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Abstract—For a graph & and a sequence S = (s1,s3,...,8%)
of positive integers with 51 < 33 < ... < s, we say that &
is packing S-colorable or & admits a packing S-coloring, if
V() can be partitioned into k subsets Vi, V:, ..., Vi such
that for each 1 < ¢ < k and any z,y € Vi, z # y, there is
d(z,y) = s + 1, where d{z,y) is the distance of vertices =
and y in G. For simplicity, we define the packing S-coloring
as packing [2, 8] coloring while 5 = (1,1,2,2,2,2,2,2,2,2). In
this paper, we proved that every planar graph & with maximum
degree A < 4 is packing [2, 8] colorable.

Index Terms—planar graphs, maximum degree, packing
coloring, discharging,

I. INTRODUCTION

N this paper, all graphs we considered are finite and
Isimple. Let G be a graph. We denote the set of vertices,
edges and faces of G by V(G), F(G) and F{G), respec-
tively. Let dg(u) (deg(f)) denote the degree of a vertex u
{respectively, a face f) in &, which is the number of edges
of G incident with u (respectively, the number of edges
incident with f). A k-vertex (k—-vertex, kt-vertex) is a
vertex of degree % (respectively, al most %, at least k). A
k (k~ or kT)-face and a k (k= or kT)-neighbor is defined
similarly. We use 6(G) and A(G) to denote the minimum
and maximum degree of G, respectively. A (xy,xq,--- , zg)-
face (Jujusg - - - ug)-face) is a k-face with vertices of degree
1, Ta, -+, T on its boundary (respectively, with vertices
uy, Uo, ---, ugx on its boundary). For a vertex w in a
graph G, denote N;(u) = {v e V(G)|d(uw,v) =i}, ¢ > 1
and Ny (u) = N(u), where d(u,v) is the distance between
vertices u, .

For a non-decreasing sequence S = (sq,s9,...,5;) of
positive integers, a vertex coloring of a graph G is called
a packing & coloring if V(&) can be partitioned into %
subsets V; such that for each 1 < ¢ < k£ the distance
between any two distinet vertices x, ¥ in V; is at least s; + 1.
The packing chromatic number of G, denoted by x,(G),
is the smallest & such that G has a packing (1,2,...,%)
coloring. Goddard et al. [1] first introduced the concept
of packing (1,2, ..., k)-coloring, termed broadcast coloring,
and showed that deciding whether x,{G) < 4 is NP-
hard. Goddard and Xu [2] later expanded broadcast coloring
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to packing coloring for any non-decreasing sequence 5.
In recent years, the packing S coloring received a lot of
attention, and some new results emerged. Gastineau and
Togni [3] proved that subcubic graphs are (1, 2, 2, 2, 2,
2, 2)-packing colorable and (1, 1, 2, 2, 2)-packing colorable.
J. Balogh, A. Kostochka and X. Liu [12] proved that the
subdivision of any subcubic graph has packing chromatic
number at most 8. Recently, X. Liu, X. Zhang and Y.
Zhang [13] proved that every subcubic graph is (1, 1, 2,
2, 3)-packing colorable and x,(D(G)) < 6, improving the
previous bound. There is also some research on subclasses
of subcubic graphs in [4, 5], such as outerplanar subcubic
graphs and ¢-saturated subcubic graphs, ete. Future research
issues and existing results on packing coloring of subcubic
graphs were summarized by M. Mortada and O. Togni [14].
Due to the complexity of packing coloring, current research
on packing coloring mostly focuses on subcubic graphs and
subclasses of subcubic graphs. In this paper, we study the
packing 5 coloring on planar graphs with maximum degree
at most 4 by discharge method.

A 2-distance coloring of a graph & is a mapping & :
Vo — {1,2,...,k}, satisfying: ¢ {z) # & (y) for any two
distinet vertices x, y in V with d(z,y) < 2. The 2-distance
chromatic number of &, denote by x2((), is the smallest
number k such that G has a 2-distance k-coloring. 2-distance
coloring and proper coloring are two special kinds of packing
& coloring. In fact, the packing S coloring is proper coloring
of G,if s, = 1,4 =1,2,...,k The packing & coloring is
2-distance coloring of G, if 3, =2,i=1,2,...,k.

In 1977, Wegner [11] proposed the following conjecture:

Conjecture 1.1 ([11]). If G is a planar graph, then
x2(G) < T il A(G) = 3, x=(G) < A(G) + 35 if
LZAG) ST and xo(G) < | 2S£ 1 A@G) 2 8

In 2018, Thomassen [15] proved that every planar graph
with A(G) = 3 has x2(G&) < 7. However, Conjecture 1.1
remains open for planar graphs with A{G) > 4. Some
scholars [6, 7] study the 2-distance chromatic number of
planar graphs by imposing constraints on the maximum
degree. Recently, Aoki [8] and Zou et al. [9] independently
proved that x2(G) = 17 if G is a planar graph with
A(G) < 5. Deniz [10] proved that every planar graph with
A(G) < 5 has x2(G) = 16. With regard to planar graphs
with A(G) = 4, N. Bousquet, L. de Meyer, et al. [16] proved
that x2(G) < 12.

A color set is a set of vertices of the same color. In this
paper, we relax the condition of 2-distance coloring. We color
the graph using ten colors such that for two of the color
sets, any pair of vertices within the same color set has a
distance of at least 2, while for the remaining eight color sets,
the distance between any pair of vertices within the same
color set is at least 3. Tt is easy to check that this coloring
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is a packing S coloring with S = (1,1,2,2,2,2,2,2,2,2).
For convenience, we define this coloring as packing [2, 8]
coloring.

Our main result is as following.

