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Abstract—This paper considers the asynchronous control for
discrete-time Markov jump systems (MJSs) using a multi-node
round-robin protocol (MNRRP). Compared to the traditional
round-robin protocol, MNRRP increases the number of nodes
updated at each transmission time, thereby improving system
performance. In addition, a hidden Markov model is construct-
ed to address the asynchronous behavior between the controlled
object and the controller. Using Lyapunov functions and several
inequalities, a criterion is provided to ensure the stochastic
stability of MJS and joint L2 − L∞ and H∞ performance.
A required asynchronous controller design approach is then
presented based on the scheduling signal. Finally, a numerical
example is given to verify the feasibility and applicability of
the theoretical results.

Index Terms—Markov jump system, hidden Markov model,
round-robin protocol, asynchronous control

I. INTRODUCTION

MARKOV jump systems (MJSs) are a class of stochas-
tic hybrid systems capable of switching between dif-

ferent modes according to a Markov process. These systems
can undergo random, abrupt changes in structure or parame-
ters, with mode switching dictated by a Markov chain. This
feature enables MJSs to model and analyze systems facing
sudden disturbances, component failures, actuator repairs,
and other abrupt structural variations effectively [1], [2].
Consequently, MJSs have found extensive applications in
various practical scenarios, including traffic engineering [3],
solar power plants [4], and the spread of infectious diseases
[5]. Recently, substantial research progress has been made
in such systems [6]–[11]. MJSs can generally be divided
into two types: continuous-time MJSs [12] and discrete-
time MJSs (DTMJSs) [13]. Unlike continuous-time MJSs,
DTMJSs operate in discrete time steps, offering simpler
analysis and implementation in digital systems. DTMJSs
prove particularly useful in applications with observations
and control actions naturally sampled at discrete intervals,
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such as digital signal processing and computer-based control
systems.

Due to the limitations of bandwidth and data rates, only a
limited number of signals can be transmitted simultaneously
between system components [14], [15]. Therefore, effectively
scheduling node access is crucial for conserving commu-
nication resources and preventing data congestion. Various
scheduling protocols address these challenges, including
the Round-Robin protocol (RRP), the weighted try-once-
discard protocol, and the stochastic communication protocol
[16]–[18]. Compared to other protocols, RRP [18] offers
straightforward implementation, predictable scheduling, and
fair resource allocation. However, traditional RRP [19]–[22]
limits channel access to one node per transmission time,
which, while reducing congestion, provides less information
per transmission. In contrast, the multi-node Round-Robin
protocol (MNRRP), which allows multiple nodes to transmit
information simultaneously rather than a single node [23]–
[26], has garnered increasing attention. This protocol was
first proposed in [23] to address issues related to lossy
networks with variable packet lengths. Subsequently, Hu et
al. [24] investigated a network mode-dependent MNRRP
for networked singularly perturbed systems with Markov
lossy networks, Zhang et al. [25] focused on MNRRP for
interval type-2 Takagi-Sugeno (T-S) fuzzy systems under
probabilistic saturation constraints, and Song et al. [26]
proposed a synthesis and analysis scheme for T-S aero-engine
systems using the MNRRP to coordinate communication
resources.

In practical scenarios, achieving comprehensive access
to system modes proves challenging. In networked control
systems, components are often geographically dispersed and
communicate via unreliable channels, leading to discrepan-
cies between received and original signals, mode mismatch-
es, and asynchrony. Asynchronous controllers thus emerge
as a pragmatic and increasingly researched solution. For
instance, Zhou et al. [27] proposed a methodical two-step
approach utilizing backtracking and optimization search for
asynchronous quantized control of fuzzy MJSs within a
networked control framework. Zhang et al. [28] examined
the problem of secure asynchronous control of MJSs in the
presence of non-periodic discrete denial of service attacks,
while Tao et al. [29] addressed asynchronous H∞ control
issues in discrete-time hidden MJSs with complex mode
transitions.

