
1Abstract—This study developed a gait pattern classification
system based on ground contact forces measured by six force
sensors embedded inside the shoe sole. The data transmission is
facilitated via the Bluetooth module integrated into an STM32
microcontroller. The extreme gradient boosting (XGBoost)
algorithm is used to identify the gait patterns, and the basic
idea of XGBoost is to use second-order derivatives to make the
loss function more precise, incorporate regularization to
prevent tree overfitting, and enable block storage for parallel
computation. By optimizing the XGBoost algorithm with four
algorithms, the exploration capabilities of these algorithms are
effectively incorporated into the fusion model. Experimental
results indicate that the XGBoost algrithm optimized by
Harris' hawks optimization (HHO) outperforms the other
optimization algorithms. Specifically, the HHO-XGBoost
achieved high values of 97.41%, 97.03%, and 97.22% severally
in the metrics of precision, recall, and F1 score. This research
illustrates the HHO-XGBoost method's superiority in gait
phase recognition.

Index Terms—Gait pattern classification, Ground contact
force, XGBoost, Harris' Hawks Optimization.

I. INTRODUCTION
ait phase recognition is a widely adopted technique for
assessing the movement state during human walking.

It has been extensively utilized in diverse fields such as
medicine [1-2], forensic detection [3-4], smart furniture
control [5-6], and robot exoskeleton control [7]. Extracting
the gait data would enable the researchers to conduct more
comprehensive assessments of human movement and devise
more effective response strategies. For individuals without
physical impairments, during the same movement pattern,
each leg exhibits similar motion, with only a phase lag
between different limbs [8]. However, analyzing the gait
data becomes crucial for controlling the exoskeleton for
people who use the robotic exoskeletons or those with limb
impairments. There are various methods for determining the
movement state. For example, researchers can utilize
computer vision to assess movement or employ a
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frame-level part feature extractor in combination with a
micro-motion capture module to extract motion features
[9-10]. A two-dimensional center of pressure can be used to
extract the motion features and decompose the planar
trajectories for accurate localization [11]. However, these
approaches involve complex force processing or require
handling intricate signals. Consequently, wearable sensors
offer a cost-effective and easily installable solution for gait
phase recognition [12-13]. This study introduces an
intelligent shoe sole equipped with six force-sensitive
resistors (FSRs) to collect data. By processing and labeling
the data from the wearable sensors, the movement state was
effectively determined.
Using insole pressure sensors to collect the ground

reaction force (GRF) gait data features has become
increasingly common. Before classifying data by machine
learning algorithms, selecting appropriate features is
essential. In gait data analysis, time domain features such as
mean, variance, and kurtosis are often considered [14].
These are further transformed into frequency domain
features through the Fast Fourier Transform [15]. Collected
data undergoes weighting and normalization processes
before classification by machine learning models.
With advances in artificial intelligence and machine

learning, numerous classification algorithms have emerged
[16-17]. As support vector machines (SVM) and gradient
boosting are widely used for training and learning from
labeled data [18-19].
In recent years, the XGBoost algorithm has been widely

used as a robust classifier, and widely applied in data
science competitions and industrial settings due to its
exceptional performance [20-22]. Its optimization is largely
depends on the hyperparameters. When these parameters are
left at their default settings, optimal performance is often not
achieved. Selecting a suitable optimization algorithm to
identify the optimal hyperparameters is thus critical for
enhancing the XGBoost's classification accuracy. When
integrated with XGBoost, optimization techniques such as
genetic algorithms (GA) [23], arithmetic optimization
algorithm (AOA) [24], coati optimization algorithm (COA)
[25], and Harris hawks optimization (HHO) [26-29] can
effectively identify the optimal hyperparameters.
This study developed an intelligent insole system

equipped with six wearable pressure sensors to collect the
GRF data. The XGBoost model was optimized using the
HHO to enhance the accuracy of motion state classification.
By normalizing and weighting the pressure data, the
movement process of each foot was categorized into four
distinct states. The experimental results show that the
HHO-XGBoost classifier achieved the best performance on
this dataset, with an overall accuracy of 97.85%.
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II. DATA ACQUISITION AND PROCESSING

A. Instrumental setup

Fig. 1. (a) The intelligent shoe integrated with six FSRs. (b) The STM32
collects the force information and the Bluetooth module transmits the
information into the host.

