudo-Ehoop.

Example 3.6. Suppose that A and B are pseudo-Ehoops.
Set A × B = {(s1, s2)|s1 ∈ A, s2 ∈ B} and the operations
are defined in a pointwise manner. Then A×B is a pseudo-
Ehoop.

Proposition 3.7. (A,∧,�) is a pseudo-Ehoop if and only if
(PEH1) (A,∧) is a ∧-semilattice;
(PEH2) (A,�) is a semigroup;
(PEH3′) for any s, t ∈ A, there is an element e ∈ Id(A)
satisfying s, t ≤ e and (Ae,�,→e, e, e) is a pseudo-hoop.

Proof: To establish that A is a pseudo-Ehoop, it suffices
to demonstrate that condition (PEH3) holds. For each e ∈
Id(A), there is b ∈ Id(A) satisfying e ≤ b and (Ab,�,→b

, b, b) forms a pseudo-hoop. We claim that for any s, t ∈
Ae, the equation (s→b t)∧ e = max{w ∈ Ae|w� s ≤ t} is
valid. Similar to the proof of Example 3.3 in [6], we prove
that (Ae,�,→e, e, e) is a pseudo-hoop.

Conversely, it is obvious.

Proposition 3.8. Set A be a pseudo-Ehoop and s, t, w ∈ A.
Let e, b ∈ Id(A) satisfying s, t, w ≤ e ≤ b, we obtain
(1) s→e t ≤ s→b t, s e t ≤ s b t;
(2) s→e t = (s→b t) ∧ e, s e t = (s b t) ∧ e;

(3) (s →e t) →e w ≤ (s →b t) →b w, (s  e t)  e

w ≤ (s  b t)  b w, (s →e t)  e w ≤ (s →b t)  b w,
(s e t)→e w ≤ (s b t)→b w.

Proof: (1) Obviously, s→e t = max{w ∈ Ae|w � s ≤
t} ≤ max{w ∈ Ab|w � s ≤ t} = s →b t by the Definition
3.1. In a similar way, s e t ≤ s b t.

(2) From (1), we obtain s→e t ≤ s→b t, which implies
s→e t ≤ (s→b t) ∧ e. Moreover,

((s→b t) ∧ e)� s = ((s→b t)� e)� s
= (s→b t)� (e� s)
= (s→b t)� s
≤ t.

Thus, we deduce (s→b t) ∧ e ≤ s→e t. This demonstrates
that s→e t = (s→b t)∧e. Similarly, s e t = (s e t)∧e.

(3) By (2), it follows

(s→e t)→e w = (((s→b t) ∧ e)→b w) ∧ e
= ((e� (s→b t))→b w)� e
= (e→b ((s→b t)→b w))� e
= e ∧ ((s→b t)→b w)

≤ (s→b t)→b w.

Analogously, (s e t) e w ≤ (s b t) b w.

Remark 3.9. Set A be a pseudo-Ehoop and s, t ∈ A. Any
e, b ∈ Id(A) with s, t ≤ e ≤ b, we conclude (s→e t)� s =
((s→b t) ∧ e)� s = (s→b t)� (e� s) = (s→b t)� s by
Proposition 3.8. Thus s ∧ t = (s→e t)� s = (s→b t)� s.

Let A be a pseudo-Ehoop with the least element 0 and
e ∈ Id(A). For each s ∈ Ae, denote s−e = s →e 0 and
s∼e = s e 0.

Proposition 3.10. Set A be a pseudo-Ehoop and s, t, w ∈ A.
For any e, b ∈ Id(A) with s, t, w ≤ e, b, we obtain (s →e

w) � t = (s →b w) � t, t � (s →e w) = t � (s →b w),
(s  e w) � t = (s  b w) � t and t � (s  e w) =
t� (s b w). In addition, if A has the least element 0, we
obtain s−e�t = s−b�t, t�s−e = t�s−b , s∼e�t = s∼b�t
and t� s∼e = t� s∼b .

Proof: Suppose c ∈ Id(A) satisfying e, b ≤ c. In Ac,

(s→e w)� t = ((s→c w) ∧ e)� t
= ((s→c w)� e)� t
= (s→c w)� (e� t)
= (s→c w)� t.

Similarly, we have (s→b w)� t = (s→c w)� t, this means
(s →e w) � t = (s →b w) � t. Homoplastically, others are
obvious.

Proposition 3.11. The Riesz decomposition theorem holds in
every pseudo-Ehoop A. That is, if s, t, w ∈ A and s�t ≤ w,
there are two elements s1 ≥ s and t1 ≥ t in A such that
s1 � t1 = w.

Proof: For all s, t, w ∈ A, there exists an element e ∈
Id(A) satisfying s, t, w ≤ e. Given s� t ≤ w, it follows s ≤
t→e w. Furthermore, by applying Proposition 2.2, we obtain
that (t→e w)� t ≤ w, which leads to t ≤ (t→e w) e w.
Let us define s1 = t→e w and t1 = (t→e w) e w. Then
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s1� t1 = (t→e w)� ((t→e w) e w) = (t→e w)∧w =
w.

IV. IDEALS AND CONGRUENCES

This section shall give ideals and congruences of pseudo-
Ehoops. Also, the congruences are constructed by ideals. We
establish a one-to-one correspondence between congruences
and ideals in a pseudo-Ehoop A with the pDN condition.

Let A be a pseudo-Ehoop with the least element 0 and
e ∈ Id(A). For each s, t ∈ Ae, we define s�e t = t−e  e

s, s;e t = s∼e →e t.

Definition 4.1. Set A be a pseudo-Ehoop with the least
element 0 and ∅ 6= I ⊆ A. Then I is an ideal if:
(1) for every e ∈ Id(A) satisfying s, t ≤ e, s, t ∈ I implies
s�e t, s;e t ∈ I;
(2) s ≤ t ∈ I implies s ∈ I .

I is a normal ideal if for each e ∈ Id(A) with s, t ≤ e,
s−e � t ∈ I implies t� s∼e ∈ I . Define the set of all ideals
(normal ideals) of A as I(A) (NI(A)).

Proposition 4.2. Let A be a pseudo-Ehoop with the least
element 0 and {0} ⊆ I ⊆ A. The next properties are
equivalent: Arbitrary elements s, t ∈ A and e ∈ Id(A)
satisfying s, t ≤ e,
(1) I ∈ I(A);
(2) s, s−e � t ∈ I imply t ∈ I and s, t � s∼e ∈ I imply
t ∈ I;
(3) s, (s−e →e t

−e)∼e ∈ I imply t ∈ I and s, (s∼e  e

t∼e)−e ∈ I imply t ∈ I .

Remark 4.3. Let A be a pseudo-Ehoop with the least
element 0 and I an ideal. Clearly, 0 ∈ I . In addition, for
each s ∈ A and e ∈ Id(A) with s ≤ e, s−e∼e ∈ I ⇐⇒
s ∈ I ⇐⇒ s∼e−e ∈ I holds. In fact, if s ∈ I , from
s−e�s−e∼e = 0 ∈ I , we deduce s−e∼e ∈ I . By Proposition
2.3 (2), it is clear that s ∈ I can be obtained from s−e∼e ∈ I .
Similarly, s ∈ I ⇐⇒ s∼e−e ∈ I .

A pseudo-Ehoop A with the least element 0 is good if the
bounded pseudo-hoop Ae is good for all e ∈ Id(A). That is,
for every e ∈ Id(A) and s ∈ Ae, we obtain s−e∼e = s∼e−e .
A normal pseudo-Ehoop A is a good pseudo-Ehoop if any
elements s, t ∈ A and e ∈ Id(A) satisfying s, t ≤ e, the
equation (s� t)−e∼e = s−e∼e � t−e∼e holds.

In Proposition 4.2, if A is good, we obtain Theorem 4.4
directly.

Theorem 4.4. Set A be a good pseudo-Ehoop and {0} ⊆
I ⊆ A. The next properties are equivalent: for any s, t ∈ A
and e ∈ Id(A) with s, t ≤ e,
(1) I ∈ I(A);
(2) s, s−e � t ∈ I implies t ∈ I;
(3) s, t� s∼e ∈ I implies t ∈ I;
(4) s, (s−e →e t

−e)∼e ∈ I implies t ∈ I;
(5) s, (s∼e  e t

∼e)−e ∈ I implies t ∈ I .

Proposition 4.5. Let A be a pseudo-Ehoop with the least
element 0 and s, t, u, v ∈ A.
(1) For all e ∈ Id(A) satisfying s, t ≤ e, s, t ≤ s �e t and
s, t ≤ s;e t.
(2) If s ≤ t and u ≤ v, then for all e ∈ Id(A) satisfying
s, t, u, v ≤ e, we have s�e u ≤ t�e v and s;e u ≤ t;e v.

(3) If A is normal, then for each e ∈ Id(A), �e and ;e are
associative.

Proof: (1) Set s, t ∈ A and e ∈ Id(A) satisfy s, t ≤ e.
From t−e � s ≤ s, we deduce s ≤ t−e  e s = s�e t. Since
t−e � t = 0 ≤ s, t ≤ t−e  e s = s �e t. Additionally,
given t � s∼e ≤ t, we obtain t ≤ s∼e →e t = s ;e t. By
s� s∼e = 0 ≤ t, we obtain s ≤ s∼e →e t = s;e t.

(2) Assume s ≤ t and u ≤ v. There is e ∈ Id(A) such
that s, t, u, v ≤ e. Therefore, t∼e ≤ s∼e and v−e ≤ u−e . By
Proposition 2.2 (5) and (6), s�e u = u−e  e s ≤ v−e  e

s ≤ v−e  e t = t�e v and s;e u = s∼e →e u ≤ t∼e →e

u ≤ t∼e →e v = t;e v.
(3) By Proposition 3.4 in [5], the proof is clear.

Proposition 4.6. Set A be a pseudo-Ehoop with the pDN
condition. Then for all s, t1, t2 ∈ A and e ∈ Id(A) such that
s, t1, t2 ≤ e,
(1) s�e (t1 ∧ t2) = (s�e t1) ∧ (s�e t2);
(2) (t1 ∧ t2)�e s = (t1 �e s) ∧ (t2 �e s);
(3) s ∧ (t1 �e t2) ≤ (s ∧ t1)�e (s ∧ t2).

Proof: (1) From t1 ∧ t2 ≤ t1, t2, we have s �e (t1 ∧
t2) ≤ (s �e t1) ∧ (s �e t2) by Proposition 4.5. Assume
u ≤ s �e ti where i = 1, 2. Then t−ei � u ≤ s and so
t−ei ≤ u →e s. It means (u →e s)

∼e ≤ t−e∼ei = ti. Thus,
(u →e s)

∼e ≤ t1 ∧ t2. Hence, We conclude (t1 ∧ t2)−e ≤
(u →e s)

∼e−e = u →e s. From this, we can derive u ≤
(t1∧ t2)−e  e s = s�e (t1∧ t2). This proves that s�e (t1∧
t2) = (s�e t1) ∧ (s�e t2).

(2) Clearly, (t1∧ t2)�e s ≤ (t1�e s)∧ (t2�e s). Suppose
that u ≤ ti�e s for i = 1, 2. We obtain s−e �u ≤ ti, which
means s−e � u ≤ (t1 ∧ t2). Consequently, u ≤ s−e  e

(t1 ∧ t2) = (t1 ∧ t2)�e s. Therefore (t1 ∧ t2)�e s = (t1 �e
s) ∧ (t2 �e s).

