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Abstract—COVID-19, caused by the novel coronavirus SARS-
CoV-2, resulted in health threats on a global scale. We developed
a modified SIQR mathematical model to study the transmission
dynamics of the SARS-CoV-2 with two different variants: Delta
and Omicron. First, we establish the well-posedness of our
model and then analyse the local and global stability of the
model at the equilibrium points. Further, we compute the re-
production number denoted by R0 analytically and numerically.
The model analysis shows that the disease-free equilibrium
point remains globally asymptotically stable as long as the
value of R0 is below one. While if R0 exceeds one, the stability
of disease-free equilibrium becomes unstable. A numerical
simulation of the mathematical model was carried out to
understand its quantitative behaviour. The sensitivity analysis
is performed to identify the parameters which are sensitive to
reproduction number, R0. The results of the sensitivity analysis
show that the transmission rate and the birth rate were the most
sensitive parameters for R0. A PRCC-sensitive analysis is also
performed to quantify uncertainty and sensitivity at the level
of the infected class. Further, we try to explore the measures
to curb the incidence of COVID-19 due to delta and omicron
variants.

Index Terms—SIQR model, COVID-19, Delta and Omi-
cron, Local and global stability, Reproduction number, Multi-
variants, Sensitivity.

I. INTRODUCTION

COVID-19, which was first identified in 2019 in Wuhan,
China, spread quickly to several nations and regions of the
world due to its high contagiousness, causing disruption [1]–
[4]. The virus from the SARS-CoV family was named SARS-
CoV-2, and the disease was named COVID-19 by WHO
in February 2020. On 30th Jan 2020, WHO announced it
as a worldwide public health emergency. The mortality due
to COVID-19 was very high globally. Among the different
strains of the SARS-CoV-2 virus, the Delta variant was
highly contagious, causing the highest mortality. It is crucial
to have a better knowledge of the characteristics linked with
the virus in order to prevent future pandemics. It has been
demonstrated that mathematical models are useful tools to
study the dynamics of diseases and generate evidence for
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decision-making in global health [5]. In order to investigate
the COVID-19 spread pattern, various mathematical and nu-
merical models have been developed using ordinary differen-
tial equations and delay differential equations. A SIR model
is developed [4] to investigate the effects of the pandemic
caused by the transmission of the rare COVID-19 disease.
Ming et al. [6] studied an optimized SIR-type model and
forecasted the COVID-19 infected cases and the burden on
isolation wards and ICUs. In order to comprehend COVID-19
illness, certain compartment models were created, some of
which may be found in [7]–[17]. Using an optimum control
method, the impact of enhanced control and mitigation
measures such as isolation, screening, medical treatment, and
quarantine was investigated by [18]–[24]. To determine the
critical inflammatory factors and the role of a combination
of medical treatment of COVID-19, a simple within-host
tool model was created in [7]–[12]. Compartmental models
were proposed to predict the COVID-19 spread in India in
[25]. Analysis of local and global stability was performed
with reference to (R0 ) for the model equilibria. The study
reveals that the transmission rate was very effective in
lowering R0. The authors traced the COVID-19 outbreak
throughout Indian states using the SMAART RAPID Tracker
in [26]. The study emphasized the necessity of a nation-
centric strategy for tracking and controlling the COVID-19
pandemic. The factors that probably led to the third wave in
India were examined by the authors using a compartmental
model in [27]. To prepare for future waves of COVID-19, this
study suggests increasing vaccination coverage. Similarly,
[28] addressed the importance of using NPIs effectively to
lower the death rate in India. A study by Sukandar et al.
[29] analyzed a Susceptible-Exposed-Infectious-Recovered
(SEIR) based mathematical model to effectively measure
the transmission indicators per day to control the spread of
the epidemic. Zhang et al. [30] introduced a modified SEIR
model to enhance decision-making during COVID-19 out-
breaks, providing more accurate infection trend predictions.
This model supported effective resource allocation and policy
formulation during pandemics. Viruses evolve into different
variants as they get multiple hosts to mutate. The SARS-
CoV-2 virus also evolved into many variants, to name a
few variants of concern: Alpha, Delta, and Omicron. The
Delta variant of COVID-19 caused severe complications in
the infected and soon overwhelmed the health system in
many countries, including India, with increased demands for
hospitalization, oxygen, ICU, and ventilators.