Theorem 1.2. If G is a planar graph with maximum degree
A < 4, then G is packing [2, 8] colorable.

We name the ten colors of packing [2, 8] coloring as 1,,
Ly, 24, 28, 26, 24, 26, 2/, 2g, 2. We say that 1,, 1, are
I-colors and 2, 2y, 2., 24, 2¢, 2y, 24, 2, are 2-colors. For
a vertex u, let Cy(u) denote the set of 2-colors which are
assigned to the vertices with distance 2 to u and As(u) =
{20:26,2¢,24,2¢,25,24, 2} \ C2(u). By the definitions, any
two vertices in the same 1-color set have distance greater
than 1, while any two vertices in the same 2-color set have
distance greater than 2.

II. REDUCIBLE CONFIGURATIONS

Let G be a counterexample of Theorem 1.2 with minimum
|[V(G)|+ |E(G)|. More specifically, G has no packing [2, §]
coloring, but any subgraph G of G has a packing [2,8]
coloring. By minimality, the graph G is connected. In this
section, we will give some reducible configurations of G.

Our main ideas are as follows. Let G be the graph
obtained from G by deleting a vertex « and adding some nec-
essary edges satisfied A(G') < 4 and ’V(C/)‘ + ‘E(G/)‘ <
V(G| + |E(G)]. Then G’ has a packing [2,8] coloring
7. Next we extand 7w to a packing [2,8] coloring 7 of G.
Obviously, G has no cut-vertex.

Let G/( b) denote the subgraph of G’ induced by the
vertices of colors 1, and 1;. And we denote by 7y (u) the
set of colors of the neighbors of « in o,

It is an obvious fact that the higher the vertex degree,
the greater the complexity of graph coloring. Therefore, it
is sufficient to prove the worst case, that is, the degree of a
vertex without special specification is 4. In the following,
we will analysis some needed vertices under this worst
assumption.

Lemma 2.1 In graph G, there is no cut edge.

Proof: On the contrary, suppose that there is a cut edge
wv in graph G with N(u) = {v,u1,u2,us} and N(v) =
{u,v1,v9,v3}. Let G = G—uw, we can get two components
G, Go. By minimality, both G; and G5 have packing
[2,8] coloring 7; and o, respectively. Then we extend to
a packing [2,8] coloring 7w of G. We can permute two 1-
colors or two of the eight 2-colors in either G; or Gy to
ensure that v and v are not in the same 1-color set, that any
two vertices in N(u) are not in the same 2-color set, and
that any two vertices in N(v) are not in the same 2-color
set. Then we can get a packing [2,8] coloring 7 of G, a
contradiction. Take an example, if » and v are in the same
1-color set, then we only need to permutation 1,, 1, in G
or G4. Thus, we get a packing [2, 8] coloring 7 of G. Other
cases can be easily checked. O

Lemma 2.2 §(G) > 3

Proof: On the contrary, since there is no cut edge, we can
assume that there is a 2-vertex v and N(u) = {v,w}. Let
Nw) = {u,v1,v2,v3}, N(w) = {u,wy, wa, w3 }.

Let G = G —u+ {vw}, if vw ¢ E(G); otherwise, let
G’ = G—u. By the minimality of G, G has a packing [2, 8]
coloring 7. Then we extend to a packing [2, 8] coloring 7

of G. Since d
u.

If {1,,1,} ¢ 7,(u), then color u with 1, or 1,, G has
a packing [2, 8] colorlng . Therefore, {1q,1,} C my(u).
Without loss of generality, suppose 7 (v) = 1a, 7 (w) = 1.
Besides, v has a neighbor of color 1; and w has a neighbor
of color 1,; otherwise, recolor v by 1, and color u with
1, (or recolor w by 1, and color u with 1;), then G has a
packing [2,8] coloring 7, a contradiction. Since |No(u)| <
6, |Co(u)] < 6 —2 = 4 and |As(u)| > 4. Color u with
an available 2-color, G' has a packing [2, 8] coloring 7, a
contradiction. O

Lemma 2.3 In graph G, 3-vertices are independent.

Proof: Let u be a 3-vertex with N(u) = {u1,us,us}t.
On the contrary, assume u; be a 3-vertex. Let N(u;) =
{’U,,1L1,171L172}. ,

If the edges uiue ¢ E(G) or ujus ¢ E(G), then G is
obtained by removing the vertex u from G and adding u;u-
or ujus; otherwise, ujus or ujus is not added (see Fig. 1).
By the minimality of G, G’ has a packing [2, 8] coloring 7 .
Then we extend to a packing [2,8] coloring 7 of G. Since
dev (ui,uj) < 2, where 4,5 € {1,2,3}, we only need to
color the vertex u.

If {1a,15} € ) (u), then color u with 1, or 1y, G has a
packing [2, 8] colonng . Therefore, {1,,1,} C m;(u).

Case 1: 7y (u) = {14, 13}.

Without loss of generality, suppose 7 (u1) = 1a, 7 (ug) =
W/(Ug) = 1. Similar to the discussion of Lemma 2.2, u;
has a neighbor of color 1; and wu, or us has a neighbor of
color 1,. Since |Ny(u)] < 8, |Co(u)] < 8 —2 = 6 and
|A2(u)| > 2. Color u with an available 2-color, G' has a
packing [2, 8] coloring 7, a contradiction.

Case 2: wl(u) = {14, 15,24}

If 7r/(u1) = 24, then No(u) has no vertex colored 2, in
G . If {1,,1p} # {7 (u1 1), 7 (u12)}, then recolor u; by the
rest 1-color and set 7(u) = 77,(/(“) = 2,, G has a packing
2, 8] coloring 7. Therefore, {1, 15} = {7 (u1,1),7 (u12)}.
Similar to the discussion of Lemma 2.2, both us and ug
have a neighbor of l-color, respectively. Thus, |Ca(u)| <
8+1—-2—-2=>5and |Ay(u)| > 3. Color u with an available
2-color, G has a packing [2, 8] coloﬁng 7, a contradiction.