(3) By (1) and (2), we obtain

(s ∧ t1)�e (s ∧ t2) = (s�e s) ∧ (s�e t1)∧
(t1 �e s) ∧ (t1 �e t2)

≥ s ∧ s ∧ s ∧ (t1 �e t2)
= s ∧ (t1 �e t2).

In a similar way, we can get the following statement.

Proposition 4.7. Let A be a pseudo-Ehoop with the pDN
condition. For all s, t1, t2 ∈ A and a ∈ Id(A) such that
s, t1, t2 ≤ e,
(1) s;e (t1 ∧ t2) = (s;e t1) ∧ (s;e t2);
(2) (t1 ∧ t2) ;e s = (t1 ;e s) ∧ (t2 ;e s);
(3) s ∧ (t1 ;e t2) ≤ (s ∧ t1) ;e (s ∧ t2).

Let A be a pseudo-Ehoop with the least element 0 and
S ⊆ A. Clearly, the intersection of all ideals containing S
forms an ideal, referred to as the ideal generated by S and
denoted by 〈S〉. For any s ∈ A and e ∈ Id(A), define 2es =
s�es, · · · , nes = s�e(n−1)es. Let�sei=1

si = s1�e· · ·�ess
for each e ∈ Id(A) such that si ≤ e.

Proposition 4.8. Let A be a normal pseudo-Ehoop, s ∈ A
and I ⊆ A.
(1) 〈I〉 = {u ∈ A|u ≤ s1 �e s2 �e . . . �e
sn, for some s1, . . . , sn ∈ I, e ∈ Id(A), s1, . . . , sn ≤ e};
(2) 〈I∪{s}〉 = {u ∈ A|u ≤ �sei=1

(ti�enies), ti ∈ I, s, ni ∈
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N\{0}, e ∈ Id(A), ti, s ≤ e}.

Proof: (1) Any element e ∈ Id(A), we have �e
is associative by Proposition 4.5 (3). Set H = {u ∈
A|u ≤ s1 �e s2 �e . . .�e sn, for some s1, . . . , sn ∈ I, e ∈
Id(A), s1, . . . , sn ≤ e}. Obviously, 0 ∈ H and I ⊆ H . Let
u, v ∈ A and e ∈ Id(A) satisfying u, u−e � v ∈ H . There
are two elements b, c ∈ Id(A) that satisfy s1, s2, . . . , sm ≤
b, t1, t2, . . . , tn ≤ c, u ≤ s1 �e s2 �e . . . �e sm and
u−e�v ≤ t1�e t2�e . . .�e tn. Choose d ∈ Id(A) satisfying
e, b, c ≤ d. From Proposition 4.5 (2) and Proposition 3.8 (3),
we obtain

v ≤ u−e  d (u
−e � v) = (u−e � v)�d u

≤ (t1 �e t2 �e . . .�e tn)�d
(s1 �e s2 �e . . .�e sm)

≤ (t1 �d t2 �d . . .�d tn)�d
(s1 �d s2 �d . . .�d sm)

= t1 �d t2 �d . . .�d tn �d s1 �d . . .�d sm.

Then v ∈ H . By Theorem 4.4, we get that H ∈ I(A).
Assume K ∈ I(A) and I ⊆ K. For any u ∈ H , there

exist s1, . . . , sn ∈ I and e ∈ Id(A) such that s1, . . . , sn ≤ e
and u ≤ s1 �e s2 �e . . . �e sn. Thus, s1, . . . , sn ∈ K. We
obtain s1�e s2�e . . .�e sn ∈ K, which proves u ∈ K. This
means H ⊆ K. Therefore, H = 〈I〉.

Similarly, we can get (2).
Similar to Proposition 4.8, The following statement is

straightforward.

Proposition 4.9. Let A be a normal pseudo-Ehoop, s ∈ A
and I ⊆ A.
(1) 〈I〉 = {u ∈ A|u ≤ s1 ;e s2 ;e . . . ;e

sn, for some s1, . . . , sn ∈ I, e ∈ Id(A), s1, . . . , sn ≤ e};
(2) 〈I∪{s}〉 = {u ∈ A|u ≤ ;s

ei=1
(ti;enies), ti ∈ I, s, ni ∈

N\{0}, e ∈ Id(A), ti, s ≤ e}.

Definition 4.10. Let A be a pseudo-Ehoop. θ is a congruence
if
(1) θ is an equivalence relation;
(2) θ is compatible with ∧ and �;
(3) θ ∩ (Ae × Ae) is a congruence on the pseudo-hoop Ae
for all e ∈ Id(A).

Define the set of all congruences of A as C(A)

Proposition 4.11. Set θ be a congruence on a pseudo-Ehoop
A. Then, the set 0/θ = {s ∈ A|(s, 0) ∈ θ} constitutes an
ideal of A. If A is good, then I is normal.

Proof: Obviously, 0 ∈ 0/θ. Set s, t ∈ 0/θ and e ∈
Id(A) with s, t ≤ e. From (t, 0) ∈ θ, we derive (s�e t, s) =
(t−e  e s, 0

−e  e s) ∈ θ. Consequently, (s �e t, 0) ∈
θ, which means s �e t ∈ 0/θ. A similar way shows that
s ;e t ∈ 0/θ. If s ≤ t ∈ 0/θ. Since s ≤ t ≤ t∼e−e , we
obtain s� t∼e = 0. Hence, (s, 0) = (s� 0∼e , s� t∼e) ∈ θ,
which implies s ∈ 0/θ.

For any s, t ∈ A, there exists e ∈ Id(A) with s, t ≤ e. If
s−e�t ∈ 0/θ, we have (t e s

−e∼e , e) = ((s−e�t)∼e , e) ∈
θ. This implies (t∧ s−e∼e , t) = (t� (s−e � t)∼e , t� e) ∈ θ.
Then ((t∧ s−e∼e)� s∼e , t� s∼e) ∈ θ. Since (t∧ s−e∼e)�
s∼e = (s−e∼e →e t) � s−e∼e � s∼e = (s−e∼e →e t) �
(s∼e−e � s∼e) = 0, we get t� s∼e ∈ 0/θ. Conversely, it is
similar to the proof above. Thus, I is normal.

Proposition 4.12. Suppose that A is a pseudo-Ehoop with
the least element 0 and I ∈ I(A). θI defined by

(s, t) ∈ θI ⇐⇒ ∃e ∈ Id(A) satisfying s, t ≤ e, s−e

� t ∈ I, t−e � s ∈ I, s� t∼e ∈ I, t� s∼e ∈ I

is an equivalence relation on A.

Proof: Obviously, θI is symmetric and reflective. As-
sume (s, t) ∈ θI and (t, w) ∈ θI . There are two elements
e, b ∈ Id(A) with s, t ≤ e, t, w ≤ b, s−e � t, t−e � s, s �
t∼e , t�s∼e ∈ I and t−b�w,w−b� t, t�w∼b , w� t∼b ∈ I .
Set c ∈ Id(A) with e, b ≤ c. By Proposition 3.10, we
conclude that s−c�t, t−c�s, s�t∼c , t�s∼c , t−c�w,w−c�
t, t�w∼c , w� t∼c ∈ I . Considering (w−c � t)−c � (w−c �
s) = ((w−c →c t

−c)�w−c)� s ≤ t−c � s ∈ I , we deduce
(w−c � t)−c � (w−c � s) ∈ I . It means w−c � s ∈ I by
Proposition 4.2. Similarly, s−c � w ∈ I . In addition, from
(s� w∼c)� (t� w∼c)∼c = s� (w∼c � (w∼c  c t

∼c)) ≤
s � t∼c ∈ I , we get (s � w∼c) � (t � w∼c)∼c ∈ I . This
implies s�w∼c ∈ I . Analogously, w� s∼c ∈ I . Therefore,
(s, w) ∈ θI .

Proposition 4.13. If pseudo-Ehoop A is good and I is
normal, θI is a congruence on A.

Proof: By Proposition 4.12, θI is an equivalence rela-
tion. Set (s, t) ∈ θI . There is e ∈ Id(A) satisfying s, t ≤ e
and s−e� t, t−e�s, s� t∼e , t�s∼e ∈ I . For any u ∈ A and
b ∈ Id(A) with s�u, t�u ≤ b, there is c ∈ Id(A) satisfying
e, b, u ≤ c. From (s�u)�(t�u)∼b = (s�u)�(t�u)∼c =
s � (u � (u  c t∼c)) ≤ s � t∼c = s � t∼e ∈ I ,
we have (s � u) � (t � u)∼b ∈ I . Similarly, we get
(t � u) � (s � u)∼b ∈ I . Thus (t � u)−e � (s � u) ∈ I
and (s�u)−b � (t�u) ∈ I . This means (s�u, t�u) ∈ θI .
In a similar way, (u� s, u� t) ∈ θI .

For every e ∈ Id(A), we shall show that θI ∩ (Ae ×Ae)
is a congruence on the pseudo-hoop algebra Ae. Assume
(s, t) ∈ θI ∩ (Ae × Ae). An element b ∈ Id(A) exists that
satisfies s, t ≤ b and s−b � t, t−b � s, s� t∼b , t� s∼b ∈ I .
Then s−e�t, t−e�s, s�t∼e , t�s∼e ∈ I . Since (s−e�t)−e�
(s−e � t−e∼e) = ((s−e →e t

−e)� s−e)� t−e∼e) ≤ t−e �
t−e∼e = 0 ∈ I , we obtain (s−e � t)−e � (s−e � t−e∼e) ∈ I
and so s−e � t−e∼e ∈ I . Analogously, t−e � s−e∼e ∈ I .
Since I is normal, t−e−e � s−e ∈ I and s−e−e � t−e ∈ I .
Hence, (s−e , t−e) ∈ θI ∩ (Ae × Ae). Similarly, we prove
(s∼e , t∼e) ∈ θI∩(Ae×Ae). Moreover, since s−e�s−e∼e =
0 ∈ I and s−e∼e−e � s = s−e � s = 0 ∈ I , we have
(s, s−e∼e) ∈ θI ∩ (Ae ×Ae). Therefore, (s, t) ∈ θI ∩ (Ae ×
Ae)⇐⇒ (s−e∼e , t−e∼e) ∈ θI ∩ (Ae ×Ae).

Let (s, t) ∈ θI ∩ (Ae × Ae) and u ∈ Ae. We have
((s−e∼e�u∼e)−e , (t−e∼e�u∼e)−e) ∈ θI∩(Ae×Ae). Then
(s−e∼e →e u

∼e−e , t−e∼e →e u
∼e−e) ∈ θI ∩ (Ae × Ae).

Since A is good, we get (s−e∼e →e u−e∼e , t−e∼e →e

u−e∼e) ∈ θI ∩ (Ae × Ae). By Proposition 2.3 (5), ((s →e

u)−e∼e , (t →e u)
−e∼e) ∈ θI ∩ (Ae × Ae). Then (s →e

u, t→e u) ∈ θI ∩ (Ae×Ae). Similarly, (s e u, t e u) ∈
θI ∩ (Ae ×Ae).

Let (s, t) ∈ θI ∩ (Ae × Ae) and u ∈ Ae. We have
((u−e∼e � s∼e)−e , (u−e∼e � t∼e)−e) ∈ θI ∩ (Ae×Ae) and
so (u−e∼e →e s

∼e−e , u−e∼e →e t
∼e−e) ∈ θI ∩ (Ae ×Ae).