On the other hand, the Omicron variant had higher trans-
missibility and spread fast. Thus, Compared to the Delta
version, there were more infected people, but because the
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Omicron variant’s infections were not as severe, there were
fewer hospitalizations and fewer case deaths. González-Parra
et al. [31] constructed a mathematical model for the analysis
of the Omicron strain of COVID-19 and concluded that
although the Omicron strain has a low fatality rate, it can
still cause a number of deaths. COVID-19 vaccinations are
successful in preventing serious diseases. The two omicron
sub-lineages (offshoots) that are most critical are BA.5 and
BA.2.12.1. According to the CDC [32], infections caused
due to BA.5 are around 88% in the United States and were
genetically sequenced in August 2022. In order to compre-
hend the variants of SARS-CoV-2 can be found in [33]–[35].
To better understand the variants of the SARS-CoV-2 virus
in the present study, we develop a four-compartment model
considering the transmission of infection through Delta and
Omicron variants. The manuscript work is structured as
follows: Section II presents a mathematical model based
on SIQR for the study of the omicron and delta variants
presenting detailed factors and variables, whereas, in Section
III, we have discussed the effectiveness and positive response
of the solutions. Section IV describes the stability analysis
of various equilibrium points admitted by the SIQR model.
Section V presents the numerical simulation and sensitivity
analysis of factors, while Section VI presents the discussion
and conclusion part.

II. FORMULATION OF MATHEMATICAL SIQR) MODEL

This paper uses four dimensions to investigate a mathe-
matical SIQR model for novel COVID-19: susceptible: S,
infected: I, quarantine: Q, and recovered: R. Differential
equations are used to formulate the model. The population
is thought to be evenly distributed, and diseases are spread
through direct contact among susceptible and infected people
and by the mobility of people from the susceptible and
infected classes. Let N be the entire population of the region
under study at any given time t, which is the sum of four
sub-populations. Let k be the rate of individual contact
tracing, with a fraction 1 − k responsible for spreading
infection and the remainder quarantined. The population’s
natural death rate in each compartment is represented by
µ . The virus transmission rates for the delta and omicron
variants are represented by βD and βo, respectively. The
infective and quarantine populations’ recovery rates are γ

while the mortality rates of delta and omicron variants are
αD and αo, respectively. The rate at which infected people
are quarantined is expected to be σ . The schematics flow
diagram is represented in Fig. 1 to comprehend COVID-19
interactions. The model’s dynamic is represented as follows
in the form of a differential equation:

dS
dt

= A− (βo +βD)SI −µS (1)

dI
dt

= (1− k)(βo +βD)SI

−(αo +αD +µ +σ + γ) I (2)
dQ
dt

= k (βo +βD)SI +σ I − (µ + γ)Q (3)

dR
dt

= γ(I +Q)−µR. (4)

Along with initial conditions S(0)> 0, I(0)≥ 0,Q(0)≥ 0,
R(0) ≥ 0 at t = 0 in which αD > αo and βD < βo. The

Fig. 1: Schematic flow diagram of the SIQR COVID-19
model

following Table I provides the definitions of each model
component and parameter.

TABLE I: Variables and Parameters used in the Differential
Formulation

Parameter Description Parameter Description
S Size of susceptible

population
σ Isolation rate of infec-

tives
I Size of infected pop-

ulation
βo Transmission rate of

omicron variant
Q Size of quarantined

population
k Rate of contact trac-

ing
R Size of recovered

population
αD Death rate due to

delta variant
A Recruitment rate αo Death rate due to

omicron variant
βD Transmission rate of

delta variant
γ Recovery rate

µ Natural death rate

III. POSITIVITY AND BOUNDED CONDITIONS

In this section, we demonstrate that the solutions of the
system of equations, as defined in Eqs. (1)-(4), remain
positive and bounded for all time.