In the field of modern control theory, H∞ control and
L2 −L∞ control are two significant control methodologies.
H∞ control primarily addresses the lower limit of L2 gain,
whereas L2 − L∞ control aims to restrict peak energy gain

IAENG International Journal of Applied Mathematics

Volume 55, Issue 1, January 2025, Pages 126-133

 
______________________________________________________________________________________ 



to a specified threshold, thereby bolstering system robustness
and curbing peak output [30], [31]. The joint use of H∞
control with L2−L∞ control effectively meets these dual ob-
jectives. Thus, the question arises: Can asynchronous control
methods, combined with strategies like MNRRP, effectively
handle the complexities of networked systems with mode
mismatches and limited bandwidth while ensuring the joint
performance of L2 − L∞ and H∞ controls? This issue, to
our knowledge, remains open and challenging, warranting
further investigation.

Based on these insights, this paper studies the design prob-
lem of asynchronous control for DTMJSs using a MNRRP.
In contrast to the traditional RRP, MNRRP updates multiple
nodes at each transmission interval, which leads to improved
system performance. A hidden Markov model (HMM) is
constructed to account for the asynchronous behavior. A
criterion is provided to ensure that the MJS is stochastically
stable (SS) and joint L2−L∞ and H∞ performance. Subse-
quently, a token-based asynchronous state feedback control
method is proposed. Finally, an example demonstrates the
feasibility and applicability of the theoretical results.

Notation: Throughout, Rn refers to the n-dimensional
Euclidean space, while Rm×n denotes the set of all m × n
real matrices. The notation diag{·} is used to represent a
block diagonal matrix, and E{·} signifies the mathematical
expectation. A real symmetric matrix Q > 0 indicates that
Q is positive definite.

II. PRELIMINARIES

Consider a class of DTMJS described by:{
x(k + 1) = Arkx(k) +Brku(k) +Drkω(k),

z(k) = Crkx(k),
(1)

where x(k) ∈ Rd, z(k) ∈ Rnz , and u(k) ∈ Rnu are the
state vector, output vector, and control input, respectively.
ω(k) ∈ Rnw describes the disturbance, taking values in
l2[0,∞). Ark , Brk , Crk , and Drk are pre-known system
matrices, which depend on a discrete-time Markov chain
(DTMC) {rk, k ≥ 0} that takes values in a finite set M =
{1, 2, · · · ,m}. The transition probability (TP) of system (1)
is elicited as

Pr {rk+1 = s | rk = i} = πis, (2)

where πis ≥ 0, and
∑
s∈M πis = 1, ∀i, s ∈ M, and TP

matrix Π = [πis]m×m [32].
To facilitate the discussion, ∀i ∈ M, Ark , Brk , Crk , and

Drk are denoted by Ai, Bi, Ci, and Di, respectively.
The structure of system, as shown in Fig. 1, illustrates the

utilization of a MNRRP to coordinate the transmission of d
actuator nodes. In contrast to traditional RRPs, which only
allow one actuator node to access the network at any given
time, the MNRRP adopted in this study enables multiple
consecutive actuators’ measurement signals to be encapsu-
lated into a single data packet transmission within a limited-
bandwidth channel. This approach holds the potential to
enhance system performance, with scheduling rules outlined
in (3) and (4). The parameter l(1 ≤ l ≤ d), representing
the number of selected actuators, is referred to as the packet
length. Subsequently, the buffer is defined later.
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Fig. 1. The structure of the system with communication network.

Let %k ∈ D, where D = {1, 2, · · · , d}, be referred to
as the token, representing the first of the l selected access
actuator nodes at the current instant. The updating rule is as
follows:

%k =

{
1, k = 1,

mod(%k−1 + l − 1, d) + 1, k ≥ 2,
(3)

and %̃q,k (q = 1, · · · , l) denotes all selected nodes as:

%̃q,k =

{
%k, q = 1,

mod(%̃q−1,k, d) + 1, q = 2, · · · , l.
(4)

Remark 1. The MNRRP evidently reduces to the standard
RRP when l = 1. Under this condition, %k = %̃k =
mod(k−1, d)+1. Moreover, in the MNRRP, the token %k is
determined by both the time sequence k and the preceding
token %k−1.