Since A is good, it means that ((u →e s)−e∼e , (u →e

t)−e∼e) ∈ θI ∩ (Ae × Ae), which implies (u →e s, u →e
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t) ∈ θI ∩ (Ae × Ae). Analogously, (u  e s, u  e t) ∈
θI ∩ (Ae ×Ae). Therefore, θI ∩ (Ae ×Ae) is a congruence
of the pseudo-hoop Ae.

For any (s, t) ∈ θI and u ∈ A, there is e ∈ Id(A) with
s, t, u ≤ e. It follows from s ∧ u = s � (s  e u) that
(s ∧ u, t ∧ u) ∈ θI .

Remark 4.14. Clearly, by Proposition 3.10, we have

(s, t) ∈ θI ⇐⇒ ∀e ∈ Id(A) satisfying s, t ≤ e, s−e

� t ∈ I, t−e � s ∈ I, s� t∼e ∈ I, t� s∼e ∈ I.

Set A be a pseudo-Ehoop with the least element 0. If for
each e ∈ Id(A), Ae satisfies the pDN condition, then A is
said to satisfy the pDN condition. That is, for all s ∈ Ae,
s−e∼e = s∼e−e = s. Obviously, if A has the pDN condition,
then A is good and normal.

Proposition 4.15. Let A be a pseudo-Ehoop with the pDN
condition. There is a one-to-one correspondence between
NI(A) and C(A).

Proof: Set θ ∈ C(A). By Proposition 4.11 and Propo-
sition 4.13, J = 0/θ is a normal ideal of A and θJ is a
congruence on A. Assume (s, t) ∈ θ and e ∈ Id(A) with
s, t ≤ e. Then (s−e � t, t−e � t) ∈ θ, (t−e � s, s−e � s) ∈
θ, (t � s∼e , t � t∼e) ∈ θ, (s � t∼e , s � s∼e) ∈ θ. We have
s−e � t, t−e � s, t � s∼e , s � t∼e ∈ 0/θ, which implies
(s, t) ∈ θJ . If (s, t) ∈ θJ , then t � s∼e ∈ 0/θ. Therefore,
we obtain (t ∧ s−e∼e , t) = ((t � s∼e)−e � t, 0−e � t) ∈ θ.
Thus, (t∧ s, t) ∈ θ. Similarly, we deduce (t∧ s, s) ∈ θ. This
proves (s, t) ∈ θ.

Let I ∈ NI(A). θI is a congruence and 0/θI ∈ NI(A).
For any s ∈ I and e ∈ Id(A) with s ≤ e, we get s−e � 0 =
0 ∈ I, 0−e�s = s ∈ I, s�0∼e = s ∈ I and 0�s∼e = 0 ∈ I .
This show that (s, 0) ∈ θI and so s ∈ 0/θI . If s ∈ 0/θI ,
s = s� 0∼e ∈ I .

Proposition 4.16. Let A be a pseudo-Ehoop. S ⊆ A is a
subalgebra if:
(1) S is closed under � and ∧;
(2) for all e ∈ Id(A) ∩ S, Se = Ae ∩ S = {s ∈ S|s ≤ e} is
a subalgebra of the pseudo-hoop (Ae,�,→e, e, e);
(3) for any s, t ∈ S, there exists b ∈ Id(S) with s, t ≤ b.

Let A and B be two pseudo-Ehoops. A pseudo-Ehoop
homomorphism from A to B is a map ψ : A → B which
satisfies: (1) ψ preserves ∧ and �; (2) any elements s, t ∈ A
and e ∈ Id(A) satisfying s, t ≤ e, ψ(s→e t) = ψ(s)→ψ(e)

ψ(t) and ψ(s  e t) = ψ(s)  ψ(e) ψ(t). Clearly, s ≤ t
implies ψ(s) ≤ ψ(t).

Proposition 4.17. Let ψ be a pseudo-Ehoop homomorphism
from a pseudo-Ehoop A to a pseudo-Ehoop B and S be a
subalgebra of A. Then ψ(S) is a subalgebra of B.

Proof: Assume that S is a subalgebra of A. It is obvious
that ψ(S) is closed under ∧ and �. For all c ∈ Id(B)∩ψ(S),
there exists e ∈ S that satisfies ψ(e) = c. Set ψ(S)c = {s ∈
ψ(S)|s ≤ c}. For all s, t ∈ ψ(S)c, there are m,n ∈ S that
satisfy ψ(m) = s and ψ(n) = t. From s � t ≤ c � c =
c and s � t = ψ(m) � ψ(n) = ψ(m � n) ∈ ψ(S), we
have s � t ∈ ψ(S)c. Since S is a subalgebra, an element
b ∈ Id(A) ∩ S exists that satisfies m,n, e ≤ b. Therefore,
c = ψ(e) ≤ ψ(b). We have s →c t = ψ(m) →ψ(e) ψ(n) =

(ψ(m) →ψ(b) ψ(n)) ∧ ψ(e) = ψ((s →b t) ∧ e) ∈ ψ(S)c
and s  c t = ψ(m)  ψ(e) ψ(n) = (ψ(m)  ψ(b) ψ(n)) ∧
ψ(e) = ψ((s  b t) ∧ e) ∈ ψ(S)c. This prove that ψ(S)c is
a subalgebra of Bc.

For all s, t ∈ ψ(S), there are elements m,n ∈ S satisfying
ψ(m) = s and ψ(n) = t. Suppose d ∈ Id(A) ∩ S such that
m,n ≤ d. Then s, t ≤ ψ(d) ∈ Id(B) ∩ ψ(S). Therefore,
ψ(S) is a subalgebra of B.

Proposition 4.18. Let A and B be two pseudo-Ehoops with
the least element 0 and ψ : A→ B a homomorphism.
(1) If I ∈ I(B) (I ∈ NI(B)), then ψ−1(I) ∈ I(A)
(ψ−1(I) ∈ NI(A)).
(2) If ψ is a bijection and I ∈ I(A) (I ∈ NI(A)), then
ψ−1(I) ∈ I(B) (ψ−1(I) ∈ NI(B)).
(3) Ker(ψ) = {s ∈ A|ψ(s) = 0} is an ideal of A. If B is
good, then {0} is a normal ideal and so Ker(ψ) is normal.

Proof: (1) From ψ(0) = 0, we have ψ−1(I) 6= ∅.
Suppose s, t ∈ ψ−1(I). For each e ∈ Id(A) that satisfies
s, t ≤ e, we derive ψ(s�e t) = ψ(s)�ψ(e) ψ(t) ∈ I , which
means s �e t ∈ ψ−1(I). Similarly, s ;e t ∈ ψ−1(I). If
s ≤ t ∈ ψ−1(I), then ψ(s) ≤ ψ(t) ∈ I . It implies ψ(s) ∈ I
and so s ∈ ψ−1(I). Thus ψ−1(I) ∈ I(A). If I is normal,
then s−e � t ∈ ψ−1(I) ⇐⇒ ψ(s)−ψ(e) � ψ(t) ∈ I ⇐⇒
ψ(t)� ψ(s)∼ψ(e) ∈ I ⇐⇒ t� s∼e ∈ ψ−1(I). We have that
ψ−1(I) is normal.

(2) Suppose s, t ∈ B and s ≤ t ∈ ψ(I). There exists m ∈
I with ψ(m) = t. Since ψ is a bijection, an element n ∈ A
exists that satisfies ψ(n) = s. Let e ∈ Id(A) satisfying
m,n ≤ e. Then ψ(n →e m) = ψ(n) →ψ(e) ψ(m) = ψ(e)
and so n →e m = e. This means n ≤ m ∈ I . Thus, n ∈ I
and so s ∈ ψ(I). Suppose s, t ∈ ψ(I). There are elements
u, v ∈ I that satisfy s = ψ(u) and t = ψ(v). For all b ∈
Id(B) with s, t ≤ b, there is e ∈ Id(A) with b = ψ(e). We
obtain that s �b t = ψ(u) �ψ(e) ψ(v) = ψ(u �e v) ∈ ψ(I)
and s;b t ∈ ψ(I). Hence, ψ(I) ∈ I(B). If I is normal, then
ψ(u)−ψ(e) � ψ(v) ∈ ψ(I)⇐⇒ u−e � v ∈ I ⇐⇒ v� u∼e ∈
I ⇐⇒ ψ(v)� ψ(u)−ψ(e) ∈ ψ(I). ψ(I) is normal.

(3) Obviously, {0} is an ideal of B. By (1), Ker(ψ) =
ψ−1({0}) ∈ I(A). If B is good, for each s, t ∈ B and
e ∈ Id(B) that satisfy s, t ≤ e, s−e � t ∈ {0} ⇐⇒ t ≤
s−e∼e ⇐⇒ t ≤ s∼e−e ⇐⇒ t� s∼e ∈ {0}. This shows that
{0} is normal.

V. FILTERS

This section will study filters of a pseudo-Ehoop A. Every
proper pseudo-Ehoop has at least one maximal filter. More-
over, we construct the congruences and ideals by normal
filters on A .

Definition 5.1. Set A be a pseudo-Ehoop. ∅ 6= F ⊆ is a
filter if for any s, t ∈ A,
(1) there exists e ∈ Id(A) ∩ F satisfying s ≤ e;
(2) s ≤ t and s ∈ F =⇒ t ∈ F ;
(3) s, t ∈ F implies s� t ∈ F .

If F 6= A, then F is a proper filter. A maximal filter is a
proper filter which is not included in any other proper filter.
The set of all filters (proper filters, maximal filters) of A is
denoted by F(A) (PF(A),MF(A)).
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Proposition 5.2. F is a filter of a pseudo-Ehoop A if and
only if any elements s, t ∈ A and e ∈ Id(A) satisfying
s, t ≤ e,
(1) there is b ∈ Id(A) ∩ F that satisfies s ≤ b;
(2) s, s→e t ∈ F =⇒ t ∈ F .

Proof: Let F ∈ F(A) and s, t ∈ A. For any e ∈ Id(A)
with s, t ≤ e, we get t ≥ (s→e t)� s ∈ F and so t ∈ F .

Conversely, set s, t ∈ A and t ≥ s ∈ F . An element
b ∈ Id(A) ∩ F exists that satisfies s ≤ t ≤ b. It means that
s →b t = b ∈ F . Thus, t ∈ F . If s, t ∈ F and c ∈ Id(A)
satisfying s, t ≤ c, then s →c (t →c (s � t)) = (s � t) →c

(s � t) = c ∈ F . We have t →c (s � t) ∈ F . This together
with t ∈ F implies s� t ∈ F .

Proposition 5.3. Set A be a pseudo-Ehoop. F ∈ F(A)⇐⇒
any elements s, t ∈ A and e ∈ Id(A) that satisfy s, t ≤ e,
(1) there is b ∈ Id(A) ∩ F satisfying s ≤ b;
(2) s, s e t ∈ F =⇒ t ∈ F .

Proof: By Proposition 5.2, the proof is easy.
Set A be a pseudo-Ehoop and S ⊆ A. The filter generated

by S is defined as 〈S].

Proposition 5.4. Assume that A is a pseudo-Ehoop. If s ∈ A
and S ⊆ A, then
(1) 〈S] = {u ∈ A|u ≥ s1 � s2 � · · · �
sm, for some s1, s2, · · · , sm ∈ S and m ∈ N\{0}};
(2) 〈s] = {u ∈ A|u ≥ sm, for some m ∈ N\{0}}.