A. Positivity
Theorem 1. The solutions of the system given in Eqs. (1)-(4)
with conditions, S(0)> 0, I(0)≥ 0,Q(0)≥ 0,R(0)≥ 0 are all
positive, for all non-negative t (i.e. t ≥ 0 ).

Proof: From the system of equations given in Eqs. (1)
-(4) the following expression is obtained

dI
dt

≥−(αD +αo +µ +σ + γ) I

or
dI
I

≥−(αD +αo +µ +σ + γ)dt.

Taking integration, we obtain

I(t)≥ e−(aD+ao+µ+σ+γ)t .

Letting limit as t → ∞ in the above expression, we get
lim I(t)≥ 0. From Eqs. (3) we have

dQ
dt

≥−(µ − γ)Q

or
dQ
Q

≥−(µ − γ)dt.
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Upon integrating the above equations, the following expres-
sion is obtained

Q(t)≥ exp−(µ−γ)t .

Again taking limit as t → ∞

limQ(t)≥ 0.

Similarly, it is seen that limit t → ∞ yields limR(t)≥ 0 and
limS(t)≥ 0.

Thus, we find that all the population, i.e., Susceptible: S,
Infected: I, Quarantined: Q and Recovered: R at any time t,
are non-negative.

B. Boundedness

Let’s write N(t) = S(t)+ l(t)+Q(t)+R(t) to represent the
total population at any time t. Taking derivative of N(t) with
respect to t, following expression is obtained:

dN
dt

=
dS
dt

+
dI
dt

+
dQ
dt

+
dR
dt

= A−µN − (αD +αo) I

≤ A−µN.

At this point integrating factor is obtained as eµt . Conse-
quently after integration we have, N(t)≤ A

µ
+ ce−µt , then as

t → ∞, we get N(t)≤ A
µ

.
As a result, we have demonstrated that the combination in

Eqs. (1) -(4) is constructive and limited now. The following
set provides the physiologically variable region.

Ω =
{
(S(t); I(t);Q(t);R(t)) ∈ R4

+;S(t)+ I(t)+

Q(t)+R(t)≤ A
µ
}.

IV. STABILITY AND ANALYSIS FOR
EQUILIBRIUM POINTS

The structure defined by Eqs. (1) -(4) permits two
equilibria, specifically, the disease-free equilibrium E0 and
equilibrium with infection E1. Here E0 =

(
A
µ
,0,0,0

)
and endemic equilibrium E1 = (S∗, I∗,Q∗,R∗), where

S∗ =
A

(βD +βo) I∗+µ
,

Q∗ =
kA(βD +βo) I∗

((βD +βo) I∗+µ)(µ + γ)
+

σ I∗

µ + γ
,

R∗ =
γ (I∗+Q∗)

µ
,

I∗ =
A(1− k)(βD +βo)−µ (µD +µo +σ + γ +µ)

(βD +βo)(µD +µo +σ + γ +µ)
.

A. Basic Reproduction Number

The basic reproduction number, defined as the average
number of secondary cases produced per original/ primary
case in an infection-free population, is calculated using the
approach of next-generation matrices as in [36]. There are
two states (I,Q) having infection in the system defined
by Eqs. (1) -(4). To get the basic reproduction number,
we construct the Jacobian matrix of the infected states
at the infection-free equilibrium. We have determined the
Jacobian matrix at infection-free equilibrium E0 as follows:

J(E0) =[
A(1−k)(βD+βo)

µ
− (αD +αo +µ + γ +σ) 0

kA(βD+βo)
µ

+σ −(µ + γ)

]
The

above Jacobian matrix can be rewritten as J (E0) = (F +V )
where F matrix represents the spread of a new infection and
V matrix represents state changes, such as removal due to
death or recovery.

The components of the F matrix and V matrix are defined
as

F =

[
A(1−k)(βD+βo)

µ
0

kA(βD+βo)
µ

0

]
and

V =

[
−(αD +αo +µ + γ +σ) 0

σ −(µ + γ)

]
,so

FV−1 =

[
A(1−k)(βD+βo)

µ(αD+αo+µ+γ+σ) 0
0 0

]
.