Suppose T (ug) = 2, (symmetry, 7 (Uf;) = 2,). Suppose

(111) =1, (713) =1, If 1, ¢ w](zu) then recolor
ug by 1p. By Case 1, G has a packing [2, 8] coloring .
Therefore, 1, € ) (us). Similar to the discussion of Lemma
2.2, both u; and u3 have a neighbor of 1-color, respectively.
Thus, |Co(u)] <8+1—2—1=6 and |Ax(u)| > 2. Color
v with an available 2-color, G has a packing [2, 8] coloring
m, a contradiction. O

(v,w) < 2, we only need to color the vertex

Lemma 2.4

Lemma 2.3

Fig. 1: Illustrations of Lemma 2.3-2.4
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Lemma 2.4 In graph G, no 3-vertex is incident with any
3-faces.

Proof: Let u be a 3-vertex with N (u) = {ug, us, uz}. On
the contrary, assume « is incident with a 3-face. Without loss
of generality, suppose this 3-face is [uuqus).

Let G = G —u+ {ugus} (see Fig. 1). By the minimality
of G, G has a packing [2,8] coloring 7', Then we extend
to a packing [2,8] coloring m of G. Since d (us, u;) < 2,
where ¢,7 € {1,2 3} we only need to color the vertex «.

If {la,lb} Z 7 (w), then color » with 1, or L, (7 has a
packing [2, 8] coloring 7. Therefore, {1,,1,} < 7, (u).

Case 1: m (u) = {1,, 15}

Without loss of generality, suppose 7 (ur) = 1,, 7 (ug) =
7' (ug) = 1s. Since | No(u)| < 7, [Co(w)| < 7 and |Ag(u)| >
1. Colar w with an available 2-color, & has a packing [2, 8]
coloring , a contradiction.

Case 2: 7y (u) = {1a,15, 24

If (u1) = 2,, then Na(u) has no vertex colored 2,
in &. Suppose WI(UQ) =1, 7 (ug) = 1p. Similar to the
discussion in Lemma 2.2, uo has a neighbor of color 1, and
ug has a neighbor of color 1,. If 1, ¢ w;(ul), then recolor
up with 1, and set w(u) = wf(ul) = 2,, (7 has a packing
2,8] coloring . Therefore, 1, € 7y (uy). Since | No(u)| < 7,
|Ca(u)] < 7+1—3=25 and |Az{u)| > 3. Color u with
an available 2-color, ¢ has a packing [2, 8] coloring =, a
contradiction.

Suppose 7 (u2) = 2,4. Suppose wf(ul) =1, WJ(Ug) =1y.
If 1, ¢ 7r’1 (ug), then recolor ug with 1,. By Case 1, & has
a packing [2,8] coloring =. Therefore, 1, € ) (uz). Since
[INa(u)| < 7, [Ca(u)) < 7+1—1=7and |Az(w)] > 1.
Color w with an available 2-color, & has a packing [2, 8]
coloring w, a contradiction.

Suppose 7 (us) = 2,. Suppose 7 (u1) = 1,, 7 (ug) = 1p.
Similar to the discussion in Lemma 2.2, w3 has a neighbor of
color 15 and us has a neighbor of color 1,. Since | Na (u)] <
T, |Co(w)] < 7+1-2=26 and |Az(u)| = 2. Color w with
an available 2-color, G has a packing [2, 8] coloring =, a

contradiction. |
Lemma 2.5 In graph G, no 3-vertex is incident with any
4-faces.

Proof: Let u be a 3-vertex with N (u) = {ug, us, uz}. On
the contrary, assume u is incident with a 4-face. Without loss
of generality, suppose this 4-face is [uuazrus]. Let N(uq) =
{w,ur g, ur e, w13, N(ug) = {u,a,us 1,20, N(ug) =
{uu‘raui’: 131,.',3’2}, N(l‘) = {’LLQ, Uz, I, “TQ}'

Let G = G—u+{ujus} ( see Fig. 2). By the minimality
of @, G has a packing [2,8] coloring 7. Then we extend
to a packing [2, 8] coloring 7 of . Since dpv (uy,uz) = 3,
wy and wug may have the same 2-color in G . Let’s discuss
this situation first.

Case 1: 7' (uy) and = (ug) are the same 2-color.

Without loss of generality, suppose 7 (ul) = 7' (ug) = 2.

Case 1.1: w (Ug) is 1-color, suppose m (ug) = 1,

If 1o 2 {7 (u1,1),7 (ur2),m (uas)} or 1o ¢ 7 (uz),
then recolor u; or wus with 1, and color = with 1,,
¢ has a packing [2,8] coloring w. Therefore, 1, €
{7"(w11),7 (w12), 7 (u13)} and 1, € ) (ug). Similarly,
if T, ¢ {m (u11),7 (waa),m (ws)} or 1, # mp(ua),
then recolor wy or ws with 1. Since |Ch(u)| < 8 +
1—2 =7 and |A2(u)] > 1, color u with an avail-
able 2-color, (& has a packing [2,8] coloring . Therefore,

1, € {ﬂ' (U]_ ]_), (U]_ 2),71' (ul 3)} and 1, € TI'l(UQ) Hence,
{lay 1o} © {7 (ur2), 7 (wi2),m (wre)} and {1a,15} C
71'1 (uz)-

‘We first erase the color of vertex us.