This study developed a smart intelligent shoe integrated
with six FSRs to monitor the GRFs. As depicted in Figure 1,
the FSRs with strong adhesion, bend resistance, and high
sensitivity are placed at different points on the shoe sole.
The force data from the FSRs are collected via an STM32
microcontroller, which is powered by a rechargeable 3.3 V
battery. An amplifying circuit is used to increase the output
voltage, which ranges from 0 to 3.3 V. Prior to the
experiments, each FSR was calibrated by applying various
standard weights to record the corresponding output
voltages. The recorded output voltages are then converted
into the corresponding force measurements.

Fig. 2. The working principle and the experimental procedure

The primary operating principle of this system is
illustrated in Figure 2. The 12-bit analog-to-digital converter
(ADC) integrated into the STM32 is utilized to digitize the
output voltage with a sampling frequency of 50 Hz. The
acquired pressure signals are subsequently transmitted to a
Bluetooth module via a serial port and then sent to the host
computer. The computer collects data and stores it for
further use. This series of operations is performed offline.

B. Experimental protocol
Ten participants (six males and four females, with a mean

height of 160 ± 5.9 cm and a mean age of 22 ± 3.3 years)
who were free from foot-related conditions volunteered for
this study. The participants were instructed to don the smart
shoe and walk continuously at a constant speed of 3 km/h on
a treadmill for a duration of 2 minutes. Before data
collection, participants were instructed to adjust the insole
position. Ensuring correct placement helps maintain optimal
sensor contact, thereby minimizing testing errors caused by
insole movement.

C. Data analysis
During the experiment, several sets of plantar pressure

data were collected. The collected voltage signals were
digitized. Then the data were normalized and integrated to
generate a schematic of plantar pressure during movement.
Figure 3(a) displays the force values of the six FSRs, and
Figure 3(b) shows the labeled diagram of the processed
pressure values. It is evident that when the heel contacts the
ground, the values of the FSRs in the rear foot (FSR1, FSR2,
and FSR3) increase rapidly and quickly reach their peak.
When the FSRs under the forefoot (FSR1, FSR2, and FSR3)
are loaded, their corresponding force values increase
steadily. Until the foot leaves the ground, all sensor forces
drop to zero. This repetitive force pattern in the foot
provides a reliable basis for state identification.

Fig. 3. Gait data are divided into specific gait patterns: (a) Data collected
from six FSRs. (b) The labeling of gait patterns corresponds to the data.

Fig. 4. Gait pattern division corresponding to different FSRs judged as
on-ground or off-ground statuses.
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D. Reference gait labels
In a typical walking cycle, foot movement is continuous

and cyclic. It can be divided into four distinct phases: heel
down (HD), standing horizontal (SH), toe tip (TT), and
swing (SW). Figure 3 illustrates the labeling of gait patterns
corresponding to pressure data during three cycles. Figure 4
shows the division of gait phases based on the data from
various FSRs, which are categorized as either on-ground or
off-ground statuses. In these figures, the white dot
represents the off-ground status, while the black dot denotes
the on-ground status. The differentiation between on-ground
and off-ground statuses is determined by setting a threshold
for the GRFs.
When the heel touches the ground, it is defined as the HD

state, in which only FSR1, FSR2, and FSR3 register force.
When all six FSRs detect force, the label value reaches its
maximum. We define this as the SH state, which is also the
longest-lasting phase in the movement cycle. Only the three
forefoot FSRs (FSR4, FSR5, and FSR6) register force when
standing on the toes. We define it as the Toe Touch (TT)
state. When stepping forward with the foot in the air, all
FSR values drop to zero. This state is defined as the SW.

E. Data preprocessing
Due to the significant variations in gait patterns

corresponding to the GRFs collected by sensors, data
preprocessing is typically required. Normalization is an
essential step that helps to mitigate dimensional disparities
between different gait patterns. It can accelerate model
convergence and enhance both accuracy and stability. By
standardizing the data, biases between gait patterns can be
reduced. Standardizing the data can also make it more
comparable and interpretable. The normalization equation is
presented below.





xxnorm (1)

where μ represents the average value, and σ represents the
standard deviation. Data normalization and standardization
are common preprocessing techniques that improve the
performance and stability of machine learning models.
These methods ensure consistency in data normalization and
reduce the impact of feature variation. It also makes the
model process data more efficiently and accurately.