As described by the rules of MNRRP in (3) and (4), the
actuator can access the value ūν(k) from the ν-th controller
node if the node is selected and its data packet is transmitted
successfully. Conversely, if the node is not selected or its
data packet transmission fails, the actuator may rely on the
previously received value. Consequently, the control signal
available from the ν-th controller node to the actuator is
defined as follows:

uν(k) =

{
ūν(k), λν,%k = 1,

uν(k − 1), otherwise
(5)

with the index signal λν,%k = 1 if %̃q,k = ν exists, and
λν,%k = 0 otherwise. Consequently, a concise expression for
the compensator (5) can be formulated as follows:

u(k) = Λ%k ū(k) + (I − Λ%k)u(k − 1) (6)

with u(k) , [uT1 (k), uT2 (k), · · · , uTd (k)]T and Λ%k ,
diag {λ1,%k , λ2,%k , · · · , λd,%k}.

In many cases, acquiring system mode information, rep-
resented by the DTMC rk, is challenging due to various
factors. To address this issue, a mode-dependent detector is
employed, producing a stochastic process denoted as θk. Im-
portantly, the stochastic process θk operates asynchronously
with rk. As in [33]–[36], a HMM is introduced to capture and
model these asynchronous phenomena. For any i ∈ M and
j ∈ N = {1, 2, · · · , n}, the conditional probability matrix
Ω = [µij ]m×n is derived

Pr {θk = j | rk = i} = µij , (7)

where µij ∈ [0, 1] and
∑
j∈N µij = 1.
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Next, an asynchronous controller is constructed as follows:

ū(k) = Kθk,%kx(k), (8)

where Kθk,%k represents the controller gains to be solved.
For rk = i, θk = j, and %k = h, the overall system (9)

can be derived:{
x(k + 1) = Āijhx(k) + B̄ihu(k − 1) +Diω(k),

z(k) =Cix(k),
(9)

where

Āijh = Ai +BiΛhKjh, B̄ih = Bi(I − Λh).

Below, we provide the relevant definitions for system (9).

Definition 1. System (9) is said to be SS if for ω(k) = 0,
u(−1) = 0, and any initial condition (x0, %0), it holds that

E

{ ∞∑
k=0

‖x(k)‖2
∣∣∣∣x0, %0

}
<∞.

Definition 2. For a prescribed constant γ > 0, if, under
the condition x(0) = 0,

sup
k≥0

E
{
zT (k)z(k)

}
≤ γ2

∞∑
k=0

wT (k)w(k)

holds for all w(k) ∈ l2[0,∞). Then, it can be said that
system (9) has an L2 − L∞ performance.

Definition 3. For a prescribed constant γ > 0, if, under
the condition x(0) = 0,

∞∑
k=0

E
{
zT (k)z(k)

}
≤ γ2

∞∑
k=0

wT (k)w(k)

holds for all w(k) ∈ l2[0,∞). Then, it can be said that
system (9) has an H∞ performance.

Lemma 1. [37] Given a matrix G =

[
G11 G12

GT12 G22

]
, where

G11 ∈ Rr×r, the following three conditions are equivalent:
(1) G < 0;
(2) G11 < 0, G22 −GT12G−111 G12 < 0;
(3) G22 < 0, G11 −G12G

−1
22 G

T
12 < 0.

Lemma 2. [38] For any pair of matrices Y1 and Y2 that
are positive definite and have compatible dimensions, the
following inequality is valid:

−Y T1 Y −12 Y1 ≤ Y2 − Y T1 − Y1.

Now we are in a position to state the purpose of this work
explicitly: we intend to devise an asynchronous controller
for DTMJSs. Our goal is to ensure that the resulting closed-
loop system is SS and achieves joint L2 − L∞ and H∞
performance, while effectively using MNRRP to handle data
collisions and congestion in a shared network environment.