The dominant eigenvalue of the matrix FV−1, denoted by the
parameter λ , is given as

λ =
A(1− k)(βD +βo)

µ (αD +αo +µ + γ +σ)
.

As a result, the value of R0 (basic reproduction number),
which is equal to the dominant eigenvalue of the matrix FV−1

is given as follows:

R0 =
A(1− k)(βD +βo)

µ (αD +αo +µ + γ +σ)
. (5)

B. LOCAL AND GLOBAL DYNAMICS STABILITY ANALY-
SIS FOR E0

Jacobian matrix at the infection-free equilibrium E0 for
the system equations (1) -(4) is given as:

J (E0) =


−µ

A(βD+βo)
µ

0 0

0 A(1−k)(βD+βo)
µ

0 0

0 Ak(βD+βo)
µ

+σ −(µ + γ) 0
0 γ γ −µ

 .

The characteristics equation for the Jacobian Matrix J (E0)
is given by

λ
4 +Pλ

3 +Qλ
2 +Rλ +T = 0, (6)

where a = µ,b = µ + γ , c = αD +αo +µ + γ +σ and
P = ab+b+ c(1−R0) ,

Q = a2 +bc(1−R0)+ab2 +abc(1−R0) ,

R = a2b(1+ c(1−R0))+ac(1−R0)
(
a+b2) ,

T = a2bc(1−R0) .
We can clearly see that P,Q,R,T are all positive (i.e. P >
0,Q> 0,R> 0,T > 0 ) if R0 < 1 and also PQR−R2− P2T >
0 for R0 < 1. Thus, by using Hurwitz’s theorem, we find that
if R0 is less than one, the infection-free equilibrium point E0
is locally asymptotically stable while it is unstable for R0 > 1.

C. GLOBAL STABILITY FOR E0

Here, we apply the approach described by Castillo-Chavez
et al. [37]. To determine the global stability of the infection-
free equilibrium E0. Take into account the system defined
below, dX

dt = F(X ,Y ), where X stands for the compartments
of the population that are uninfected and Y for those that are,
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including latent, infectious, etc. In this case, G(X ,0) = 0 is
satisfied by the function G. The equilibrium point of the
aforementioned general system of equations is denoted by
U0 =

(
X0,0

)
. If the given below conditions are satisfied, then

U0 for the aforementioned general system of equations is
globally asymptotically stable if the following two criteria
are fulfilled, assuming R0 < 1.

If the given below conditions are satisfied then U0 is glob-
ally asymptotically stable with the above-mentioned general
system provided R0 < 1.
A1 : Global asymptotically stable X0 exists for the subsystem
dx
dt = F(X ,0).
A2: The function G = G(X ,Y ) can be represented as
G(X ,Y ) = AY − Ĝ(X ,Y ), where Ĝr(X ,Y )≥ 0∀(X ,Y ), in the
feasible region Ω for j = 1,2,3 and A = DY G(X ,Y ) when
X = X0 and Y = 0 is an M-matrix (matrix with positive off-
diagonal elements).

Note that the system is defined in Eqs. (1) -(4) can
be expressed in the aforementioned general system format,
and both two cases, A1 and A2, are satisfied. We shall
demonstrate the global stability of disease-free equilibrium
E0 =

(
A
µ
,0,0,0

)
.

On comparing the aforementioned general system, i.e.
dX
dt = F(X ,Y ) with the system given in Eqs. (1) -(4), Where

F and G are presented as follows:

F(X ,Y ) = A−A1SI −µS

G(X ,Y ) =
(

(1− k)A1SI −A2I, kA1SI +σ I
−(µ + γ)Q, γ(I +Q)−µR

)
Where X = S,Y = (I,Q,R),A1 = βD + βo, and A2 =

(αD +αo +µ +σ + γ).
The infection-free equilibrium point is denoted by U0 =(

X0,0
)
, in which the arguments are given as X0 = A

µ
and

0 = (0,0,0) We may infer that U0 is locally asymptotically
stable iff R0 < 1 from the stability analysis of E0. It is obvious
that G(X ,0) = (0,0). We now demonstrate that X0 =

(
A
µ

)
is

globally asymptotically stable for the subsystem

dS
dt

= F(S,0) = A−µS (7)

Here, it is obtained that the integrating factor is eµt and
therefore after performing integrating, the above equation (7)
leads to the following relation, S(t)eµt = Aeµt

µ
+ c.