III. METHOD
To improve the accuracy of gait phase classification, this

study employed the XGBoost algorithm for gait pattern
identification. The XGBoost algorithm is an optimized
distributed gradient boosting library. It is highly efficient
and flexible, and it has highly strong adaptability. It offers
significant advantages in terms of both time and
performance when efficiently processing large datasets.
The collected data were normalized and labeled according

to the rules outlined in Section II. In this study, 70% of the
data were allocated for training, while the remaining 30%
were reserved for testing. The training data were used to
train the XGBoost model, and the testing data were input

into the trained model to predict the gait patterns. The
accuracy of the model was determined by the predicted gait
patterns and the actual labeled data. To further enhance
accuracy, we use the HHO algorithm to optimize the model
parameters. The complete process of using the HHO
algorithm to optimize the XGBoost for gait pattern
classification is depicted in Figure 5.

Fig. 5. Flow diagram of HHO optimizing XGBoost

A. Basic Principle of XGBoost
The XGBoost is an algorithm designed for practical

implementation, which is based on the gradient-boosting
decision tree framework. One of the main advantages of
XGBoost is its support for linear classifiers. The XGBoost
algorithm provides effective solutions by introducing
different regularization techniques into the loss function. By
the way, the prediction accuracy of the model is greatly
improved. The predictive model of XGBoost can be
formulated as follows:





m

k
ik

m
i xfy

1

)(ˆ (2)

where m represents the number of decision trees, ŷ is the
prediction result, and fk denotes the k-th decision tree. The
objective function of XGBoost is divided into two parts,
which are the loss function and regularization term. The
objective function can be expressed as:
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where l is the loss function, and Ω is the regularization term.
The regularization term Ω can also be rewritten in the
following.
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where J represents the number of leaf nodes, and ω is the
scores for different leaf nodes. Moreover, both γ and λ are
customization parameters. By combining Equations (3) and
(4), the loss function can be expressed as:
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where gi represents the first derivative of the Taylor
expansion, and hi denotes the second derivative of the Taylor
expansion. They are defined as follows:

1

1

ˆ
)ˆ,(








 m

i

m
ii

i y
yyl

g (6)

21

12

)ˆ(
)ˆ,(








 m

i

m
ii

i y
yylh (7)

By substituting Equations (4), (6), and (7) into Equation
(5), the solutions can be derived as follows:
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where w∗ represents the optimal solution for the weights,
and Obj∗ is the score of the loss function.

B. Harris' hawks optimization
HHO is a heuristic method inspired by the cooperative

hunting behavior of Harris hawks. It seeks to emulate the
hawk’s strategies in searching for globally optimal solutions.
Figure 6 illustrates the flow of the HHO algorithm. The
HHO algorithm divides the hunting process into two
primary phases(exploration and exploitation), which imitate
the natural hunting behaviors of Harris' hawks.
In the exploration phase, two strategies are employed for

an equiprobable global search for prey. When P<0.5, each
hawk moves based on the positions of other members and
the prey. And while P>=0.5, the Harris hawks will randomly
perch on a tree within the population range. The expression
for this is as follows:
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where xi(t) denotes the current position vector of the hawk
at iteration t, and xi(t+1) represents the next position vector.

Xrand is a randomly selected individual from the hawk
population within the current generation. Xm signifies the
average position of the current hawk population. Ub and Lb
are the upper and lower bounds of the search range. R1, R2,
R3, and R4 are random numbers within the interval (0, 1).