III. MAIN RESULTS

Lemma 3. The system (9) is SS, if there exist matrices
Pih > 0, Qih > 0, Rij > 0, and Kjh, for i ∈ M, j ∈ N ,
and h ∈ D such that the following conditions hold:

n∑
j=1

µijRij − Pih < 0, (10)


−P̄−1sε 0 Āijh B̄ih

0 −Q̄−1sε ΛhKjh I − Λh
ĀTijh KT

jhΛh −Rij 0

B̄Tih I − Λh 0 −Qih

 < 0, (11)

where P̄sε =
∑m
s=1 πisPsε, Q̄sε =

∑m
s=1 πisQsε.

Proof: Consider a mode-dependent Lyapunov function

V (k) = xT (k)Pihx(k) + uT (k − 1)Qihu(k − 1), (12)

and make the forward difference operator of (12) as

∆V (k) =xT (k + 1)Psεx(k + 1) + uT (k)Qsεu(k)

− xT (k)Pihx(k)− uT (k − 1)Qihu(k − 1)

= (Āijhx(k) + B̄ihu(k − 1) +Diw(k))TPsε

× (Āijhx(k) + B̄ihu(k − 1) +Diw(k))

+ (ΛhKjhx(k) + (I − Λh)u(k − 1))TQsε

× (ΛhKjhx(k) + (I − Λh)u(k − 1))

− xT (k)Pihx(k)− uT (k − 1)Qihu(k − 1),

where ε = σk+1. Let w(k) = 0 and perform the expectation
operation on ∆V (k), we obtain

E{∆V (k)} =E{ηT (k)

n∑
j=1

µij(Ψ
T
1 P̄sεΨ1 + ΨT

2 Q̄sεΨ2

− Ǐ)η(k)− xT (k)Pihx(k)}, (13)

where η(k) = col{x(k), u(k−1)}, Ψ1 =
[
Āijh B̄ih], Ψ2 =[

ΛhKjh I −Λh
]
, Ǐ = diag {0, Qih}. By applying Lemma

1, we can derive from (11) that

ΨT
1 P̄sεΨ1 + ΨT

2 Q̄sεΨ2 − Ǐ < Řij , (14)

where Řij = diag {Rij , 0}. Substituting (14) into (13), we
get

E {∆V (k)} < E

ηT (k)
n∑
j=1

µijŘijη(k)− xT (k)Pihx(k)


= E

xT (k)

 n∑
j=1

µijRij − Pih

x(k)

 .

(15)

Therefore we can see from (10) that E {∆V (k)} < 0. Let χ
be the minimum eigenvalue of −(

∑n
j=1 µijRij −Pih). then

E {V (∞)− V (0)} = E

{ ∞∑
k=0

∆V (k)

}

≤ E

{ ∞∑
k=0

(−χxT (k)x(k))

}
. (16)

Hence, we can get

E

{ ∞∑
k=0

(xT (k)x(k))

}
≤
{

1

χ
{E {V (0)} − E {V (∞)}}

}
≤ 1

χ
E {V (0)}

<∞. (17)

According to Definition 1, the system (9) is SS.
Below, we conduct a joint L2−L∞ and H∞ performance

analysis on system (9) and can give a criterion as follows:
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Theorem 1. Given a positive constant γ > 0, the system
(9) is SS and has a joint L2 − L∞ and H∞ performance
guarantee, if there exist matrices Pih > 0, Qih > 0, Rij > 0,
and Kjh such that the following conditions hold:

n∑
j=1

µijRij − Pih < 0, (18)[
−Pih CTi
Ci −I

]
< 0, (19) Θ11

ijh Θ13
ijh Θ14

ijh

(Θ13
ijh)T −Q̂sε 0

(Θ14
ijh)T 0 −P̂sε

 < 0, (20)