If 7' (z) is 1-color, then 7' (z) = 1, and |Ca(ug)| < 2 +
24341 =28 1f |Cofuz)| <7, then |As(usz)| > 1. Color
uo with an available 2-color and « with 1;, & has a packing
[2,8] coloring . If |Co(ug)| = &, then bath z; and zo have
neighbors of color 1,; otherwise, recolor zq or zo with 1,
and then |Cs(ug)| < 7, a contradiction. We erase the color of
vertex x. If 1, & 7r’1 (x1), then recolor z1 with 1p; otherwise,
keep z; unchanged. z; is done in the similar way. Thus,
|Ca(x)] < 2424141 =6 and | 42 (z)| > 2. Recolor = with
an available 2-color and color ue with 1. Since |Ca(u)| <
8+ 1-3=26and |42(u)| = 2, color v with an available
2-color, G has a packing [2, 8] coloring 7, a contradiction.

If 7' (z) is 2-color, then {1,, 15} = {7 (ua1),7 (ua2)}-
Bemdes ug1 and wus o are in the same connected component
in & (a,b). Suppose T (UQ 10=1 7 (ug 2) = 1. Hence,
ug1 has a nelghbor of color 1, and ug 9 has a neighbor
of color 1,. If 7 (931) # 1y and = (332) # 1y, then recolor
x with 1,; otherwise keep = unchanged. Thus, |Ch(ug)| <
2424241 = Tand |Az(uz)| > 1. Color us with an available
2-color and w with 1, & has a packing [2,8] coloring , a
contradiction.

Case 1.2: 7 (ug) is 2-color, suppose 7 (us) = 2.

If {11} & wl(ue,) then recolor ws with 1, or 1,.
By Case 1.1, G has a packing [2,8] coloring w. Therefore,
{1a, 1y} © myus). If {1,,1;} & m {wy), then recolor uy
with 1, (or 1;) and color w with 1, (or 1,), & has a packing
2,8] coloring 7. Therefore, {14,135} C 7(u1). Similarly,
{La, 15} C 7y (ua).

Since uq, we and wug are colored 2-color, color » with 1,
or 1. The key is to recolor the vertex us. Let N(us 1) =
{ua, tl,tg, ts}. We erase the color of vertex us.

If w (z) is 2-color, then {16,15} = {7 (ug1), 7 (ug2)}-
Suppose T (u2 1) =1,, 7 (u2 2) = 1. Hence, us has a
nelghbor of color 1p and wug o has a neighbor of color 1,.
If 7' (z1) and 7' (z2) are 2-color, then recolor z with 1.
then |A2 (ug)| = 1. Color ug with an available 2-color and
u with 1, or 1y, G has a packing [2,8] coloring =. If
|3 (ug)| = 8, then both ¢, and ¢3 have neighbors of color
15. We erase the color of vertex wus . If 1, ¢ w; (t2), then
recolor to with 1,; otherwise, keep to unchanged. ¢35 is done
in the similar way. Thus, |Co(us )| < 24242 = 6 and
| Az (g 1) > 2. Recolor ws ; with an available 2-color, set
m{ug) = (u2 1) = 1, and m(u) = 1, G has a packing
[2,8] coloring «, a contradiction. Therefore, at least one of
z1 and x5 is colored 1-color. If {1,,13} # {Trf(asl),vrf(asg)},
then recolor z with the rest 1-color; otherwise, keep =z
unchanged. Now, [Co(ug)| < 2+ 24+ 1+2 = 7, then
| Az(us)| = 1. Color ug with an available 2-color and w with
14 or 15, 7 has a packing [2, 8] coloring 7, a contradiction.

Suppose 7 (x) is 1-color. Let ' (z) = 15, then at least one
of the vertices x1 and x5 is colored 1,. Suppose T (1) = 1a,
then xz1 has a neighbor different from = of color 1,. Then
| Ao(us)| > 1. Color ug with an available 2-color and w with
1g or 1y, G has a packing [2, 8] coloring . If |Cao(usz)| = &,
then =2 has a neighbor of color 1,. Besides, the neighbors of
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Us,2, except for the vertex uo, are all 2-colors. We erase the
color of vertex z. If 1, ¢ m,(x5), then recolor x5 with 1p;
otherwise, keep x5 unchanged. Thus, [Co(z)| <24+2+2+
1 =7 and [Az(z)| > 1. Color 2 with an available 2-color,
recolor uy o with 1, set m(uy) = 7r'(:15) = 1p and 7(u) = 1,,
G has a packing [2, 8] coloring , a contradiction.

Case 2: 7 (uq) and 7 (ug) are not the same 2-color.

We only need to color the vertex w. If {1,,1,} & 7 (u),
then color u with 1, or 15, G has a packing [2, 8] coloring
. Therefore, {1,,1,} C 7, (u).

Case 2.1: m(u) = {14, 15 }.

Without loss of generality, suppose 7 (u1) = 1o, 7 (ug) =
1. Then u has a neighbor of color 1; and u3 has a neighbor
of color 1,. Hence, there are at least two vertices with 1-
color in No(u). Since |[Na(u)| < 8, [Co(u)] <8 -2 =26
and |As(u)| > 2. Color u with an available 2-color, G has
a packing [2, 8] coloring 7, a contradiction.

Case 2.2: my (1) = {14, 15, 24 }.

Similar to Case 2.1, there are at least two vertices with 1-
color in Na(u). Since |Ny(u)| <8, [Co(u)| < 8+1-2=7
and |As(u)| > 1. Color u with an available 2-color, G has
a packing [2, 8] coloring , a contradiction. |

1
/ Uy
u
Uy 1

Us2 bus,
@ )

Fig. 3: Illustrations of Lemma 2.6

By Lemma 2.3-2.5, every vertex of G has degree 3 or 4,
and all faces of G have the following properties.