Fig. 6. Flowchart of the HHOAlgorithm

As the prey attempts to escape, its energy gradually
decreases. The energy E of the escaping prey is defined as
follows:

)1(2 0 M
tEE  (11)

where E0 represents the initial escape energy of the prey,
which is a random number between (-1, 1). M is the
maximum evolutionary generation of the population, and t
denotes the current evolutionary generation. If the absolute
value of E is greater than 1, the exploration phase is engaged.
Otherwise, the exploitation phase is initiated.
In the exploitation phase, the HHO algorithm employed

four strategies: soft besiege, hard besiege, progressive rapid
descent with soft besiege, and progressive rapid descent
with hard besiege. We define Sp as the prey escape
probability, which is a random number between 0 and 1.
The Sp must be judged before they can be implemented. If
Sp<0.5, there is a chance of escape.
Levy flight pattern was used during the exploration. It is a

random walk pattern characterized by a series of short steps
interspersed with occasional long jumps. This model is often
used to describe the search behavior of animals or humans.
The Levy flight pattern balances local searching with

broader exploration. It is more efficient than regular random
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walks in environments where the target's location is
unknown. Its definition is as follows:
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where u and v are random values ranging from 0 to 1, and β
is set to 1.5.
The four strategies are specified as follows, with each one

being determined by the specific values of two key
parameters: E and Sp.
The first strategy is characterized by 0.5 ≤|E |< 1 and Sp ≥

0.5. In this scenario, the prey possesses sufficient energy and
attempts to escape. It is encircled by the hawks to deplete its
energy, followed by a surprise pounce. This behavior can be
implemented through the following rules:
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where J is the jump intensity of the prey, which possesses a
random value in each iteration.
The second strategy applies when |E |< 0.5 and Sp ≥ 0.5.

In this case, the prey has low escape energy. The hawks are
less likely to surround the prey for a surprise pounce. The
solutions in this phase are defined as follows:

)()()1( * txEtXtx ii  (14)

The third strategy is characterized by 0.5 ≤|E |< 1 and Sp
< 0.5. In this scenario, the prey has sufficient energy to
evade the hawks through rapid dives. Therefore, the position
of the current solution can be updated as follows.
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where F is the fitness function, and S is a random vector
ranging in (0, 1).
The fourth strategy can be described by the condition |E |<

0.5 and Sp < 0.5. In this phase, the prey has low
energy, so the solutions are updated accordingly.
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By evaluating the magnitude of different parameters, the
strategy for HHO optimizing the XGBoost is determined.

C. HHO-XGBoost
This study utilizes the HHO algorithm to optimize the

performance of XGBoost by tuning four key parameters:
learning rate (LR), gamma (GM), subsample (SP), and
maximum depth (MD). In the optimization process, these
parameters are put into HHO for tuning. In each iteration,
the tuned parameters are fed into XGBoost to compute the
best fitness and determine the current optimal position. The
data undergoes iterative processes for optimization and
classification. The optimal fitness values and corresponding
positions are recorded throughout the training phase.

Fig. 7. Flowchart of the HHO-Optimized XGBoost Algorithm

Figure 7 depicts the procedure of the HHO optimizing
XGBoost. During the optimization process, we need to
initialize the population and set up the convergence curve.
Find the optimal individual and ultimately determine the
optimal parameters in the iterative exploration process. The
main steps are as follows.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 1, January 2025, Pages 118-125

 
______________________________________________________________________________________ 



Step 1: Randomly initialize the population and determine
the positions of the hawks and prey. The positions of the
hawks contain the parameters(LR, GM, SP, and MD) in
XGBoost.
Step 2: Calculate and update the positions of the hawks

based on the prey's energy and escape probability.
Step 3: Use the updated positions' parameters as input to

build the XGBoost model, then use the model to predict
results. Repeat steps 2 and 3 until all positions are
calculated.
Step 4: Search for the optimal global parameters among

all positions.
Step 5: Before reaching the maximum iteration number,

continue to execute steps 2, 3, and 4 until iterations are
completed. Train the XGBoost model with these global
parameters and select the best positions during the iteration
process. Then record its parameters.
Step 6: Train the XGBoost model by the parameters, then

use the model to evaluate the final classifier for
identification and classification.