Θ11
ijh Θ12

i Θ13
ijh Θ14

ijh

(Θ12
i )T −I 0 0

(Θ13
ijh)T 0 −Q̂sε 0

(Θ14
ijh)T 0 0 −P̂sε

 < 0, (21)

where

Θ11
ijh = diag

{
−Rij ,−Qih,−γ2I

}
,

Θ12
i =

[
Ci 0 0

]T
,

Θ13
ijh =

[√
πi1U

T
jh

√
πi2U

T
jh · · ·

√
πimU

T
jh

]
,

Θ14
ijh =

[√
πi1U

T
ijh

√
πi2U

T
ijh · · ·

√
πimU

T
ijh

]
,

Ujh =
[
ΛhKjh I − Λh 0

]
,

Uijh =
[
Āijh B̄ih Di

]
,

P̂sε = diag
{
P̃1ε, P̃2ε, · · · , P̃mε

}
,

Q̂sε = diag
{
Q̃1ε, Q̃2ε, · · · , Q̃mε

}
,

P̃sε = P−1sε , Q̃sε = Q−1sε .

Proof: Obviously, conditions (18) and (20) imply condi-
tions (10) and (11), respectively. Therefore, in the case when
w(k) = 0, system (9) is SS according to Lemma 3. Next,
let us show that under the zero-initial condition, system (9)
has a joint L2−L∞ and H∞ performance. For any nonzero
w(k) ∈ l2[0,∞), define

Jα(k) = γ2wT (k)w(k) + E
{
zT (k)Zαz(k)

}
, (22)

where α ∈ {1, 2}, Z1 = 0, Z2 = −I . Then, since V (k) ≥ 0,
we can deduce that

E {∆V (k)} − Jα(k)

=E{
n∑
j=1

µij η̄
T (k)

(
Ψ̄T

1 P̄sεΨ̄1 + Ψ̄T
2 Q̄sεΨ̄2

)
η̄(k)

− xT (k)Pihx(k)− uT (k − 1)Qihu(k − 1)}
− γ2wT (k)w(k)− E

{
zT (k)Zαz(k)

}
=E{

n∑
j=1

µij η̄
T (k)

(
Ψ̄T

1 P̄sεΨ̄1 + Ψ̄T
2 Q̄sεΨ̄2

−Ψ̄T
3 ZαΨ̄3 − Ī

)
η̄(k)− xT (k)Pihx(k)}, (23)

where Ψ̄1 =
[
Āijh B̄ij Di

]
, Ψ̄2 =

[
ΛhKjh I − Λh 0

]
,

Ψ̄3 =
[
Ci 0 0

]
, Ī = diag

{
0, Qih, γ

2I
}

, η̄(k) =
col{x(k), u(k − 1), w(k)}.

Case I: α = 1, Z1 = 0
According to (23), we obtain that

E {∆V (k)} − J1(k)

=E
{ n∑
j=1

µij η̄
T (k)

(
Ψ̄T

1 P̄sεΨ̄1 + Ψ̄T
2 Q̄sεΨ̄2

−Ī
)
η̄(k)− xT (k)Pihx(k)

}
. (24)

Based on Lemma 1, we can infer from (20) that

Ψ̄T
1 P̄sεΨ̄1 + Ψ̄T

2 Q̄sεΨ̄2 − Ī < R̄ij , (25)

where R̄ij = diag {Rij , 0, 0}. Substituting (25) into (24), we
get

E {∆V (k)} − J1(k)

<E

η̄T (k)

 n∑
j=1

µijR̄ij

 η̄(k)− xT (k)Pihx(k)


=E

xT (k)

 n∑
j=1

µijRij − Pih

x(k)

 . (26)

Therefore we can see from (18) and (26) that

E {∆V (k)} − J1(k) < 0. (27)

By (19), it yields that

E
{
zT (k)z(k)

}
= E

{
xT (k)CTi Cix(k)

}
≤ E

{
xT (k)Pihx(k)

}
≤ E {V (k)} . (28)

And then, we continue to draw

E {V (k)} = E {V (k)− V (0)}

=
k−1∑
ψ=0

E {∆V (ψ)}

≤
k−1∑
ψ=0

E {J1(ψ)} . (29)

By means of (28) and (29), we can derive

E
{
zT (k)z(k)

}
≤
k−1∑
ψ=0

E {J1(ψ)}

≤
∞∑
k=0

E {J1(k)} . (30)

In the light of (22), (30), and Definition 2, system (9) has
the L2 − L∞ performance.