Proof: (1) Set G = {u ∈ A|u ≥ s1 � s2 �
· · · � sm, for some s1, s2, · · · , sm ∈ S and m ∈ N\{0}}.
Clearly, S 6= ∅ and S ⊆ G. For all u ∈ G, there
exist e ∈ Id(A) and si ∈ S that satisfy si, u ≤ e,
i = 1, 2, · · · ,m. Then e ∈ G. Let u, v ∈ A and b ∈ Id(A)
satisfying u, v ≤ b and u, u →b v ∈ G. There are elements
m,n ∈ N\{0} and s1, s2, · · · , sm, t1, t2, · · · , tn ∈ S that
satisfy u ≥ s1 � s2 � · · · � sm and u→b v ≥ t1 � · · · � tn.
Then v ≥ (u→b v)�u ≥ t1� · · ·� tn� s1� · · · � sm and
so v ∈ G. This shows G ∈ F(A) and S ⊆ G.

Assume T ∈ F(A) and S ⊆ T . For all u ∈ G, there are
s1, s2, · · · , sm ∈ S and m ∈ N\{0} such that u ≥ s1�· · ·�
sm. Since s1, s2, · · · , sm ∈ T , we have s1 � · · · � sm ∈ T
and so u ∈ T . Thus, G ⊆ T . This means 〈S] = {u ∈ A|u ≥
s1 � s2 � · · · � sm, for some s1, s2, · · · , sm ∈ S and m ∈
N\{0}}.

In particular, if S = {s}, we can prove 〈s] = {u ∈ A|u ≥
sm, for some m ∈ N\{0}}.

Proposition 5.5. Set A be a pseudo-Ehoop and F ∈ PF(A).
F ∈MF(A)⇐⇒ for each s ∈ A\F implies 〈F∪{s}] = A.

Proof: (=⇒) From s /∈ F , we obtain F ⊆ 〈F∪{s}] and
F 6= 〈F ∪{s}]. By the maximality of F , we get 〈F ∪{s}] =
A.

(⇐=) If H ∈ PF(A) with F ⊆ H and F 6= H . There
exists s ∈ H\F . By (2), we deduce 〈F ∪ {s}] = A. It
is derived from 〈F ∪ {s}] ⊆ H that H = A, which is a
contradiction. Thus, F ∈MF(A).

Set A a pseudo-Ehoop and F ∈ F(A). Any elements
s, t ∈ A, we define

(s, t) ∈ θR(F ) ⇐⇒∃e ∈ Id(A) satisfying s, t ≤ e
and s→e t, t→e s ∈ F

and

(s, t) ∈ θL(F ) ⇐⇒∃e ∈ Id(A) satisfying s, t ≤ e
and s e t, t e s ∈ F.

Proposition 5.6. Set A be a pseudo-Ehoop and F ∈ F(A).
θR(F ) and θL(F ) are equivalence relations on A.

Proof: Obviously, (s, t) ∈ θR(F ) ⇐⇒ (t, s) ∈ θR(F ).
Moreover, for any s ∈ A, there is an element e ∈ Id(A)∩F
that satisfies s ≤ e. We have s →e s = e ∈ F , which
means that (s, s) ∈ θR(F ). Assume that (s, t) ∈ θR(F ) and
(t, w) ∈ θR(F ). There are two elements e, b ∈ Id(A) that
satisfy s, t ≤ e, t, w ≤ b and s→e t, t→e s, t→b w,w →b

t ∈ F . Take c ∈ Id(A) such that e, b ≤ c. By Proposition
3.8 (1), we obtain s →c t, t →c s, t →c w,w →c t ∈ F .
Form Proposition 2.2 (7), s →c w ≥ (t →c w) � (s →c

t) ∈ F and w →c s ≥ (t →c s) � (w →c t) ∈ F . Thus,
s →c w,w →c s ∈ F , which implies (s, w) ∈ θR(F ). We
similarly show that θL(F ) is an equivalence relation.

Proposition 5.7. Suppose that A a pseudo-Ehoop and F ∈
F(A). For any s, t ∈ A,
(1) (s, t) ∈ θR(F ) ⇐⇒ u� s = v � t for some u, v ∈ F ;
(2) (s, t) ∈ θL(F ) ⇐⇒ s� u = t� v for some u, v ∈ F .

Proof: (1) Assume (s, t) ∈ θR(F ). There is e ∈ Id(A)
satisfying s, t ≤ e and s→e t, t→e s ∈ F . Take u = s→e t
and v = t →e s. It follows that u � s = (s →e t) � s =
(t→e s)� t = v� t. Conversely, if u� s = v� t for some
u, v ∈ F , there is b ∈ Id(A) that satisfies u, v, s, t ≤ b.
Since v →b (t →b s) = (v � t) →b s = (u � s) →b s = b,
we have t→b s ≥ v ∈ F and so t→b s ∈ F . Similarly, we
get s→b t ∈ F . Thus, (s, t) ∈ θR(F ).

The proof of (2) is similar to (1).

Proposition 5.8. Set A be a pseudo-Ehoop and F ∈ F(A).
For all s, t, u, v ∈ A, there is c ∈ Id(A) with s, t, u, v ≤ c,
(1) (s, t) ∈ θR(F ) and (u, v) ∈ θR(F ) =⇒ s →c u ∈ F iff
t→c v ∈ F ;
(2) (s, t) ∈ θL(F ) and (u, v) ∈ θL(F ) =⇒ s  c u ∈ F iff
t c v ∈ F .

Proof: (1) Assume (s, t) ∈ θR(F ) and (u, v) ∈ θR(F ).
There are e, b ∈ Id(A) that satisfy s, t ≤ e, u, v ≤ b and
s →e t, t →e s, u →b v, v →b u ∈ F . Let c ∈ Id(A) with
e, b ≤ c. We obtain s→c t, t→c s, u→c v, v →c u ∈ F . By
Proposition 2.2 (7), we get that (u→c v)�(s→c u)�(t→c

s) ≤ (s→c v)� (t→c s) ≤ t→c v and (v →c u)� (t→c

v)� (s→c t) ≤ (t→c u)� (s→c t) ≤ s→c u. Therefore
s→c u ∈ F ⇐⇒ t→c v ∈ F .

(2) The proof is similar to (1).
A filter F of a pseudo-Ehoop A is said to be normal if for

any s, t ∈ A and e ∈ Id(A) with s, t ≤ e, s→e t ∈ F ⇐⇒
s  e t ∈ F . The set of all normal filters of A defined by
NF(A). For all u ∈ A, define u� F = {u� s|s ∈ F} and
F � u = {s� u|s ∈ F}.

Proposition 5.9. Suppose that A is a pseudo-Ehoop and F
is normal. Then
(1) u� F = F � u for each u ∈ A;
(2) θR(F ) = θL(F ).

Proof: (1) Set u ∈ A and t = u� s ∈ u� F . For each
e ∈ Id(A) with u, s, t ≤ e, we obtain t = t ∧ u = (u →e
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t)� u. From s e (u e t) = (u� s) e t = t e t = e,
we get s ≤ u e t and so u e t ∈ F . Since F is normal,
u →e t ∈ F . Hence, t = (u →e t) � u ∈ F � u, which
implies u�F ⊆ F�u. Similarly, F�u ⊆ u�F . Therefore,
u� F = F � u.

(2) Set s, t ∈ A and (s, t) ∈ θR(F ). By Proposition 5.7,
there are two elements u, v ∈ F that satisfy u � s = v � t.
By (1), there are m,n ∈ F such that u � s = s � m and
v � t = t � n. This s � m = t � n for some m,n ∈ F .
Applying Proposition 5.7 again, (s, t) ∈ θL(F ). Similarly,
(s, t) ∈ θL(F ) =⇒ (s, t) ∈ θR(F ). Hence, θR(F ) = θL(F ).

Proposition 5.10. Let A be a pseudo-Ehoop, F ∈ NF(A)
and s ∈ A.

〈F ∪ {s}] ={u ∈ A|u ≥ f � sn, for some f ∈ F,
n ∈ N\{0}}

={u ∈ A|u ≥ sn � f, for some f ∈ F,
n ∈ N\{0}}.

Proof: Clearly, 〈F ∪ {s}] = {u ∈ A|u ≥ (f1 �
sn1)�· · · (ft�snt), for some f1, · · · , ft ∈ F, n1, · · · , nt ∈
N\{0}} by Proposition 5.4,

If t = 1, then u ≥ f � sn1 .
If t = 2, then u ≥ (f1 � sn1)� (f2 � sn2) = f1 � (sn1 �

f2)�sn2 . Since F is normal, we have sn1�f2 ∈ sn1�F =
F � sn1 by Proposition 5.9. There exists h ∈ F satisfying
sn1 � f2 = h � sn1 . Thus, u ≥ f1 � (sn1 � f2) � sn2 =
(f1 � h) � (sn1 � sn2) = f � sn, where f = f1 � h ∈ F
and n = n1 + n2.

Therefore, the final result can be gradually obtained by
applying this procedure.

Proposition 5.11. Set A be a pseudo-Ehoop and F ∈
NF(A) ∩ PF(A). F ∈ MF(A)⇐⇒ for all s ∈ A\F and
t ∈ A, there are m ∈ N\{0} and e ∈ Id(A) with s, t ≤ e
that satisfy sm →e t ∈ F (or sm  e t ∈ F ).

Proof: (=⇒) Suppose s ∈ A\F . By Proposition 5.5,
〈F ∪ {s}] = A. Let t ∈ A. From Proposition 5.10, there are
two elements f ∈ F and m ∈ N\{0} that satisfy f�sm ≤ t.
Take e ∈ Id(A) with s, t, f ≤ e. We get f ≤ sm →e t and
so sm →e t ∈ F .

(⇐=) As F ∈ PF(A), there exists s ∈ A\F . By (2), for
all t ∈ A, we have sm →e t ∈ F for some m ∈ N\{0}
and e ∈ Id(A) with s, t ≤ e. From (sm →e t) � sm ≤ t,
we get t ∈ 〈F ∪ {s}〉. Thus A ⊆ 〈F ∪ {s}], which means
A = 〈F ∪ {s}]. By Proposition 5.5, F is maximal.

Based on the above proof, F ∈MF(A)⇐⇒ sm  e t ∈
F .

If F ∈ NF(A), we deduce that θR(F ) and θL(F ) are
consistent by Proposition 5.9. We define this equivalence
relation using θF .

Proposition 5.12. Let A be a pseudo-Ehoop and F ∈
NF(A). The equivalence relation θF is a congruence on
A.

Proof: Suppose that (s, t) ∈ θF and (u, v) ∈ θF . By
Proposition 5.7 (1), there exist p, q ∈ F satisfying p � s =
q�t. Then p�(s�u) = q�(t�u) and so (s�u, t�u) ∈ θF .
From Proposition 5.7 (2), there are two elements m,n ∈ F
with u�m = v � n. We obtain (t� u)�m = (t� v)� n
and so (t� u, t� v) ∈ θF . Therefore (s� u, t� v) ∈ θF .