IV. RESULTS AND DISCUSSION

A. Experimental Setup and Parameter Configuration
All algorithms in this study were implemented in

PyCharm using Python version 3.11.4. The experiments
were conducted on a personal computer equipped with an
AMD Ryzen 5 5600 6-core processor and 16.0 GB of RAM.
The number of iterations for all algorithms was fixed at 150,
with a population size of 30. The mutation probability of
GA was set to 0.001. The gait data was divided into a 70%
training set and a 30% testing set.
In the hyperparameter tuning of the optimized XGBoost

algorithm, the LR was varied between 0.01 and 1, GM
between 0 and 0.1, MD from 4 to 12, and SP was fixed at
0.1. Each algorithm was executed 10 times on the gait
dataset to ensure the robustness and reliability of the results.

B. Performance Evaluation Metrics
Various performance evaluation metrics exist for

assessing machine learning models. This study employs
accuracy, precision, recall, and F1 score. Depending on the
application, each of these metrics can provide unique
insights into the model's performance. Each of these metrics
is defined by specific mathematical formulas. By evaluating
the model through them, the accuracy of the model can be
more accurate and reliable.

C. Classifier Selection
During the initial stages of our research, we employed a

range of algorithms for data classification, including natural
gradient boosting (NGBoost), CatBoost, light gradient
boosting machine (LightGBM), and XGBoost. The
classification outcomes for each method are presented in
Table I. The XGBoost significantly outperforms the other
algorithms, achieving an accuracy of 97.22% and a notably
short runtime of 0.3 seconds. This efficiency makes it highly
practical for the classification of large datasets. Therefore,
XGBoost has been chosen as the primary classifier for this
study.

TABLE I
RECOGNITION RATES FOR FOUR ALGORITHMS

Algorithm Precision Recall F1 Time
NGBoost 94.93% 90.76% 92.47% 40.9S
CatBoost 96.92% 96.44% 96.68% 6.6S
Lightgbm
XGBoost

97.06%
97.22%

96.64%
96.69%

96.85%
96.95%

1.7S
0.3S

D. Comparison of Optimization Algorithms
Throughout the study, we integrated four optimization

algorithms (GA, AOA, COA, and HHO) with XGBoost.
The hybrid algorithm resulting from the integration of GA is
referred to as GA-XGBoost, with similar designations for
the other algorithms, such as the AOA-XGBoost, the
COA-XGBoost, and the HHO-XGBoost. Figure 8 presents
the fitness curves of these algorithms through the iterative
process. The HHO-XGBoost combination demonstrated
superior fitness performance on the dataset used in this
study, with the fitness value reaching 98.40% by the 60th
iteration. Compared to other optimization algorithms,
HHO-XGBoost exhibited faster convergence and greater
stability, which is critical for real-time gait analysis
applications. Table Ⅱ presents the optimal hyperparameter
values for each algorithm when their fitness is maximized.

Fig.8. Fitness curves of different algorithms

TABLE Ⅱ
COMPARISON OF HYPERPARAMETERS SELECTION

Algorithm LR GM MD SP
XGBoost 0.1 0 6 1

GA-XGBoost 0.1668 0 12 0.9551
AOA-XGBoost 0.2576 0.0050 11 1
COA-XGBoost 0.2580 0.0298 10 0.5055
HHO-XGBoost 0.5462 0.0692 12 1

E. Comparison of Algorithm Stability
To ensure the robustness of the algorithm and avoid the

potential bias of evaluating a single dataset, we applied the
HHO-XGBoost algorithm to the datasets of 10 different
subjects. As shown in Table Ⅲ, the test results indicate
significant variations for different individuals. For example,
the result from Male 5 achieved an accuracy of 99.11%,
while the result from Male 6 obtained an accuracy of
95.24%. These discrepancies may stem from differences in
foot force distribution due to varying exercise intensities
among the subjects. Non-uniform force application can
introduce biases during the data normalization process,
which may lead to labeling errors. It is noteworthy that the
99.11% accuracy achieved by the result from Male 5
corresponds to data collected during smooth and consistent
motion.
Despite varying effects across different participant

datasets, the impact of the HHO-XGBoost algorithm on
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each individual's data is notably significant. Compared to
other algorithms, this optimization technique achieves the
most substantial improvement in accuracy. This finding
further underscores the exceptional performance and
stability of HHO-XGBoost in gait recognition tasks.