Case II: α = 2, Z2 = −I
According to (23), we obtain that

E {∆V (k)} − J2(k)

=E
{ n∑
j=1

µij η̄
T (k)

(
Ψ̄T

1 P̄sεΨ̄1 + Ψ̄T
2 Q̄sεΨ̄2

+Ψ̄T
3 IΨ̄3 − Ī

)
η̄(k)− xT (k)Pihx(k)

}
. (31)

Utilizing Lemma 1, we can infer from (21) that

Ψ̄T
1 P̄sεΨ̄1 + Ψ̄T

2 Q̄sεΨ̄2 + Ψ̄T
3 IΨ̄3 − Ī < R̄ij . (32)

Substituting (32) into (31), we get

E {∆V (k)} − J2(k)

<E

η̄T (k)

 n∑
j=1

µijR̄ij

 η̄(k)− xT (k)Pihx(k)
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=E

xT (k)

 n∑
j=1

µijRij − Pih

x(k)

 . (33)

Therefore we can see from (18) and (33) that

E {∆V (k)} − J2(k) ≤ 0.

Further it can be concluded that,

−J2(k) ≤ E {∆V (k)} − J2(k)

≤ 0. (34)

Adding both sides of (34), we obtain

−
∞∑
k=0

J2(k) ≤ 0. (35)

In the light of (22), (35), and Definition 3, system (9) has
the H∞ performance.

Based on the above discussion, it can now be concluded
that the system (9) has joint L2−L∞ and H∞ performance,
The proof is completed.

Building upon Theorem 1, we can develop a desired
asynchronous controller design approach, described by the
following theorem:

Theorem 2. Given a positive constant γ > 0, suppose that
there exist matrices P̃ih > 0, Q̃ih > 0, R̃ij > 0, Njh, and
K̃jh, for i ∈M, j ∈ N , and h ∈ D such that the following
conditions hold:[

−P̃ih Γ̄ih
Γ̄Tih −Υi

]
< 0, (36)[

−P̃ih P̃ihC
T
i

CiP̃
T
ih −I

]
< 0, (37) Θ̄11

ijh Θ̄13
ijh Θ̄14

ijh

(Θ̄13
ijh)T −Q̂sε 0

(Θ̄14
ijh)T 0 −P̂sε

 < 0, (38)


Θ̄11
ijh Θ̄12

ijh Θ̄13
ijh Θ̄14

ijh

(Θ̄12
ijh)T −I 0 0

(Θ̄13
ijh)T 0 −Q̂sε 0

(Θ̄14
ijh)T 0 0 −P̂sε

 < 0, (39)

where

Γ̄ih =
[√
µi1P̃ih

√
µi2P̃ih · · · √µinP̃ih

]
,

Υi = diag
{
R̃i1, R̃i2, · · · , R̃in

}
,

Θ̄11
ijh = diag

{
R̃ij −NT

jh −Njh, Q̃ih −NT
jh −Njh,−γ2I

}
,

Θ̄12
ijh =

[
CiNjh 0 0

]T
,

Θ̄13
ijh =

[√
πi1Ū

T
jh

√
πi1Ū

T
jh · · ·

√
πimŪ

T
jh

]
,

Θ̄14
ijh =

[√
πi1Ū

T
ijh

√
πi1Ū

T
ijh · · ·

√
πimŪ

T
ijh

]
,

Ūjh =
[
ΛhK̃jh (I − Λh)Njh 0],

Ūijh =
[
AiNjh +BiΛhK̃jh Bi(I − Λh)Njh Di],

P̃ih = P−1ih , R̃ij = R−1ij , K̃jh = KjhNjh.