Suppose that e ∈ Id(A) and (s, t), (u, v) ∈ θF∩(Ae×Ae).
We need to show that (s→e u, t→e v) ∈ θF ∩ (Ae × Ae).
Since (s, t), (u, v) ∈ θF , there are two elements b, c ∈ Id(A)
that satisfy s, t ≤ b, u, v ≤ c and s →b t, t →b s, u →c

v, v →c u ∈ F . Let d ∈ Id(A) with e, b, c ≤ d. We deduce
s →d t, t →d s, u →d v, v →d u ∈ F . By Proposition
2.2 (7), we get (u →d v) � (s →d u) ≤ s →d v and
so u →d v ≤ (s →d u) →d (s →d v). This means that
(s →d u) →d (s →d v) ∈ F . In the pseudo-hoop algebra
Ad, we have

(s→e u)→d (s→e v)

=(s→e u)→d ((s→d v) ∧ e)
=((s→e u)→d (s→d v)) ∧ ((s→e u)→d e)

=((s→e u)→d (s→d v)) ∧ d
=(s→e u)→d (s→d v).

Since s →e u ≤ s →d u, we have (s →d u) →d (s →d

v) ≤ (s →e u) →d (s →d v) = (s →e u) →d (s →e v).
It follows that (s →e u) →d (s →e v) ∈ F . Similarly,
we obtain (s →e v) →d (s →e u) ∈ F . Thus, (s →e

u, s →e v) ∈ θF . From t →d s ≤ (s →d v)  d (t →d v)
and s →d t ≤ (t →d v)  d (s →d v), we can prove
(s →e v, t →e v) ∈ θF in a similar way. Thus, (s →e

u, t→e v) ∈ θF and so (s→e u, t→e v) ∈ θF ∩(Ae×Ae).
Analogously, (s, t) ∈ θF ∩ (Ae × Ae) and (u, v) ∈ θF ∩

(Ae ×Ae) imply (s e u, t e v) ∈ θF ∩ (Ae ×Ae). This
proves that θF ∩ (Ae × Ae) is a congruence on Ae for all
e ∈ Id(A).

For any s, u ∈ A and e ∈ Id(A) with s, u ≤ e, we have
s∧u = (s→e u)�s. It means (s∧u, t∧v) ∈ θF . Therefore,
θF is a congruence on A.

Proposition 5.13. Set A be a pseudo-Ehoop with the least
element 0 and F ∈ NF(A). Then IF = {s ∈ A|∃e ∈
Id(A) that satisfies s ≤ e and s−e ∈ F} is an ideal of A.

Proof: Obviously, 0 ∈ IF . Assume that s, t ∈ A and
e ∈ Id(A) that satisfy s, t ≤ e and s, s−e�t ∈ IF . There are
b, c ∈ Id(A) that satisfy s ≤ b, s−e � t ≤ c and s−b , (s−e �
t)−c ∈ F . Choose d ∈ Id(A) with e, b, c ≤ d. From s−b ≤
s−d , we deduce s−d ∈ F . By Proposition 3.10, we obtain
(s−e � t)−c = (s−d � t)−c ≤ (s−d � t)−d and so (s−d �
t)−d ∈ F . Thus s−d →d t−d = (s−d � t)−d ∈ F . By
Proposition 5.2, t−d ∈ F , which implies t ∈ IF . If s, t �
s∼e ∈ IF , there are b, c ∈ Id(A) that satisfy s ≤ b, t �
s∼e ≤ c and s−b , (t � s∼e)−c ∈ F . Take d ∈ Id(A) with
e, b, c ≤ d. We deduce s−d ∈ F by s−b ≤ s−d . Because
F is normal, s∼d ∈ F . Also, we obtain (t � s∼e)−c =
(t� s∼d)−c ≤ (t� s∼d)−d by Proposition 3.10. This means
that (t � s∼d)−d ∈ F and so (t � s∼d)∼d ∈ F . Hence,
s∼d  d t

∼d ∈ F . By Proposition 5.3, we get t∼d ∈ F and
so t−d ∈ F . It follows that t ∈ IF . Therefore, IF is an ideal
of A by Proposition 4.2.

Remark 5.14. (1) Since F is normal, s ∈ IF ⇐⇒ ∃e ∈
Id(A) that satisfies s ≤ e and s∼e ∈ F .

(2)

s ∈ IF ⇐⇒∃f ∈ F,∃e ∈ Id(A) that satisfy s, f ≤ e
and s ≤ f−a

⇐⇒∃f ∈ F,∃e ∈ Id(A) that satisfy s, f ≤ e
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and s ≤ f∼e .

In fact, let s ∈ IF . There exists e ∈ Id(A) with s ≤ e
and s−e ∈ F . Since F is normal, s∼e ∈ F . Set f = s∼e .
It follows s ≤ s∼e−e = f−e . Conversely, we have f ≤
f−e∼e ≤ s∼e . We have s∼e ∈ F and so s−e ∈ F . Thus,
s ∈ IF .

Proposition 5.15. Let A be a pseudo-Ehoop with the least
element 0 and F ∈ NF(A) ∩ PF(A).
(1) s ∈ F implies s /∈ IF .
(2) If F is maximal, for any e ∈ Id(A) with e /∈ IF , we
obtain e ∈ F .
(3) If s ∈ F , then for any e ∈ Id(A) with s ≤ e, we obtain
s−e ∈ IF (s∼e ∈ IF ).

Proof: (1) If s ∈ IF , for any s ∈ F , there are f ∈ F
and e ∈ Id(A) that satisfy s, f ≤ e and s ≤ f−e . From
s ∈ F , we get f−e ∈ F . Then 0 = f � f−e ∈ F , which is
a contradiction.

(2) Suppose e /∈ F . We have 〈F ∪{e}] = A. Since 0 ∈ A,
there exists f ∈ F and n ∈ N\{0} that satisfy 0 ≥ en � f
by Proposition 5.10. Choose b ∈ Id(A) with f, e ≤ b. It
means e = en ≤ f−b . By Remark 5.14, e ∈ IF , which is a
contradiction.

The proof of (3) is clear.

Proposition 5.16. Let A be a pseudo-Ehoop and F ∈
MF(A) ∩ NF(A). For all e ∈ Id(A), either F ∩ Ae = ∅
or F ∩Ae is a maximal filter of Ae.

Proof: Let e ∈ Id(A) and F ∩Ae 6= ∅. There is s ∈ A
that satisfies s ∈ F ∩ Ae. Thus e ∈ F . Obviously, F ∩ Ae
is a normal filter of Ae. Set s ∈ Ae\(F ∩ Ae). We obtain
s /∈ F and so 〈F ∪ {s}] = A. For all w ∈ Ae, there exist
f ∈ F and n ∈ N\{0} that satisfy w ≥ f � sn. Choose
b ∈ Id(A) with e, f ≤ b. Then w = e∧w ≥ e� (f � sn) =
(e � f) � sn. From e, f ∈ F , we have e � f ∈ F ∩ Ae. It
follows w ∈ 〈(F ∩Ae)∪{s}] and so 〈(F ∩Ae)∪{s}] = Ae,
which implies that F ∩Ae is maximal.

Theorem 5.17. Set A be a proper pseudo-Ehoop. Then A
contains at least one maximal filter.

Proof: Consider the set F of all proper filters of A.
For any element e ∈ Id(A), it is evident that the subset
{s ∈ A|s ≥ e} constitutes a proper filter. Thus, F 6= ∅.
By applying Zorn’s Lemma, F has a maximal element. This
means that A has at least one maximal filter.

VI. PRIME IDEALS AND MAXIMAL IDEALS

This section will investigate prime ideals and maximal
ideals of pseudo-Ehoops. If A is a pseudo-Ehoop with the
pDN condition, every maximal ideal is prime. Furthermore,
we present a prime ideal theorem of A and provide an
equivalent form of prime ideals.

Definition 6.1. Set A be a pseudo-Ehoop with the least
element 0 and P a proper ideal. P is a prime ideal if for all
s, t ∈ A, s ∧ t ∈ P =⇒ s ∈ P or t ∈ P .

Theorem 6.2. (Prime ideal theorem) Consider an ideal I of
a pseudo-Ehoop A with the pDN condition. ∅ 6= S ⊆ A and
I ∩ S = ∅. If S is closed under ∧, a prime ideal P exists
that satisfies I ⊆ P and P ∩ S = ∅.

Proof: Set K = {J ∈ I(A)|I ⊆ J and J ∩ S = ∅}.
Clearly, I ∈ K and K 6= ∅. By Zorn’s Lemma, K has a
maximal element P . Consequently, I ⊆ P and P ∩ S = ∅,
establishing that P is proper. Assume s, t /∈ P and s∧t ∈ P .
We get P $ 〈P ∪{s}〉 and P $ 〈P ∪{t}〉. As P is maximal,
it means S ∩ 〈P ∪ {s}〉 6= ∅ and S ∩ 〈P ∪ {t}〉 6= ∅.
Thus, u ∈ S ∩ 〈P ∪ {s}〉 exists. There are ti ∈ P ,
s,mi ∈ N\{0} and e ∈ Id(A) such that ti, s ≤ e and
u ≤ � s

ei=1
(ti �e mies). Similarly, we have v ∈ S and

v ≤ � t
bi=1

(wi �b nibt), where wi ∈ P , t, ni ∈ N\{0}
and b ∈ Id(A) such that wi, t ≤ b. Let c ∈ Id(A)
with e, b ≤ c, w = (� s

ci=1
ti) �c (� t

ci=1
wi) ∈ P and

n = max{m1,m2, · · · ,ms, n1, n2, · · · , nt}. By Proposition
3.8 and 4.6, we can get

u ∧ v ≤ (� s
ei=1

(ti �e mies)) ∧ (� t
bi=1

(wi �b nibt))
≤ (� s

ci=1
(ti �c mics)) ∧ (� t

ci=1
(wi �c nict))

≤ sc(w �c ncs) ∧ tc(w �c nct)
≤ (st)c((w �c ncs) ∧ (w �c nct))
= (st)c(w �c (ncs ∧ nct))
≤ (st)c(w �c n2c(s ∧ t)).

From s ∧ t, w ∈ P , it follows u ∧ v ∈ P . Since S is closed
under ∧, we deduce u∧v ∈ S and so u∧v ∈ P ∩S, leading
to a contradiction. Thus, P must be a prime ideal.

Corollary 6.3. Let A be a pseudo-Ehoop with the pDN
condition and s /∈ I ∈ I(A). There exists a prime ideal
P that satisfies I ⊆ P and s /∈ P .

Proposition 6.4. Consider I to be a proper ideal of a pseudo-
Ehoop A with the pDN condition. If the condition holds:
for each e ∈ Id(A)\I =⇒ for any b ∈ Id(A) satisfying
e ≤ b, we find e−b ∈ I . (*)
Then FI = {s ∈ A|∃e ∈ Id(A)\I satisfying s ≤
e and s−e ∈ I} is a filter.

Proof: Clearly, there is s ∈ A\I . Let e ∈ Id(A) with
s ≤ e, implying e /∈ I . For all t ∈ A, there is b ∈ Id(A)
that satisfies t ≤ b. Take c ∈ Id(A) and e, b ≤ c. Then
c /∈ I . From the condition (*), it means c−c ∈ I and so
c ∈ FI . This ensures FI 6= ∅ and demonstrates the existence
of c ∈ Id(A) ∩ FI satisfying t ≤ c for each t ∈ A.

If s ≤ t and s ∈ FI , there is e ∈ Id(A)\I that satisfies
s ≤ e and s−e ∈ I . For any b ∈ Id(A) with s, t, e ≤ b, it
follows e−b ∈ I by (*), while b /∈ I . By Proposition 3.8 (2)
and Proposition 4.6 (1), we have

e−b �b s−e = e−b �b (s−b ∧ e)
= (e−b �b s−b) ∧ (e−b �b e)
= (e−b �b s−b) ∧ b
= e−b �b s−b .