Letting limit t → ∞, we obtain S(t) = A
µ

, which does not
depend on c. Because of this independence, it follows that
X0 = A

µ
is globally asymptotically stable for the subsystem

dS
dt = A−µS. As a result, assumption A1 holds.

We shall now demonstrate that assumption A2 is true.
We will start by locating the matrix A. Theoretically, when
(X ,Y ) =

(
X0,0

)
,A = DY G(X ,Y ), where

DY G(X ,Y ) =

 (1− k)A1S−A2 0 0
KA1S+σ −(µ + γ) 0

γ γ −µ

 .

At the points (X ,Y ) =
(
X0,0

)
, leads to the following

A =

 (1− k)A1
A
µ
−A2 0 0

KA1
A
µ
+σ −(µ + γ) 0

γ γ −µ

 .

Matrix A clearly has positive off-diagonal elements. As
a consequence, A represents an M-matrix. Using Ĝ(X ,Y ) =
AY −G(X ,Y ), we obtain,

Ĝ(X ,Y ) =

 Ĝ1(X ,Y )
Ĝ2(X ,Y )
Ĝ3(X ,Y )

=


(1− k)A1I

(
A
µ
−S

)
KA1I

(
A
µ
−S

)
0

 .

Since S(t) + I(t) +Q(t) +R(t) ≤ A
µ

we find that S(t) ≤
A
µ

. Hence Ĝ1 ≥ 0, Ĝz ≥ 0 and Ĝ3(X ,Y ) = 0. Hence, if the
assumptions A1 and A2 are fulfilled, then E0 is globally
asymptotically stable under R0 < 1.

D. STABILITY ANALYSIS OF E1

The Jacobian matrix at the infected equilibrium E1 for
the system described in Eqs. (1) -(4) is obtained by JE1 =

−(βD +βo) I∗−µ −(βD +βo)
(1− k)(βD +βo) I∗ (1− k)(βD +βo)S∗− (αD

k (βD +βo) I∗ k (βD +βo)S∗

0 γ

 .

Evaluating the eigenvalues for J (E1) we find that the
two eigenvalues are λ1 = −µ and λ2 = −(µ + γ). Other
eigenvalues are the two roots of the quadratic equation given
by

λ
2 − (M11 +M22)λ +(M11M22 −M12M21) = 0, (8)

where
M11 =−(βD +βo) I∗−µ,M12 =−(βD +βo)S∗,

M22 = (1− k)(βD +βo)S∗− (αD +αo + γ +σ +µ) ,
M21 = (1− k)(βD +βo) I∗.

From the equation defined in Eqs.(8) we find that
both the roots are negative provided (M11 +M22) < 0 and
(M11M22 −M12M21)> 0. We see that all the eigenvalues for
the matrix J (E1) are negative given that (M11+ M22)< 0 and
(M11M22 −M12M21)> 0. Thus we observe that the infected
equilibrium point E1 exists and are asymptotically stable un-
der the conditions (M11+M22)< 0 and (M11M22 −M1221)>
0.

V. NUMERICAL SIMULATION

Numerical simulations are carried out in this section to
demonstrate and validate the findings of the Local and Global
Dynamics section. MATLAB software is used to validate the
theoretical conclusions for a set of model parameters. Table
II summarises all of the parameter values utilized for the
simulation. From the theoretical analysis, we know that the

TABLE II: LIST OF PARAMETER VALUES-I

Symbols Values Source
A 10.48 [38]
k 0.2 assumed
µ 0.00714 [38]
βD 0.25172 [38]
βo 0.01752 Assumed
αD 0.0484 Assumed
αo 0.048 [38]
γ 0.0123 [38]

infected equilibrium E1 is also locally asymptotically stable
whenever (M11 +M22) < 0 and (M11M22 −M12M21) > 0.
With the parameter values from Table II, the above two
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Fig. 2: The local asymptotic stability of E1 of the system
(1) -(4)

conditions were found to be satisfied, and the value of E1
was calculated to be (7.62,31.13,266.21,515.82). With the
parameter values from Table II, we simulate the system
of equations given in Eqs. (1) -(4) with the initial values
(500,400,50,50). From Fig. 2, we see that the solution starts
with (500,400,50,50) and reaches the infected equilibrium
E1 =(7.62,31.13,266.21,515.82) and remains constant. This
demonstrates the locally asymptotically stable of E1.