Every 3-face is (4,4,4)-face;

Every 4-face is (4,4,4,4)-face;

Every 5-face is (3,4,3,4,4)-face,
(4,4,4,4,4)-face.

Next, we focus on the question of how many 3-, 4- or
5-faces that the 4-vertex is incident with.

Lemma 2.6 In graph G, every 4-vertex is incident with at
most one 3-face.

Proof: Let u be a 4-vertex with N(u) = {u1, us, us, ug}.
On the contrary, assume w is incident with two 3-faces.

(3,4,4,4,4)-face or

Case 1: Suppose these two 3-faces are [uujuy] and
[’UUQU@]. Let N(ul) = {U,7 Udy U1, uLQ}, ]\/T(UQ) =
{u,u_g,Ug,l,UQ’Q}, ]V(ug) = {U/,UQ,'U,‘371,'U:372}, ]V(U4) =
{w,u1,uq,1,us2}. Let G =G-u+ {uiug, usuq} (see
Fig. 3(a)). By the minimality of G, G’ has a packing [2, §]
coloring 7 . Then we extend to a packing [2,8] coloring
of G. Since dv(u;,u;) < 2, where 7,7 € {1,2,3,4}, we
only need to color the vertex u.

If {1o,15} € 7T/1(U)’ then color u with 1, or 1, G has a
packing [2, 8] coloring 7. Therefore, {1,,15} C m(u).

Case 1.1: 7wy (u) = {14, 15}

Without loss of generality, suppose 7 (u1) = 7 (u3) =
1o, @ (uz) = 7 (ug) = 1p. Since [Ny(u)| < 8, then the
vertices in No(u) are colored different 2-colors; otherwise,
|Co(u)] < 7 and |Ay(uw)| > 1, color u with an available
2-color, G has a packing [2, 8] coloring .

If ]-b/ ¢ 7T1(U171), ]-b ¢ Wl(ulyg), 1b $ ‘/T/l(’(Lg’l) or
1y ¢ m(us2), then recolor wy 1, w9, Uz O uso with
1p. Then |Cy(u)] < 8 — 1 = 7 and |As(w)| > 1, color u
with an available 2-color, G has a packing [2, 8] coloring 7.
Therefore, 1, € 7T/1(U,1,1), 1, € 7Tl1<u172), 1, € ’/T/I(U371) and
1y € TT% (11,372).

We first erase the color of vertices u; and us. If 1, ¢
7r/1(u171), then we recolor uy,; with 1,; otherwise, keep w1 3
unchanged. w2, u3,; and uz > are done in the similar way.
Thus, |CQ(U1)| < 24242 =6and ‘Ag(ul” > 2, |02(U’3)| <
24242 =06 and |As(us)| > 2. Color u; and us with an
available 2-color and set w(u) = 7 (uy) = 7 (ug) =1,, G
has a packing [2,8] coloring 7, a contradiction.

Case 1.2: my(u) = {14, 13,2, }.

By symmetry, suppose 7 (1) = 24, 7 (ug) = 7 (ug) =
1p, 7rl('u,3) =1, 1f1, ¢ 7r/1 (uy), then recolor u; with 1,. By
Case 1.1, G has a packing [2, 8] coloring 7, a contradiction.
Therefore, 1, € Tr;(ul). Similar to the discussion in Case
1.1, 1 € 7T/1 (us 1) and 1, € 7r/1(u&2). We erase the color of
vertex ug. If 1, ¢ 7r/1(u‘371), then we recolor us3; with 1,;
otherwise, keep us3 1 unchanged. w3 is done in the similar
way. Thus, [Co(us)| <2+2+2+1=7 and |As(uz)| > 1.
Color u3 with an available 2-color and set w(u) = 7r/(u3) =
1., G has a packing [2, 8] coloring 7, a contradiction.

Case 1.3: 7r/1(u) = {14, 15,24, 25 }.

Suppose u; and us are colored 2-colors (or w; and ug are
colored 2-colors). Let 7T/(71,1) = 2., 7r/(u,2) = 2, 7T/(71,3) =
1., 7r/(u4) = 1p. Then us has a neighbor of color 1; and
uy has a neighbor of color 1,; otherwise, recolor uz by 1;
and color u with 1, (or recolor u4 by 1, and color u with
1), G has a packing [2, 8] coloring 7, a contradiction. Now,
|Co(u)] < 8+2—2 = 8. Then the rest vertices in No(u) are
colored different 2-colors and are different from 2, and 2;
otherwise, |Cs(u)| < 7, color u with an available 2-color, G
has a packing [2, 8] coloring 7. We can recolor uy with 1,
and set w(u) = 7 (uz) = 2, G has a packing [2, 8] coloring
w, a contradiction.

Suppose 11 and uy are colored 2-colors. Let W/(ul) =2,,
T (ug) = 2, T (u2) = 1p, @ (us) = 1. I 1, ¢ 7 (uy) or
1, ¢ ﬁi(u4), then recolor u; by 1, (or recolor uy4 by 1p).
By Case 1.2, G has a packing [2, 8] coloring 7. Therefore,
1, € my(u1) and 1, € m;(uq). Now, |Co(u)| < 8+2—2 = 8.
Then the rest vertices in N, (u) are colored different 2-colors
and are different from 2, and 2;. We can recolor u, with 1,
and set w(u) = 7 (u4) = 2, G has a packing [2, 8] coloring
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7, a contradiction.

Case 2: Suppose these two 3-faces are [uwuiug] and
[ ug). Let @ = G — u+ {ujug)} (see Fig. 3(b)). By
the minimality of &, & has a packing [2,8] coloring 7 .
Then we extend to a packing [2,8] coloring m of G, Since
de(ug,uy) < 2, where ¢,j € {1,2, 3,4}, we only need to
color the vertex w. Similar to the proof of Case 1, G has a
packing [2, 8] coloring 7, a contradiction. O

Lemma 2.7 If a 4-vertex u is incident with one 3-face,
then « is incident with at most one 4-face.