Then e−b �b s−b ∈ I . From s−b ≤ e−b �b s−b , we deduce
s−b ∈ I . Since t−b ≤ s−b , we have t−b ∈ I . This implies
t ∈ FI .

If s, t ∈ FI , there are two elements e, b ∈ Id(A)\I that
satisfy s ≤ e, t ≤ b and s−e , t−b ∈ I . Let c ∈ Id(A) with
e, b ≤ c. Thus c /∈ I . We find e−c , b−c ∈ I and thereby
conclude c ∈ Id(A)\I . Similarly, from s−c ≤ e−c �c s−c =
e−c �c s−e ∈ I and t−c ≤ b−c �c t−c = b−c �c t−b ∈ I ,
we deduce s−c , t−c ∈ I . Then, (s � t)−c = s →c t

−c =
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s−c∼c →c t
−c = s−c ;c t

−c ∈ I . This confirms that s� t ∈
FI . Therefore, FI is a filter.

A proper ideal of a pseudo-Ehoop A with the least element
0 is maximal if no other proper ideal of A can strictly contain
it. If A is normal, then I is maximal ⇐⇒ for any s ∈ A\I ,
〈I ∪ {s}〉 = A.

Proposition 6.5. Set A be a pseudo-Ehoop with the pDN
condition and F ∈ MF(A) ∩ NF(A). Then IF = {s ∈
A|∃f ∈ F, e ∈ Id(A) that satisfy s, f ≤ e and s ≤ f−e} is
a maximal ideal.

Proof: By Proposition 5.13 and Remark 5.14, IF ∈
I(A). As F ∈ NF(A), there exists e ∈ Id(A) ∩ F that
satisfies s ≤ e for each s ∈ A. From Proposition 5.15 (1),
we get e /∈ IF . It follows that IF is proper.

Let J ∈ I(A) and IF ⊆ J 6= A. For all e ∈ Id(A)\J ,
we have e /∈ IF . By Proposition 5.15 (2), we obtain that
e ∈ F . Also, for each b ∈ Id(A) satisfying e ≤ b, we get
e−b ∈ IF ⊆ J . Hence, FJ is a filter by Proposition 6.4. Let
h ∈ A\J . For every f ∈ F , there is c ∈ Id(A) satisfying
f, h ≤ c. Consequently, c /∈ J , and since f−c ∈ IF ⊆ J ,
we conclude that f ∈ FJ . This proves F ⊆ FJ . As F is
maximal, we get two cases: either FJ = F or FJ = A. If
FJ = A, then 0 ∈ FJ . There is d ∈ Id(A)\J that meets
d = 0−d ∈ J , which creates a contradiction. Therefore, we
deduce FJ = F .

Let s ∈ J . There is an element e ∈ Id(A)\J satisfying
s ≤ e. It shows s∼e−e = s ∈ J . Hence, we have s∼e ∈
FJ = F . Since s ≤ s∼e−e , we get s ∈ IF . This proves that
J ⊆ IF and so J = IF . Therefore, IF is maximal.

Proposition 6.6. Set A be a pseudo-Ehoop with the pDN
condition. A maximal ideal I is prime.

Proof: Assume that I is maximal. There is s ∈ A
satisfying s /∈ I . By Corollary 6.3, a prime ideal P exists
that satisfies I ⊆ P and s /∈ P . It follows I = P , confirming
that I is prime.

Lemma 6.7. Set A be a pseudo-Ehoop with the pDN con-
dition. Any elements s, t ∈ A, we obtain 〈s∧ t〉 = 〈s〉 ∩ 〈t〉.

Proof: Suppose w ∈ 〈s ∧ t〉. There are two elements
e ∈ Id(A) and n ∈ N\{0} that satisfy s ∧ t ≤ e and w ≤
ne(s∧ t). Set c ∈ Id(A) with s, t, e ≤ c. By Proposition 4.5
and Proposition 3.8, we obtain ne(s ∧ t) ≤ nes ≤ ncs and
ne(s ∧ t) ≤ net ≤ nct. Thus, w ≤ ncs and w ≤ nct, which
imply w ∈ 〈s〉 ∩ 〈t〉.

Conversely, there are e, b ∈ Id(A) and m,n ∈ N\{0}
that satisfy s ≤ e, t ≤ b, w ≤ mes and w ≤ nbt. For any
c ∈ Id(A) with e, b ≤ c, we obtain w ≤ mes ∧ nbt ≤
mcs ∧ nct ≤ (mn)c(s ∧ t) by Proposition 4.6. Therefore,
w ∈ 〈s ∧ t〉.

Theorem 6.8. Let P be an ideal of a pseudo-Ehoop A with
the pDN condition. Then P is prime if and only if for any
ideals I, J , I ∩ J ⊆ P implies I ⊆ P or J ⊆ P .

Proof: To suppose I, J * P . We can find elements
s ∈ I\P and t ∈ J\P . Consequently, s ∧ t ∈ I ∩ J ⊆ P .
We get s ∈ P or t ∈ P , which is contradictory to our initial
assumptions. Thus, it must be that I ⊆ P or J ⊆ P .

Conversely, if s∧ t ∈ P . We obtain 〈s∧ t〉 ⊆ P . It follows
〈s〉∩〈t〉 ⊆ P by Lemma 6.7. Therefore 〈s〉 ⊆ P or 〈t〉 ⊆ P .

This means s ∈ P or t ∈ P .

VII. IMPLICATIVE FILTERS AND POSITIVE IMPLICATIVE
FILTERS

In this section, we study implicative filters and positive
implicative filters of pseudo-Ehoops and the relation between
them. It is proved that every positive implicative and normal
filter is an implicative filter in a pseudo-Ehoop.

Definition 7.1. Set A be a pseudo-Ehoop. ∅ 6= F ⊆ A is an
implicative filter if for any s, t, w ∈ A and e ∈ Id(A) with
s, t, w ≤ e,
(IF1) there is b ∈ Id(A) ∩ F with s ≤ b;
(IF2) s →e (t →e w) ∈ F and s  e t ∈ F imply that
s→e w ∈ F ;
(IF3) if s e (t e w) ∈ F and s→e t ∈ F , then it follows
that s e w ∈ F .

The set of all implicative filters of A is defined by IF(A).

Proposition 7.2. Any implicative filter of a pseudo-Ehoop
A is a filter.

Proof: To demonstrate this, let s, t ∈ A and e ∈ Id(A)
that satisfy s, t ≤ e and s, s  e t ∈ F . Thus, we obtain
e  e (s  e t) = s  e t ∈ F and e →e s = s ∈ F . It
follows t = e e t ∈ F . By Proposition 5.3, F ∈ F(A).

Proposition 7.3. Set A be a pseudo-Ehoop and F ∈ IF(A).
Then for any s, t ∈ A, there is e ∈ Id(A) with s, t ≤ e. We
obtain
(1) if s e (s e t) ∈ F , then s e t ∈ F ;
(2) if s→e (s→e t) ∈ F , then s→e t ∈ F .

Proof: (1) Let s, t ∈ A. There is e ∈ Id(A) ∩ F with
s, t ≤ e. It follows s e s = e ∈ F . According to Definition
7.1, we have s→e t ∈ F .

The proof of (2) is similar to (1).

Proposition 7.4. Let A be a pseudo-Ehoop, F ∈ NF(A)
and s, t ∈ A. For each e ∈ Id(A) with s, t ≤ e, if s →e

(s→e t) ∈ F implies s→e t ∈ F and s e (s e t) ∈ F
implies s e t ∈ F , then F ∈ IF(A).

Proof: Set s, t, w ∈ A and e ∈ Id(A) that satisfy
s, t, w ≤ e, s  e (t  e w) ∈ F and s →e t ∈ F . As
F is normal, we can conclude that s →e (t  e w) ∈ F .
By Proposition 2.2 (9), this implies t  e (s →e w) ∈ F ,
which further leads to t →e (s →e w) ∈ F . We have
(t→e (s→e w))� (s→e t) ∈ F . According to Proposition
2.2 (7), it shows (t →e (s →e w)) � (s →e t) ≤ s →e

(s →e w), leading to s →e (s →e w) ∈ F . Therefore, we
obtain s →e w ∈ F and therefore s  e w ∈ F . Similarly,
if s →e (t →e w) ∈ F and s  e t ∈ F , we deduce
s→e w ∈ F .

Proposition 7.5. Set A be a pseudo-Ehoop and F ∈
NF(A). Then F ∈ IF(A) ⇐⇒ For each s ∈ A, there
is an element e ∈ Id(A) satisfying s ≤ e and s→e s

2 ∈ F
(s e s

2 ∈ F ).

Proof: (=⇒) Suppose s ∈ A. There is e ∈ Id(A) ∩ F
with s ≤ e. From s→e (s→e s�s) = (s�s)→e (s�s) =
e ∈ F and s e s = e ∈ F , we deduce that s→e s�s ∈ F .

(⇐=) Let s, t, w ∈ A and e ∈ Id(A) that satisfy s, t, w ≤
e. If s →e (t →e w) ∈ F and s  e t ∈ F . We obtain
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s  e (t →e w) ∈ F as well as s →e t ∈ F . Consequently,
we get (s  e (t →e w)) � (s →e t) ∈ F . Using the
relation s� (s e (t→e w))� (s→e t)� s = (s ∧ (t→e

w)) � (s ∧ t) ≤ (t →e w) � t ≤ w, we conclude that
(s  e (t →e w)) � (s →e t) ≤ s  e (s →e w) and so
s  e (s →e w) ∈ F . Thus s2 →e w = s →e (s →e

w) ∈ F . By (2), there exists b ∈ Id(A) satisfying s ≤ b
and s →b s

2 ∈ F . Choose c ∈ Id(A) with e, b ≤ c. Then
s→c s

2 ∈ F . By Proposition 3.10, we obtain (s2 →e w)�
(s→e s

2) = (s2 →e w)�(s→c s
2) ∈ F . It is derived from

Proposition 2.2 (7) that (s2 →e w)� (s→e s
2) ≤ s→e w.

Then s→e w ∈ F . Similarly, (IF3) holds.

Proposition 7.6. Set A be a pseudo-Ehoop and F ∈
IF(A) ∩ NF(A). For every u ∈ A, the set Au = {s ∈
A|∃e ∈ Id(A) satisfying u, s ≤ e and u →e s ∈ F} is a
filter.

Proof: For each s ∈ A, there exists an element e ∈
Id(A) ∩ F satisfying s ≤ e. Let b ∈ Id(A) be chosen so
that u, e ≤ b. According to Proposition 7.2, F is a filter.
Then u→b b = b ∈ F and so b ∈ Au.

Let s, t ∈ A and e ∈ Id(A) satisfying s, t ≤ e. Assume
s ∈ Au and s→e t ∈ Au. There exists b ∈ Id(A) for which
u, s ≤ b and u →b s ∈ F . Furthermore, there exists c ∈
Id(A) that satisfies u, s→e t ≤ c and u→c (s→e t) ∈ F .
Take d ∈ Id(A) with e, b, c ≤ d. From u →b s ≤ u →d s
and u →c (s →e t) ≤ u →d (s →e t) ≤ u →d (s →d t),
we have u →d s ∈ F and u →d (s →d t) ∈ F . As F is
normal, it follows u  d s ∈ F and so u →d t ∈ F . Hence
we deduce t ∈ Au. By Proposition 5.2, Au is a filter.