Considering µ = 0.45,k = 0.1, and the other parameter
values from Table II, we find that R0 < 1. The disease-free
equilibrium point E0 was calculated to be (23,0,0,0). Since
R0 < 1, from the result proved in the previous section, the
infection-free equilibrium point, E0 = (23,3,0,0) is globally
asymptotically stable for the system (1) - (4). In Fig. 3, taking
initial condition (500,100,50,30) the system of equations
given in Eqs. (1) - (4) were simulated and it was found
that the solution of the system in Eqs. (1) - (4) reaches E0
and remains constant. In Figure 4, we took various initial
conditions and simulated the system and we found that if
the model parameter values are chosen such that R0 < 1, the
solution always converges to the infection-free equilibrium
E0. Figure 4 describes the system’s global stability at the
infection-free equilibrium E0 of the system in Eqs. (1) - (4).

Fig. 3: The global stability of E0 for the system of
equations Eqs.(1) -(4)

A. Sensitivity and Elasticity

The basic reproduction number represented by R0 plays
a crucial role in any model. We have found the expression
for R0, which is given by, R0 = A(1−k)(βD+βo)

µ(αD+αo+µ+γ+σ) . In order

Fig. 4: The global stability of E0 for the system of
equations Eqs.(1) -(4)

to determine the best control measures, it’s critical to under-
stand the many transmission-related aspects and factors. The
sensitivity index of R0 with respect to a parameter µ is ∂R0

∂ µ
.

An additional measure is the elasticity index (Normalized
Sensitivity Index), which is represented by the symbol φ

R0
µ ,

measure the relative change of R0 with respect to µ and
is defined as φ

R0
µ = ∂R0

∂ µ
. µ

R0
The value of the parameter

determines its relative relevance, while the elasticity index’s
sign shows whether the value of R0 increases (+ sign) or
decreases ( - sign), with respect to the values of parameters
[39]–[41].

The elasticity indices of each of the parameters of R0 are
calculated by taking parameter values described in Table II
and are presented in the following Table III. The elastic index
of parameters A,βD,βo, are positive and the remaining is
negative. This implies that the increase in the values of these
parameters increases R0, whereas an increase in the values
of parameters µ,γ , and αD,αo, and σ decreases R0. For
parameter A, we see that φ

R0
β

= 1. With this, it is concluded
that an increase (decrease) of β by x% increases (decreases)
R0 by x%.

The elasticity indices of R0 with the model parameters are
given as follows:

φ
R0
A =

∂R0

∂A
A
R0

= 1

φ
R0
βD

=
∂R0

∂βD

βD

R0
=

βD

(βD +βo)
′

φ
R0
βo

=
∂R0

∂βo

βo

R0
=

βo

(βD +βo)
,

φ
R0
µ =

∂R0

∂ µ

µ

R0
=

−(2µ +αD +αo + γ +σ)

(µ +αD +αo + γ +σ)
,

φ
R0
αD =

∂R0

∂αD

∂σD

R0
=− k

(µ +αD +αo + γ +σ)

αD

R0

=
k

(k−1)′

φ
R0
αo =

∂R0

∂αo

αo

R0
=− α0

(µ +αD +αo + γ +σ)′

φ
R0
γ =

∂R0

∂y
γ

R0
=− σ

(µ +αD +αo + γ +σ)′

φ
R0
σ =

∂R0

∂σ

σ

R0
=− σ

(µ +αD +αo + γ +σ)
From Table III, we see that R0 is most sensitive to the

parameters A,βD, and βo. From this analysis, we conclude
that an increase in the transmission rate increases the spread
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TABLE III: ELASTICITY INDICES OF R0