Proof: Let u be a 4-vertex with N(u) = {uq,ug, usg, s
On the contrary, suppose the 4-vertex u is incident with a
3-face and two 4-faces. Without loss of generality, suppose
this 3-face is [uwyuy).

Case 1: Suppose these two 4-faces are [uwizius| and
[uuszoug). Let G =G—u+ {ugug, uguy | (see Fig. 4{a)).
By the minimality of &, G has a packing [2, 8] coloring T
Then we extend to a packing [2,8] coloring = of &. Since
de(ug,uy) < 2, where ¢,j € {1,2, 3,4}, we only need to
color the vertex w. Similar to the discussion of Lemma 2.6,
7 has a packing [2, 8] coloring w7, a contradiction.

Case 2: Suppose these two 4-faces are [uwjzjus] and
[uuszous]. Let N(u1) = {w,ua,z1,u12) N(ua) =
{w, 21, u,1,uz0 b, N(us) = {u,22,us1,us2}, N(ug) =
{u, U1, L2, Uq, 1)

Let @ = G—u+{ugus} (see Fig. 4(b)) By the minimal-
ity of G, G has a packing [2, 8] coloring w . Then we extend
to a packing [2,8] coloring 7 of G. Since d. (uq,us) = 3
and dpv (us, wa) = 3, w1, uz may have the same 2-color in
G and wua, uy may have the same 2-color in G

Case 2.1: = (u1), 7= (ug) are not the same 2-color and
7' (ug), 7' (u4) are not the same 2-color.

We only need to color the vertex w. If {15,15} ¢ (),
then color u with 1, or 1;, & has a packing [2,8] coloring
7. Therefore, {14, 15} < 7 (u).

Case 2.1.1: 7y (u) = {14, 13 ).

Without loss of generality, suppose x (u1) = 1g, 7 (ug) =
1. Since |Nao(u)| < &, |Co(u)| < 8 If |Ch(u)| < 7, then
color » with an available 2-color, G has a packing [2,§]
coloring . If |Co(w)| = 8, then the vertices in Ng(u) are
colored different 2-colors. If 1, ¢ 7 (u11) or 1, & 7y(x1),
then recolor wyy or x; with 1, and then |Ca(u)| < 7, a
contradiction. Therefore, 15 € w1 (ug1) and 1, € 7, (x). We
erase the color of vertex wy. If 1, ¢ wi(ul,l), then recolor
w11 with 1,; otherwise, keep w11 unchanged. z; is done
in the similar way. Then |Ca{uy)| < 24+ 2+ 2 = 6 and
| Az ()| = 2. Color w; with an available 2-color, recolor us
and ug with 1, and color » with 1,, G has a packing [2, 8]
coloring w, a contradiction.

Case 2.1.2: my(w) = {14,154, 24}

If (UQ) is  2-color, then {1,,13} C
{7 (z1), 7 (ug1),7 (ug2)}; otherwise, recolor wp with
the rest 1-color and then we can get a contradiction by Case
2.1.1, Thus, |Co(u)] < 841—2 = 7 and |4y(u)| > 1.
Color w with an available 2-color, & has a packing [2, 8]
coloring m, a contradiction. The proof that 7 {us) is 2-color
is similar.

If 7' (uq) or 7' (ug) is 2-color, then there are at least two
vertices with 1-color in Na(u). Thus, |Co(u)| < 8+1-2=7
and |Az(w)| = 1. Color u with an available 2-color, & has
a packing [2, 8] coloring 7, a contradiction.

Case 2.1.3: mq(u) = {14, 15,24, 2 -

If 7' (uy) and 7' (us) are 2-color, then {1,,1,} < 7 (uo)
and {1,135} < 7r’1 (uz); otherwise, recolor us or ug with the
rest 1-color, and then we can get a contradiction by Case
2.1.2. Thus, there are at least four vertices with 1-color in
No(w), and then |C5(u)| < 8+2—4 =6 and |As(u)| = 2.
Color w with an available 2-color, & has a packing [2, §]
coloring m, a contradiction. Therefore, at least one of the
vertices wq and w4 is colored 2-color. Then there are at least
two vertices with 1-color in Nz (u). Hence, |Ca(u)| < 8 +
2 -2 =28 If |Co(w)| < 7, then color u with an available 2-
color, (& has a packing [2, 8] coloring . If |Cs(u)| = 8, then
the rest vertices in Na(u) are colored different 2-colors and
are different from 2, and 2. We can recolor wq or uwq with
the rest 1-color and set 7(u) = 7 (u1) or w(w) = 7 (uy), G
has a packing [2,8] coloring w, a contradiction.

Case 2.2: 7 (uq) and 7 (ug) are the same 2-color (sym-
metry, 7 (up) and 7' (u4) are the same 2-color).

Without loss of generality, suppose 7 (ul) — 7 (us) = 2q.
Then {1,,1,} © 7y (wp) and {14,15} C 7, (us); otherwise,
recolor u; or ug with the rest 1-color, and then « (ul) and
x (ug) are not the same 2-color, we can get a contradiction
by Case 2.1.

Case 2.2.1: us and w4 are colored 1-color.

Since ‘Cg(ul)‘ S 2+2+ 1 +1 =6 and |A2(’LL1)| 2 2,
recolor wy with an available 2-color. Since |Co(u)| < 8+2—
3 =7 and | Az(u)| > 1, color w with an available 2-color, &
has a packing [2,8] coloring w, a contradiction.