Definition 7.7. Set A be a pseudo-Ehoop. ∅ 6= F ⊆ A is
a positive implicative filter if s, t, w ∈ A and e ∈ Id(A)
satisfying s, t, w ≤ e,
(1) there exists b ∈ Id(A) ∩ F with s ≤ b;
(2) s→e ((t→e w) e t) ∈ F and s ∈ F imply t ∈ F ;
(3) s e ((t e w)→e t) ∈ F and s ∈ F imply t ∈ F .

We denote PIF(A) by the set of all positive implicative
filters of A. By s →e ((t →e e) →e t) = s →e t and
Proposition 5.2, we obtain F ∈ PIF(A) =⇒ F ∈ F(A).

Proposition 7.8. Set A a pseudo-Ehoop and F ∈ F(A).
Then F ∈ PIF(A) ⇐⇒ for any s, t ∈ A and e ∈ Id(A)
with s, t ≤ e, (s →e t)  e s ∈ F implies s ∈ F and
(s e t)→e s ∈ F implies s ∈ F .

Proof: (=⇒) Set s, t ∈ A and e ∈ Id(A) with s, t ≤ e.
If (s→e t) e s ∈ F , then e→e ((s→e t) e s) = (s→e

t)  e s ∈ F . As (s →e t)  e s ≤ e, It means e ∈ F .
Hence, s ∈ F . In a similar way, if (s e t)→e s ∈ F , then
s ∈ F .

(⇐=) Consider s, t, w ∈ A and e ∈ Id(A) satisfying
s, t, w ≤ e. Suppose that s ∈ F and s →e ((t →e w)  e

t) ∈ F . By Proposition 5.2, we find (t →e w)  e t ∈ F .
According to the assumption, we have t ∈ F . Similarly, if
s ∈ F and s  e ((t  e w) →e t) ∈ F , we obtain t ∈ F .

Proposition 7.9. Set A be a pseudo-Ehoop and F ∈
NF(A). Then F ∈ PIF(A) =⇒ F ∈ IF(A).

Proof: Set s ∈ A. Since F ∈ NF(A), there is e ∈

Id(A) ∩ F satisfying s ≤ e. Then

e→e (((s→e s
2)→e s

2) e (s→e s
2))

=((s→e s
2)→e s

2) e (s→e s
2)

=s→e (((s→e s
2)→e s

2) e s
2) (Proposition 2.2 (9))

≥s→e (s→e s
2) (Proposition 2.2 (10))

=s2 →e s
2 = e ∈ F.

Thus, e →e (((s →e s
2) →e s

2)  e (s →e s
2)) ∈ F . By

Definition 7.7, s→e s
2 ∈ F . Consequently, from Proposition

7.5, we determined that F ∈ IF(A).

Proposition 7.10. Set A be a pseudo-Ehoop and F ∈
NF(A). The next statements are equivalent:
(1) F ∈MF(A) ∩ PIF(A);
(2) F ∈MF(A) ∩ IF(A);
(3) for any s, t ∈ A\F , there is an element e ∈ Id(A) that
satisfies s, t ≤ e and t→e s ∈ F .

Proof: (1) =⇒ (2) By Proposition 7.9, the proof is
obvious.

(2) =⇒ (3) Suppose s, t /∈ F . By Proposition 7.6, At =
{w ∈ A|∃b ∈ Id(A) satisfying t, w ≤ b and t →b w ∈ F}
is a filter. Take u ∈ F . There is c ∈ Id(A) satisfying t, u ≤ c.
From u ≤ t→c u, we obtain t→c u ∈ F . It follows u ∈ At.
Thus, F ⊆ At. Since F ∈ F(A), there is d ∈ Id(A)∩F that
satisfies t ≤ d. We obtain t →d t = d ∈ F and so t ∈ At.
Then F ∪ {t} ⊆ At. By the maximality of F , At = A.
Hence, s ∈ At. There is an element e ∈ Id(A) that satisfies
t, s ≤ e and t→e s ∈ F .

(3) =⇒ (1) Assume that F /∈ PIF(A). According to
Proposition 7.8, there are s, t ∈ A and e ∈ Id(A) that satisfy
s, t ≤ e. Also, (s →e t)  e s ∈ F but s /∈ F or (s  e

t) →e s ∈ F but s /∈ F . Without loss of generality, we
consider the first case. If t ∈ F , from t ≤ s→e t, we derive
s→e t ∈ F . By Proposition 5.3, we have s ∈ F , which leads
to a contradiction. If t /∈ F , from (3), there is b ∈ Id(A)
satisfying s, t ≤ b and s→e t ∈ F . Choose c ∈ Id(A) with
e, b ≤ c. We obtain s→c t ∈ F and

(s→e t) e s ≤ ((s→c t) ∧ e) c s

= (e� (s→c t)) c s

= (s→c t) c (e c s).

Thus (s →c t)  c (e  c s) ∈ F , it follows e  c s ∈ F .
Since e ∈ F , we deduce s ∈ F , resulting once more in a
contradiction.

Now, we prove that F is maximal. Suppose u /∈ F . From
the proof of (2) =⇒ (3), we have F∪{u} ⊆ Au. Let T be any
filter of A and F ∪ {u} ⊆ T . If s ∈ Au, there is an element
e ∈ Id(A) that satisfies u, s ≤ e and u →e s ∈ F ⊆ T .
Since u ∈ T , then s ∈ T . Thus we conclude that Au ⊆ T
and Au = 〈F ∪{u}]. Consider any element v ∈ A. If v ∈ F ,
we get v ∈ Au. If v /∈ F , there is b ∈ Id(A) satisfying
u, v ≤ b and u →b v ∈ F by (3), which means v ∈ Au.
Consequently, A = Au.

VIII. INTERNAL STATES

In this section, we define internal states of pseudo-Ehoops
and further study state filters. Furthermore, it is proved that
PSF[A] constitutes a topological space.
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Definition 8.1. An internal state on a pseudo-Ehoop A with
the least element 0 is a mapping τ : A→ A satisfying: any
elements s, t ∈ A,
(S1) τ(0) = 0;
(S2) for any e ∈ Id(A) such that s, t ≤ e, τ(s →e t) =
τ(s)→τ(e) τ(s ∧ t) and τ(s e t) = τ(s) τ(e) τ(s ∧ t);
(S3) for any e ∈ Id(A) such that s, t ≤ e, τ(s � t) =
τ(s)� τ(s e (s� t)) = τ(t→e (s� t))� τ(t);
(S4) τ(τ(s)� τ(t)) = τ(s)� τ(t);
(S5) τ(τ(s) ∧ τ(t)) = τ(s) ∧ τ(t).

Let A be a pseudo-Ehoop with the least element 0 and τ
be an internal state on A. The pair (A, τ) is called a state
pseudo-Ehoop.

Example 8.2. Let A be a pseudo-Ehoop with the least
element 0. From Proposition 2.2 (11), it is easy to check
that the identity 1A : A→ A is an internal state on A.

Example 8.3. Suppose that A and B are two pseudo-Ehoops
with the least element 0. From Example 3.6, A × B is a
pseudo-Ehoop with the least element 0. For all (s1, s2) ∈ A×
B, define the function τ : A×B → A×B, (s1, s2) 7→ (s1, 0).
By Proposition 2.2 (8) and (11), we have that τ is an internal
state on A×B.

Proposition 8.4. Let (A, τ) be a state pseudo-Ehoop. Then
for all s, t ∈ A,
(1) if e ∈ Id(A), τ(e) ∈ Id(A);
(2) s ≤ t implies τ(s) ≤ τ(t);
(3) any element e ∈ Id(A) with s ≤ e, τ(s−e) = (τ(s))−τ(e)

and τ(s∼e) = (τ(s))∼τ(e) ;
(4) τ(s� t) ≥ τ(s)� τ(t);
(5) for all e ∈ Id(A) such that s, t ≤ e, τ(s →e t) ≤
τ(s) →τ(e) τ(t) and τ(s  e t) ≤ τ(s)  τ(e) τ(t). If s
and t are comparable (i.e. s ≤ t or t ≤ s), τ(s →e t) =
τ(s)→τ(e) τ(t) and τ(s e t) = τ(s) τ(e) τ(t);
(6) τ2(s) = τ(s);
(7) τ(A) = {s ∈ A|τ(s) = s}.

Proof: (1) Let e ∈ Id(A). From (S3), it is clear.
(2) Suppose s ≤ t. For any e ∈ Id(A) with s, t ≤ e, we

get s = s∧t = (t→e s)�t. Applying (S3), τ(s) = τ((t→e

s)� t) = τ(t→e ((t→e s)� t))� τ(t) ≤ τ(t).
(3) For all e ∈ Id(A) satisfying s ≤ e, by (S1) and (S2),

τ(s−e) = τ(s →e 0) = τ(s) →τ(e) τ(s ∧ 0) = τ(s) →τ(e)

τ(0) = τ(s) →τ(e) 0 = (τ(s))−τ(e) . Similarly, τ(s∼e) =
(τ(s))∼τ(e) .

(4) Any element e ∈ Id(A) with s, t ≤ e. We obtain
t ≤ s e (s� t). It is derived from (2) that τ(t) ≤ τ(s e

(s� t)). By (S3), τ(s)� τ(t) ≤ τ(s)� τ(s e (s� t)) =
τ(s� t).

(5) Let e ∈ Id(A) satisfying s, t ≤ e. As τ(s ∧ t) ≤
τ(t), we obtain τ(s →e t) = τ(s) →τ(e) τ(s ∧ t) ≤
τ(s) →τ(e) τ(t). If s ≤ t, we have τ(s) ≤ τ(t). That
is τ(s) →τ(e) τ(t) = τ(e). On the other hand, we get
τ(s→e t) = τ(s)→τ(e) τ(s∧t) = τ(s)→τ(e) τ(s) = τ(e).
Thus, τ(s →e t) = τ(s) →τ(e) τ(t). If t ≤ s, then
τ(s→e t) = τ(s)→τ(e) τ(s ∧ t) = τ(s)→τ(e) τ(t).

(6) Set e ∈ Id(A) with s ≤ e. It follows τ2(s) =
τ(τ(s)) = τ(τ(s) ∧ τ(e)) = τ(s) ∧ τ(e) = τ(s) by (S5).

(7) Suppose t ∈ τ(A). There is s ∈ A satisfying τ(s) = t.
It means that τ(t) = τ(τ(s)) = τ(s) = t and so t ∈ {s ∈

A|τ(s) = s}. Therefore, τ(A) ⊆ {s ∈ A|τ(s) = s}. The
other direction is obvious.

Proposition 8.5. Set (A, τ) be a state pseudo-Ehoop. τ(A)
is a subalgebra of A.

Proof: Assuming τ(s), τ(t) ∈ τ(A). By (S4) and (S5),
τ(A) is closed under the operations ∧ and �. Let e ∈ Id(A)
with s, t ≤ e. We deduce that τ(s), τ(t) ≤ τ(e) ∈ Id(τ(A))
and τ(e) ∈ Id(A) ∩ τ(A). By Proposition 3.12 in [10],
τ(Ae) = {τ(s) ∈ τ(A)|s ≤ e} is a subalgebra of Ae.
Therefore, τ(A) is a subalgebra of A.

Definition 8.6. Suppose that (A, τ) is a state pseudo-Ehoop.
A subset ∅ 6= F ⊆ A is a state filter of (A, τ) if
(1) F ∈ F(A);
(2) s ∈ F =⇒ τ(s) ∈ F for each s ∈ A.