Parameters Elastic
Index Value

A φ
R0
β

1

βD φ
R0
βD

0.9

βo φ
R0
βo

0.09

µ φ
R0
µ -1.01

γ φ
R0
γ -0.046

k φ
R0
k -0.25

αD φ
R0
αD -0.18

αo φ
R0
αo -0.37

σ φ
R0
σ -0.37

of COVID-19, and therefore, to prevent the infection from
spreading further, control measures should be deployed that
reduce the transmission rate. From Table III, we also see that
the parameter βD is more sensitive towards R0 compared to
βo.

B. Sensitivity Analysis

To evaluate the influence of model parameters on the
infected population I, a sensitivity analysis of the model (1)-
(5) is performed using the Partial Rank Correlation Coeffi-
cient (PRCC) method with the Latin Hypercube Sampling
(LHS) technique, as shown in [42]. The analysis assumes
a uniform distribution for all parameters, with the infected
population I as the response function. PRCC values for the
response function I are presented in Fig. 5. A total of 10000
simulations were conducted to estimate PRCC.

PRCC analysis reveals that the most sensitive parameters
influencing the infected population I(t) are the transmission
rate of the omicron variant (βo) and the death rate due to
the delta variant (αD). The positive PRCC for βo indicates
that higher omicron transmission significantly increases in-
fections, while the strong negative PRCC for αD suggests
that a higher death rate from the delta variant sharply
reduces the infected population. Other parameters, such as
the birth rate (A), natural death rate (µ), and contact tracing
rate (k), have minimal impact on infection dynamics. The
recovery rate (γ) also moderately reduces infections. These
findings underscore the importance of managing transmission
rates and variant-specific mortality to control the spread of
infection.

This study utilized India’s total beginning population, N(0)
= 1382339513, derived from the data provided in literature
[43]. Based on the information provided in [43], as of August
1, 2020, I(0) = 1401737, R(0) = 1184321, and Q(0) =
350435. Consequently, the initial susceptible people were
calculated as follows: S(0) = N(0)− I(0)−Q(0)−R(0) =
1379403021. For simulation, the estimated parametric values
for the COVID-19 case in India were considered as follows
[43].

Fig. 6 illustrates the impact of the parameter k on the
infected, quarantined and recovered populations. Likewise,
Fig. 7 demonstrates the effect of parameter γ on these same
groups. Figs. 6 and 7 depict the effects of k and γ on the
populations of I, Q, and R over time t, using the parameter
values provided in Table IV.

The graph displayed in Fig. 6a represents the population
under quarantine for three distinct values of the parameter

Fig. 5: PRCC sensitivity indices of I against the model
parameters for the system (1) -(4)

TABLE IV: LIST OF PARAMETER VALUES-II

Symbols Values Source
A 10.48 [43]
k 0.2 assumed
µ 0.00714 [43]
βD 0.004 [43]
βo 0.04 Assumed
αD 0.1 Assumed
αo 0.022778 [43]
γ 0.3448 [43]
σ 0.475 [43]

k (0.5,0.3, and 0.1) over time (measured in days). The
parameter k most often represents the rate of transmission
or quarantine effectiveness. The quarantined population peak
rises with an increase in the value of k. In particular, the
peak is the highest and appears earliest for k = 0.5 (green
line), and a sharp decrease follows it. In comparison to
k = 0.5, the peak for k = 0.3 (dashed line) is lower and
occurs slightly later. The peak is the lowest and appears later,
with a more steady decrease, for k = 0.1 (red line). Higher
k values generally cause the population under quarantine to
peak larger and earlier and to drop more quickly, suggesting
a more vigorous outbreak.