Then, the system (9) is SS and has a joint L2 − L∞
and H∞ performance guarantee. Additionally, if there are
feasible solutions for (36)–(39), the controller gain Kjh can
be determined using the following equation:

Kjh = K̃jhN
−1
jh . (40)

Proof: Here, nonlinear terms are dealt with by introduc-
ing slack matrices Njh. Based on (38), we get the inequalities
R̃ij−NT

jh−Njh < 0 and Q̃ij−NT
jh−Njh < 0. Thus, we can

conclude that Njh is positive definite, which guarantees that
Njh is invertible. Then, pre-multiplying and post-multiplying
(36) by diag{Pih, I}, we get[

−Pih Γi
ΓTi −Υi

]
< 0, (41)

where Γi =
[√
µi1I

√
µi2I · · · √µinI

]
. Applying

Lemma 1 to (41), we get (18), thus showing that (18) can
be guaranteed by (36). Similarly, (19) can be obtained by
pre-multiplying and post-multiplying (37) by diag{Pih, I}.
The establishment of (19) is guaranteed by (37).

The next step is to verify the adequacy of (38) as a
guarantee for the truth of (20). As stated in Lemma 2, we
can infer the following inequality:

−NT
jhR̃

−1
ij Njh ≤ R̃ij −N

T
jh −Njh, (42)

−NT
jhQ̃

−1
ih Njh ≤ Q̃ih −N

T
jh −Njh. (43)

The results obtained from (38), (42), and (43) indicate that Θ̌11
ijh Θ̄13

ijh Θ̄14
ijh

(Θ̄13
ijh)T −Q̂s,ε 0

(Θ̄14
ijh)T 0 −P̂s,ε

 < 0, (44)

where Θ̌11
ijh = diag{−NT

jhR̃
−1
ij Njh,−NT

jhQ̃
−1
ih Njh,−γ2I}.

And then, pre-multiplying and post-multiplying (44) by
diag{(NT

jh)−1, (NT
jh)−1, I, · · · , I} and its transposed matrix,

(44) is equivalent to (20). Similarly, the results obtained from
(39), (42), and (43) indicate that

Θ̌11
ijh Θ̄12

ijh Θ̄13
ijh Θ̄14

ijh

(Θ̄12
ijh)T −I 0 0

(Θ̄13
ijh)T 0 −Q̂s,ε 0

(Θ̄14
ijh)T 0 0 −P̂s,ε

 < 0. (45)

And then, pre-multiplying and post-multiplying (45) by
diag{(NT

jh)−1, (NT
jh)−1, I, · · · , I} and its transposed matrix,

(45) is equivalent to (21). The proof is completed.

IV. NUMERICAL EXAMPLE

In this section, we will demonstrate the effectiveness of
the designed controller by conducting relevant simulations.
Assuming that the MJS model consists of two operating
modes, the corresponding system matrices are shown as
follows:
Mode 1:

A1 =

 −0.36 0.15 −0.67
0.35 −0.50 0
−0.89 −0.39 −0.28

 , B1 =

 0.22 0.2 −0.3
0.01 0.22 −0.06
−0.3 0 −0.09

 ,

C1 =

 0.4 0.1 0.1
0.2 0.5 0
0.1 0.11 0.2

 , D1 =

 0.15 0.2 0.1
0.2 0.14 0.12
0.2 0.13 0.11

 .

Mode 2:

A2 =

 0.95 0.22 −0.04
0.22 0.39 −0.14
0.07 0.20 0.10

 , B2 =

 0.16 0.1 −0.01
0.02 0.32 0.01
−0.11 0.14 0.13

 ,

C2 =

 0.16 0.1 0.17
0.2 0.1 0
0.1 0 0.11

 , D2 =

 0.15 0.15 0.05
0.03 0.13 0.03
0.12 0.22 0.23

 .
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Fig. 2. Token selection situation.

The transitions of both the controlled system and the con-
troller follow the TP matrix Π and the conditional probability
matrix Ω as described below:

Π =

[
0.2 0.8
0.6 0.4

]
,Ω =

[
0.3 0.7
0.9 0.1

]
.