Let ∅ 6= S ⊆ A. It is easy to see that the intersection of all
state filters of (A, τ) is a state filter. We denote the smallest
state filter of (A, τ) containing S by bSeτ , which is the state
filter generated by S. If S = {s}, we use bseτ instead of
b{s}eτ .

Theorem 8.7. Set S 6= ∅ be a subset of a state pseudo-Ehoop
(A, τ) and F a normal state filter of (A, τ) and s /∈ F .
(1) bSeτ = {u ∈ A|u ≥ (s1 � τ(s1)) � · · · � (sn �
τ(sn)), s1, · · · , sn ∈ S, n ≥ 1};
(2) bF∪{s}eτ = {u ∈ A|u ≥ f�(s�τ(s))n, f ∈ F, n ≥ 1}.

Proof: (1) Set G = {u ∈ A|u ≥ (s1 � τ(s1)) � · · · �
(sn � τ(sn)), s1, · · · , sn ∈ S, n ≥ 1}. Assume s ∈ S. It
follows from u ≥ u � τ(u) that u ∈ G and so S ⊆ G.
For all u ∈ A and s1, · · · , sn ∈ S, there is e ∈ Id(A)
that satisfies u, s1, · · · , sn, τ(s), τ(s1), · · · , τ(sn) ≤ e. Thus
e ≥ (s1 � τ(s1))� · · · � (sn � τ(sn)), which means e ∈ G.
Let b ∈ Id(A) satisfying u, v ≤ b and u, u  b v ∈ S.
There exist m,n ≥ 1 and s1, · · · , sm, t1, · · · , tn ∈ S such
that u ≥ (s1 � τ(s1))� · · · � (sm � τ(sm)) and u b v ≥
(t1�τ(t1))�· · ·�(tn�τ(tn)). Then (s1�τ(s1))�· · ·�(sm�
τ(sm))�(t1�τ(t1))�· · ·�(tn�τ(tn)) ≤ u�(u b v) ≤ t.
So v ∈ S. By Proposition 5.3, S is a filter of A containing
S.

Let u ∈ G. There exist m ≥ 1 and s1, · · · , sm ∈ S such
that u ≥ (s1 � τ(s1)) � · · · � (sm � τ(sm)). For all i =
1, · · · ,m, we have τ(si), si ≥ si � τ(si) and so τ(si), si ∈
G. Since G is a filter, τ(si) � si ∈ G. By Proposition 8.4
(4),

τ(u) ≥ τ((s1 � τ(s1))� · · · � (sm � τ(sm)))

≥ τ((s1 � τ(s1)))� · · · � τ((sm � τ(sm)))

≥ (τ(s1)� s1)� · · · � (τ(sm � sm).

Then τ(u) ∈ G. This proves that G is a state filter of (A, τ)
containing S. If T is a state filter of (A, τ) containing S.
For all u ∈ G, there exist m ≥ 1 and s1, · · · , sm ∈ S
such that u ≥ (s1 � τ(s1)) � · · · � (sm � τ(sm)). We
get τ(s1), · · · , τ(sm) ∈ T . Hence (s1 � τ(s1)) � · · · �
(sm � τ(sm)) ∈ T . This implies u ∈ T and so G ⊆ T .
Therefore, bSeτ = {u ∈ A|u ≥ (s1 � τ(s1)) � · · · � (sn �
τ(sn)), s1, · · · , sn ∈ S, n ≥ 1}.

(2) By the proof of (1) and Proposition 5.9 (1), the proof
is straightforward.

Remark 8.8. By Theorem 8.7, for all s ∈ A, bseτ = {v ∈
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A|v ≥ (s� τ(s))n, n ≥ 1}

Proposition 8.9. Set (A, τ) be a state pseudo-Ehoop and
s, t ∈ A.
(1) s ≤ t =⇒ bteτ ⊆ bseτ ;
(2) bτ(s)eτ ⊆ bseτ = bs� τ(s)eτ .

Proof: (1) Let s ≤ t. We have τ(s) ≤ τ(t). If u ∈ bteτ ,
there is m ≥ 1 with u ≥ (t � τ(t))m. Hence u ≥ (t �
τ(t))m ≥ (s� τ(s))m. It means u ∈ bseτ .

(2) For any u ∈ bτ(s)eτ , there exists m ≥ 1 with u ≥
(τ(s)� τ2(s))m = (τ(s)� τ(s))m. Since τ(s) ≥ s� τ(s),
τ(s) ∈ bseτ . Then (τ(s)� τ(s))m ∈ bseτ and so u ∈ bseτ .

Suppose u ∈ bs � τ(s)eτ . There exists m ≥ 1 satisfying
u ≥ ((s� τ(s))� τ(s� τ(s)))m. From Proposition 8.4 (4),
we derive that u ≥ (s� τ(s))m, it means u ∈ bseτ . By (1),
the other direction is clear.

Definition 8.10. Set (A, τ) be a state pseudo-Ehoop. A
proper state filter F is a prime state filter if F1 ∩ F2 ⊆ F
implies F1 ⊆ F or F2 ⊆ F , where F1, F2 are arbitrary state
filters.

Define the set of all prime state filters of (A, τ) by PSF[A].

Definition 8.11. A proper state filter F of a state pseudo-
Ehoop (A, τ) is said to be maximal if no proper state filters
of (A, τ) can strictly contain it.

Lemma 8.12. Set (A, τ) be a state pseudo-Ehoop and F a
normal state filter. The statements listed below are equivalent:
(1) F is maximal;
(2) for each s ∈ A\F , bF ∪ {s}eτ = A;
(3) any element s ∈ A\F , there are e ∈ Id(A) and n ∈
N\{0} that satisfy s ≤ e and ((τ(s))n)−τ(e) ∈ F .

Proof: (1)⇐⇒ (2) Similar to Proposition 5.5, the proof
is straightforward.

(2) =⇒ (3) Set s ∈ A\F . We have 0 ∈ A = bF ∪ {s}eτ .
There exist f ∈ F and m ∈ N∗ that satisfy 0 ≥ f � (s �
(τ(s)))m. Thus 0 = τ(0) ≥ τ(f) � τ((s � (τ(s)))m) ≥
τ(f)�(τ(s))2m. There exists e ∈ Id(A) satisfying s, f ≤ e.
So τ(f) ≤ ((τ(s))2m)−τ(e) . From τ(f) ∈ F , we obtain
((τ(s))2n)−τ(e) ∈ F .

(3) =⇒ (2) Suppose s ∈ A\F . Take n ≥ 1 and
e ∈ Id(A) with s ≤ e and ((τ(s))n)−τ(e) ∈ F . Therefore,
((τ(s))n)−τ(e)�(s�τ(s))n ≤ ((τ(s))n)−τ(e)�(τ(s))n = 0.
This together with ((τ(s))n)−τ(e) ∈ F implies 0 ∈ bF ∪
{s}eτ . Thus, bF ∪ {s}eτ = A.

Let (A, τ) be a state pseudo-Ehoop and S ⊆ A. We define
[S] = {F ∈ PSF[A]|S * F}, which is a subset of PSF[A].
If S = {s}, let [s] = [{s}] = {F ∈ PSF[A]|s /∈ F}.

Proposition 8.13. Suppose that (A, τ) is a state pseudo-
Ehoop and S, T ⊆ A. Set {Si}i∈I be family subsets of A.
We have
(1) S ⊆ T =⇒ [S] ⊆ [T ];
(2) [0] = PSF[A], [∅] = ∅;
(3) [S] ∩ [T ] = [bSeτ ∩ bT eτ ];
(4)
⋃
i∈I [Si] = [

⋃
i∈I Si];

(5) [S] = [bSeτ ].

Proof: (1) Let S ⊆ T and F ∈ [S]. We have S * F . It
means T * F and so F ∈ [T ].

(2) The proof is straightforward.

(3) Let F ∈ [S] ∩ [T ]. We get S, T * F . It follows
bSeτ , bT eτ * F . Therefore bSeτ ∩ bT eτ * F . This means
F ∈ [bSeτ ∩ bT eτ ]. Hence, [S] ∩ [T ] ⊆ [bSeτ ∩ bT eτ ].
Conversely, if F ∈ [bSeτ∩bT eτ ], we have bSeτ∩bT eτ * F .
Then S ⊆ bSeτ * F and T ⊆ bT eτ * F . Thus,
F ∈ [S] ∩ [T ]. This proves [bSeτ ∩ bT eτ ] ⊆ [S] ∩ [T ].

(4) Any i ∈ I , we get Si ⊆
⋃
i∈I Si, which means

[Si] ⊆ [
⋃
i∈I Si]. Then

⋃
i∈I [Si] ⊆ [

⋃
i∈I Si]. Conversely,

let F ∈ [
⋃
i∈I Si]. There is j ∈ I with Sj * F ,

which means that F ∈ [Sj ] and F ∈
⋃
i∈I [Si]. Therefore,

[
⋃
i∈I Si] ⊆

⋃
i∈I [Si].

(5) From S ⊆ bSeτ and (1), we obtain [S] ⊆ [bSeτ ].
Suppose F ∈ [bSeτ ], that is, bSeτ * F . We deduce S * F .
In fact, let S ⊆ F . Then bSeτ ⊆ F , which is a contradiction.
Hence, F ∈ [S].

Proposition 8.14. Assume that (A, τ) is a state pseudo-
Ehoop and s, t ∈ A. Then
(1) [s] = [bseτ ];
(2) s ≤ t =⇒ [t] ⊆ [s];
(3) [s] ∪ [t] = [s� t].

Proof: By Proposition 8.13, the proofs of (1) and (2)
are clear.

(3) From s� t ≤ s, t, we have [s], [t] ⊆ [s� t] by (2) and
so [s] ∪ [t] ⊆ [s� t]. Suppose F ∈ [s� t]. Then s� t /∈ F .
This follows s /∈ F or t /∈ F . Therefore, F ∈ [s] or F ∈ [t].
This proves that F ∈ [s] ∪ [t].

Theorem 8.15. Let (A, τ) be a state pseudo-Ehoop and T =
{[S]|S ⊆ A} a subset of the power set of PSF[A]. Then T
is a topology on PSF[A] and {[s]|s ∈ A} is a basis for T .

Proof: Clearly, T is a topology on PSF[A] by Propo-
sition 8.13 (2), (3) and (4). For each S ⊆ A, we obtain
[S] = [

⋃
s∈S{s}] =

⋃
s∈S [s] by Proposition 8.13 (4), which

implies that the open set of T is the union of some elements
of {[s]|s ∈ A}. Therefore, {[s]|s ∈ A} is a basis for T .

IX. CONCLUSION

Pseudo-hoops are noncommutative generalizations of
hoops. Ehoops are unbounded extensions of hoops. In this
paper, we introduce pseudo-Ehoops, which are noncommu-
tative and unbounded extensions of hoops. Some basic prop-
erties of pseudo-Ehoops are given. We mainly investigate
ideals, congruences and filters on peudo-Ehoops and obtain
some important conclusions. If A is a pseudo-Ehoop with
the pDN condition, we establish a one-to-one correspondence
between ideals and congruences on A. In addition, a prime
ideal theorem of A is obtained. It is demonstrated that every
proper pseudo-Ehoop A contains at least one maximal filter,
and every maximal ideal is prime. Moreover, we construct a
topology on PSF[A].

In future work, the following topics can be studied. (1)
Can we investigate the notions of state ideals and prime state
ideals of pseudo-Ehoops? (2) We can study Bosbach states,
Riečan states and state-morphisms on pseudo-Ehoops.
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