Case 2.2.2: One of us and w4 is colored 2-color.

Suppose 7' (ug) is 2-color (symmetry, 7 (uy) is 2-color).
Let m (ug) = 2. If {15, 13} & 71 (us), then recolor uy with
the rest 1-color, we can get a contradiction by Case 2.2.1.
Therefore, {14, 15} < 7 (us). Since {14,135} < 7y (w1) and
{1o, 1y} © my(us), [Co(ur) < 3+14+1+2 =7 and
| Az(u1)| = 1. Recolor wy with an available 2-color and color
u with the rest 1-color, G has a packing [2, 8] coloring =, a
contradiction.

Case 2.2.3: ug and wuy are colored 2-color.

Suppose TI'I(UQ) 47 (ug). Let 7 (UQ) =2, 7 (ug) = 2.
{1a, 15} C my(ug) and {14, 15} C 7 (uq); otherwise, recolor
tg Or uy with the rest 1-color, we can get a contradiction by
Case 2.2.2. Since {1,,1;} < w’l(ul) and {1,,1,} < 77 (us),
|Ca(u)] < 2+143 =6 and |As(w)| = 2. Recolor uy
with an available 2-color and color « with 1-color, G has a
packing [2,8] coloring m, a contradiction.

Suppose 7 (uz) = 7 (ug). Let 7 (ug) = = (U4) 2p.
Similarly, {1a,15} © 7 (uz) and {14,1p} < 7 (us). First
we erase the color of vertices w; and wy. Since | (u;)| <
24 1+2=>5and |Az(us)| = 3,7 < {1,4}, color ug and uy
with an available 2-color in order and color « with 1-coler,
¥ has a packing [2,8] coloring =, a contradiction. O

Lemma 2.8 If a 4-vertex w is incident with a 3-face and
a 4-face, then u has no 3-neighbors.

Proof: Let u be a 4-vertex with N(u) = {uy, ug,us, tq

Case 1: Suppose the 3-face is [uuquy] and the 4-face is
[vuazus] (see Fig. 5{a)). By Lemma 2.4 and Lemma 2.5, no
3-vertex is incident with any 4~ -faces. Then w4, us, us and
uy are 4-vertices. Thus, the 4-vertex « has no 3-neighbors.

Case 2: Suppose the 3-face is [uujuy] and the 4-face is
[wuizusg] (see Fig. 5(h)). By Lemma 2.4 and Lemma 2.5, no
3-vertex is incident with any 4~ -faces. Then uj, ue and wuy
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Fig. 5: Illustrations of Lemma 2.8

are 4-vertices. On the contrary, suppose u has a 3-neighbor.
Then this 3-neighbor is us. Let N(uy) = {u,uq, 2,111},
N(ug) = {u,x, U2,1,U2,2}7 N(Uza) = {%’%,1»“3,2},
]V(u;;) :/ {U, Uy, Uq,1, 11‘4,2}.

Let G = G — u + {usus,uszus}. By the minimality of
G, G’ has a packing [2, 8] coloring 7 . Then we extend to a
packing [2, 8] coloring 7 of G. Since d (u;,u;) < 2, where
i,7 €{1,2,3,4}, we only need to color the vertex u.

If {1,,1,} & ) (u), then color u with 1, or 15, G has a
packing [2, 8] coloring . Therefore, {1,,1,} C 7, (u).

Case 2.1: m;(u) = {14, 15}.

Without loss of generality, suppose 7 (uy) = 7 (us) =
1a, 7r/(’u,2) = 7r/(u,4) = 1. Since |Ny(u)| < 8, then the
vertices in Ny(u) are colored different 2-colors; otherwise,
|Co(u)] < 7 and |As(u)| > 1, color u with an available
2-color, G has a packing [2, 8] coloring .

If 1, ¢ 7r; (uq,1), then recolor uy ; with 1, and set 7(u) =
7' (u1,1), G has a packing [2,8] coloring 7. Therefore, 1, €
77/1(u171). We erase the color of vertex ;. If 1, ¢ 7r/1(u1,1),
then we recolor u;; by 1,; otherwise, keep «,; unchanged.
x is done in the similar way. Thus, |Co(u1)| <24+242=06
and |As(uq)| > 2. Color u; with an available 2-color, recolor
us by 1 and set 7(u) = 7r/('u,1) = 7T/(U3) =1,, G has a
packing [2, 8] coloring 7, a contradiction.

Case 2.2: my(u) = {14, 15, 24 }.

Suppose W/(ul) is 2-color. Let 7r/(u1) = 2., 77/(“2) =
7r/(u4) =1, 7['/(2,63) = 1,. Then u3 has a neighbor of color
1, and us or u4 has a neighbor of color 1,. Thus, |Co(u)| <
84 1—2=7and |Ay(u)| > 1. Color u with an available
2-color, G has a packing [2, 8] coloring 7, a contradiction.
The proof that 7 (u4) is 2-color is similar.

Suppose m (up) is 2-color. Let 7 (ug) = 24, 7 (uy) =
7T/(U3) =1a, 7 (ug) = 1. If 1, ¢ TF/I(’LLQ), then recolor us by
1;. By Case 2.1, G has a packing [2, 8] coloring 7. Therefore,
1y € m,(ug). Now, [Ca(u)] < 8+1—1=8.If |Cy(u)| < 7,
then color u with an available 2-color, G has a packing [2, 8]
coloring 7. If |Cy(u)| = 8, then the rest vertices in No(u)
are colored different 2-colors and are different from 2,. We

can recolor us with 1, and set w(u) = 7T/(U2) = 2,, G has
a packing [2, 8] coloring , a contradiction. The proof that
7 (us3) is 2-color is similar.