A sharp and high peak in the infected population, shown
in Fig. 6b, is the outcome of higher values of k, suggest-
ing faster dissemination and higher peak infection rates. A
smaller peak is produced by lower values of k, suggesting a
slower pace of dissemination and lower peak infection rates.
The infected population declines quickly for all values of k
despite variations in peak heights, indicating the possibility
of successful control strategies or recovery mechanisms.
Overall, the graph shows how various transmission rates
affect the dynamics of the infected population. Higher trans-
mission rates cause larger and faster peaks in infections,
whereas lower transmission rates cause smaller and slightly
delayed peaks. As seen from Fig. 6c, the population’s rate
and degree of recovery are strongly influenced by the param-
eter k. A faster and more complete recovery is the outcome
of higher values of k, whereas a slower and less complete
recovery is the result of lower values of k.

The graph in Fig. 7a shows how well recovery and quar-
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antine work to stop the disease from spreading. The disease
spreads rapidly but is efficiently controlled, as evidenced by
the sharp fall in the susceptible population and the matching
rise in the quarantine and recovered populations. The fact
that there are rarely many sick people at any one time points
to the effectiveness of the quarantine regulations in halting
the spread of active illnesses. In conclusion, the graph sheds
light on the dynamics of the illness and the population’s
response to confinement and recovery. Faster recovery rates
are brought about by higher γ values, which cause the
population under quarantine to peak earlier and decline more
quickly. A slower recovery rate from lower γ values results
in a greater peak in the isolated population that declines more
slowly. Over time, the confined population declines for all
gamma values; however, the rate of decline accelerates for
higher gamma values. The relationship between the dynamics
of the quarantined population and the recovery rate (γ) is
generally depicted in Fig. 7 demonstrates that higher values
of γ result in a faster decline of the infected population. As γ

increases, the peak of infection remains nearly the same, but
the recovery or removal of infected individuals happens more
quickly. This indicates that increasing γ reduces the duration
of infection, thereby leading to a more rapid decrease in the
infected population over time.

VI. CONCLUSION

A mathematical model is presented to better understand
the newly introduced SARS-CoV-2 virus variant, precisely
Delta and the Omicron variants. It is noted that the cur-
rent model’s solution is positive and bounded in time. We
then discussed the stability assessment of the equilibrium
points admitted by finding the eigenvalues of the Jacobian
matrix at each of the equilibrium points. It is observed
that for R0 < 1, the model’s infection-free equilibrium point
is globally asymptotically stable. As R0 crossed unity, the
infection-free equilibrium was found to become unstable.
The endemic equilibrium point of the model was found to
remain asymptotically stable provided ( M11+M22 ) < 0 and
(M11M22 −M12M21) > 0. From the local stability, it is ob-
tained that the virus infection could be managed or controlled
by minimizing the value of the RD. To predict the sensitivity
of the model parameters on R0, an elastic index that measures
the relative change of R0 with reference to parameters was
calculated for each parameter in the definition of R0. The
susceptible population’s birth rate (A) and transmission rates
(βD,βo) were found to be the most sensitive parameters
towards R0. The theoretical results proved are supported with
numerical illustrations in the study.

A sensitivity analysis was conducted to see the influence
of parameter value on population dynamics. Overall, it is
concluded that faster recovery rates are brought about by
higher γ values, which cause the population under quarantine
to peak earlier and decline more quickly, whereas the infected
population decreases fastly in all situations despite varying
γ values, indicating a highly effective reduction in the total
number of infected individuals. To evaluate the influence of
model parameters on the infected population I, a sensitivity
analysis of the model (1) -(4) is performed using the Par-
tial Rank Correlation Coefficient (PRCC) method with the
Latin Hypercube Sampling (LHS) technique, as in [42]. The
analysis assumes a uniform distribution for all parameters,

(a) Variation in infected population

(b) Variation in quarantined population

(c) Variation in recovered population

Fig. 6: Variation in population of I,Q and R with respect to
time in days for different values of the parameter k

with the infected population I as the response function. The
mean strength of the PRCC values, where the sign indicates
the correlation between the response function and the model
parameters, helps identify significant parameters affecting I.
PRCC values for the response function I are presented in Fig.
5. A total of 10000 simulations were conducted to estimate
PRCC.
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(a) Variation in infected population

(b) Variation in quarantined population

(c) Variation in recovered population

Fig. 7: Variation in population of I,Q and R with respect to
time in days for different values of the parameter gamma γ
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