Assume that the initial value of the scheduling signal %k
is 1, and it is selected from 1 to 3 (as shown in Fig. 2). Let
l = 2, meaning there are two nodes in the package, so there
are always two executor nodes connected to the network at
any moment (Fig. 3). Therefore, the three update matrices
are respectively Λ1 = diag{1, 1, 0}, Λ2 = diag{0, 1, 1},
and Λ3 = diag{1, 0, 1}. We further use the asynchronous
controller design method proposed in Theorem 2 to obtain
the following asynchronous controller gains:

K11 =

 0.0000 0.0000 0.0000
−0.2834 −0.0807 0.3873

0 0 0

 ,
K12 =

 0 0 0
−0.1358 0.0264 0.1508
0.1787 −0.0659 −0.5134

 ,
K13 =

 −0.4783 0.0577 0.5567
0 0 0

0.0061 −0.0409 −0.0724

 ,
K21 =

 0.0000 0.0000 0.0000
−0.1629 −0.0240 0.5876

0 0 0

 ,
K22 =

 0 0 0
−0.1049 0.1187 0.1829
0.0320 −0.1898 −0.4974

 ,
K23 =

 −0.2549 0.1445 0.5679
0 0 0

−0.0008 −0.0422 −0.1635

 .
with the joint L2 − L∞ and H∞ performance index
γ=1.4519. For comparison, we also consider a scenario
where the network channel allows only one actuator node
to exchange information at any given time, reducing the
MNRRP to the simpler RRP case. Consequently, the update
matrices change to Λ1 = diag{1, 0, 0}, Λ2 = diag{0, 1, 0},
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Fig. 3. Packet arrival condition.
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Fig. 4. State trajectories x(k) of the open-loop system.
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Fig. 5. Switching modes of the plant and controlle.

and Λ3 = diag{0, 0, 1}. By applying the asynchronous
controller design method described in Theorem 2, we can
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Fig. 7. Control input signals.
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Fig. 8. The trajectories of G(k) and I(k).

obtain the corresponding asynchronous controller gains.

K11 =

 −0.0422 0.1222 0.0771
0 0 0
0 0 0

 ,

K12 =

 0 0 0
−0.0370 −0.0891 −0.0186

0 0 0

 ,
K13 =

 0 0 0
0 0 0

0.1029 −0.0263 −0.2036

 ,
K21 =

 −0.0168 0.0824 0.0563
0 0 0
0 0 0

 ,
K22 =

 0 0 0
0.0139 −0.0943 0.0019

0 0 0

 ,
K23 =

 0 0 0
0 0 0

0.0980 −0.1284 −0.2490

 ,
with the joint L2 − L∞ and H∞ performance index
γ=2.3381.

Through a comparison of the two cases, we can conclude
that the proposed control scheme under MNRRP enhances
overall control performance.

Assume x(0) = [−0.2 0.5 0.3]T and w(k) = e−0.4k.
The state trajectories of the open-loop MJS are shown in Fig.
4. Fig. 5 depicts the resulting plant and controller modes.
The evolution of the state x(k) of the closed-loop system,
according to the calculated asynchronous controller gains, is
shown in Fig. 6, and the control signal is shown in Fig. 7.
It can be concluded that the system (9) is stable.

We define

G(k) =
supk≥0 E

{
zT (k)z(k)

}∑∞
k=0 w

T (k)w(k)
, I(k) =

∑∞
k=0 E

{
zT (k)z(k)

}∑∞
k=0 w

T (k)w(k)
.

Thus, the curves of G(k) and I(k) under zero initial
condition are obtained (Fig. 8), and it is verified that G(∞)
and I(∞) are less than γ2(= 2.1080). The simulation results
illustrate the effectiveness of the proposed method.

V. CONCLUSION

This paper studied the problem of asynchronous control
design for DTMJSs based on MNRRP. Compared to the
traditional RRP, MNRRP updates several nodes at each trans-
mission time, resulting in enhanced system performance. An
HMM was constructed to address the asynchronous behavior
between the plant and the controller. Using the Lyapunov
functions and several inequalities, we established a criterion
ensuring that the MJS is SS and has joint L2 − L∞ and
H∞ performance. Subsequently, a required asynchronous
controller design approach was presented based on the
scheduling signal. Finally, a numerical example was used
to verify the feasibility and effectiveness of the theoretical
results.
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