TABLE Ⅲ
RECOGNITION RATES OF FIVE ALGORITHMS ON DATA FROM TEN TESTERS

Testers XGBoost GA-XG
Boost

AOA-X
GBoost

COA-XG
Boost

HHO-XG
Boost

Male 1 96.40% 96.51% 96.53% 96.49% 96.56%
Male 2 97.26% 97.38% 97.35% 97.39% 97.44%
Male 3 98.35% 98.43% 98.45% 98.47% 98.52%
Male 4 98.87% 98.97% 98.97% 99.00% 99.05%
Male 5 95.84% 95.92% 95.94% 95.97% 96.01%
Male 6 98.82% 98.90% 98.89% 98.94% 98.99%
Female 1 95.91% 96.02% 96.03% 96.05% 96.09%
Female 2 98.98% 99.09% 99.11% 99.10% 99.15%
Female 3 99.24% 99.32% 99.30% 99.36% 99.44%
Female 4 98.75% 98.87% 98.84% 98.89% 98.91%

F. Results and discussion
Table Ⅳ illustrates the results of various algorithms in

classifying the gait patterns. Compared to other algorithms,
the HHO-XGBoost algorithm indicate notable high results
in four metrics. The HHO-XGBoost achieves higher in
accuracy, precision, recall, and the F1 score by 0.35%,
0.36%, 0.47%, and 0.42% than the original XGBoost. The
HHO showed better performance compared with the other
optimization algorithms. The HHO-XGBoost algorithm
realized the best performance in gait classification. The
results confirm the feasibility and superiority of the HHO in
optimizing the hyperparameters.

TABLE Ⅳ
COMPARISON OF FIVE METHODS IN FOUR METRICS

Algorithm Accuracy Precision Recall F1 Score
XGBoost 97.50% 97.05% 96.56% 96.80%
GA-XGBoost 97.78% 97.35% 96.94% 97.15%
AOA-XGBoost 97.76% 97.38% 96.96% 97.17%
COA-XGBoost 97.79% 97.37% 96.98% 97.19%
HHO-XGBoost 97.85% 97.41% 97.03% 97.22%

Fig.9. Comparison of labels and results

Figure 9 shows the recognition results compared with the
labeled ones. The patterns identified by the HHO-XGBoost
algorithm is extremely similar to the labeled ones, and the
proposed method gained a high accuracy in gait division.
Figure 10 illustrates the recognition accuracy of the five

different classifiers in categorizing four gait phases. The
HHO-XGBoost algorithm achieved classification accuracy
exceeding 95.31% across all actions. The SW and HD states
even reached 98.74% and 98.57%. On the four states, the

HHO-XGBoost algorithm showed the largest improvement
in accuracy compared to the original XGBoost algorithm.
The TT and SH states are susceptible to classification errors.
The HHO-XGBoost algorithm improved the recognition
rates of these two actions by 0.78% and 0.69%. Although
the other three algorithms also demonstrated improvements
in action recognition accuracy, their performance was
inferior to that of the HHO-XGBoost. The confusion matrix
is shown in Figure 11. Overall, the performance of the
proposed method remains exceptionally strong.

Fig.10. Accuracy of five classifiers for four phase classifications

Fig.11. Confusion matrix for HHO-XGBoost algorithm

The results indicate that the multi-classification model
HHO-XGBoost is capable of accurately identifying four
distinct gait stages. The model demonstrates high
recognition accuracy and practical applicability. This
capability is essential for accurately assessing actions and
facilitating timely adjustments in smart wearable devices.

V. CONCLUSION
In this study, an intelligent shoe is designed and

integrated with six FSRs to collect the GRFs' information
about human movement during walking. The XGBoost is
used to classify the gait phase in the walking period. The
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HHO algrithm was selected to optimize four
hyperparameters of the XGBoost model. The experimental
results demonstrate that the HHO-XGBoost algorithm
achieved an accuracy of 97.85% for gait phase recognition
tasks. The recognition rates for all four actions exceeded
95.31%, with the highest reaching 98.74%. Compared to
other algorithms, the HHO-XGBoost algrithm exhibits
superior performance and reliability. This study lays a solid
foundation for future exploration in the field of gait
recognition, particularly in scenarios where similar methods
may be applied to various datasets. It also underscores the
importance of continuous innovation in algorithmic
approaches within the machine learning domain.
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