Case 2.3: 7r/1(u,) ={1la, 15,24, 25 }.

If 7' (uz) and 7 (us3) are 2-colors, then {14, 1y} C p (us2)
and {1,,1,} C 77/1(u3); otherwise, recolor uy or us by the
rest 1-color, and then we can get a contradiction by Case 2.2.
Thus, there are at least four vertices with 1-color in Na(u)
and then |Cy(u)] < 8+2—4 =6 and |Ay(u)| > 2. Color
u with an available 2-color, G has a packing [2, 8] coloring
7, a contradiction. Therefore, at least one of the vertices u;
and u, is colored 2-color. Suppose 7 (u;) is 2-color. Then
there are at least two vertices with 1-color in No(u). Hence,
[Co(u)] < 8+2—2 = 8 If |Cy(u)| < 7, then color u
with an available 2-color, G has a packing [2, 8] coloring 7.
If |Cy(u)| = 8, then the rest vertices in No(u) are colored
different 2-colors and are different from 2, and 2,. We can
recolor u; by the rest 1-color and set 7(u) = 7 (u1), G has
a packing [2, 8] coloring 7, a contradiction. O

III. DISCHARGING

In this section, we apply discharge rules to complete the
proof of Theorem 1.2. By Euler’s formula |V (G)|—|E(G)|+
|F(G)| = 2, we have

D (dw)—6)+ > (2d(f) - 6) =—12.

ueV(G) feEF(G)

Note that the total charge is fixed in the process of
discharging. We assign an initial charge of d(u) — 6 to
each vertex and an initial charge of 2d(f) — 6 to each
face of G, then only 3- and 4-vertices have negative initial
charges. Next, we design appropriate discharge rules and
redistribute the charge among vertices and faces to get the
final contradiction.

Now we design the following discharge rules:

21 Every 4-face sends % to each vertex on its boundary.

R2 Every 5-face sends 1 to each 3-vertex on its boundary.

R3 Every (3,4,3,4,4)-face sends % to each 4-vertex on its
boundary.

R4 Every (3,4,4,4,4)-face sends % to each 4-vertex on its
boundary.

RS Every (4,4,4,4,4)-face sends é to each 4-vertex on its
boundary. '

R6 Every 61 -face sends 1 to each vertex on its boundary.

Next, we will prove that after discharging, each face and
vertex has a non-negative new charge, leading to the final
contradiction. Obviously, the final charge of 3-face is non-
negative. We only check the final charge of 3-vertex, 4-vertex
and 4T -face.

First, we prove that the final charge of each face is non-
negative.

4-face: By Lemma 2.3-2.5, every 4-face is (4,4,4,4)-face.
The initial charge of (4,4,4,4)-face is 2d(f)—6 =2x4—6 =
2. The finial charge is 2 — 4 x 3 = 0 by RL.

5-face: By Lemma 2.3, every 5-face has at most two
3-vertices on its boundary. The initial charge of 5-face is
2d(f) —6 =2 x5 —6 = 4. We have the following three
cases about 5-face:

1) (3,4,3,4,4)- face: The finial charge is 4—2x1—3x é =0
by R2 and R3.
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2) (3,4,4,4,4)-face: The finial chargeisd—1x1—4x % =0
by R2 and E4.

3) (4,4,4,4,4)-face: The finial charge of is 4 — 5 % 45 =0
by R5.

GT-face: The initial charge of 67 -face is 2d(f) —GC. Hence,
the finial charge is 24(f) — 6 —d(f) x 1 =d(f)—6 > 0 by
Re.

Next, we prove that the final charge of each vertex is non-
negative.

3-vertex: By Lemma 2.4 and Lemma 2.5, no 3-vertex is
incident with any 4~ -faces. And the initial charge of 3-vertex
is d(u) — 6 = 3 — 6 = —3. By R2 and R6, the finial charge
is —34+du)x1=-3+3=0.

4-vertex: The initial charge of 4-vertex is d(u) —6 =4 —
6 = —2. By Lemma 2.6, every 4-vertex w is incident with at
most one 3-face.

1) If a 4-vertex = is incident with a 3-face, then w is
incident with at most one 4-face by Lemma 2.7.

1.1) If a 4-vertex w is incident with a 3-face and a 4-
face, then « has no 3-neighbors by Lemma 2.8. Then w is
incident with two 5T -faces, where the 5-faces are (3,4,4,4,4)-
or (44,444 faces. By K1 and H4-6, the finial charge of «
isat least —2+1x 1 +2x2=0

1.2) If a 4-vertex w is incident with a 3-face but not with
a 4-face, then u is incident with three 5+-face. By R1 and
R3-6, the finial charge of w is at least —2 4+ 3 x % =0.

2) If a 4-vertex u is not incident with 3-face, then the finial
charge of w is at least —2+4 x =0 by R1 and R3-6.

Now the final charge of all vertices and faces are non-
negative, which contradicts the initial charge -12. Thus, there
is no counterexample & existing and we complete the proof
of Theorem 1.2.

IV. CONCLUSION

In fact, the smaller the maximum degree, the more difficult
it is to use the discharge method. A further research is to
reduce the number of 2-colors.

Packing coloring has a broader application background.
Different distance requirements correspond to different
real-world contexts. Here we define packing [2,8] col-
oring to represent the packing S coloring for S =
(1,1,2,2,2,2,2,2,2,2). Similar definitions can be estab-
lished; for instance, packing [2, 2, 4] coloring refers to pack-
ing S coloring for & = (1,1,2,2,3,3,3,3). M. Mortada
and O. Togni [14] in their paper used exponents to de-
note repetitions of integers in a sequence, for example,
(12722334) = (13 1323 2? 3? 3? 3? 3)'
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