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Abstract—In this research paper, a novel branch-and-bound
algorithm within the outcome-space is introduced for the
generalized sum-of-linear-ratios problem. Initially, an equiv-
alent problem of the original problem is derived by apply-
ing constraints to the numerator and denominator of the
objective function, leveraging the reciprocal characteristics of
logarithmic and exponential functions. Subsequently, the linear
relaxation programming problem for this equivalent problem
is constructed through two distinct approaches, utilizing the
geometric attributes of these functions. By integrating the
branch-and-bound framework with the linear relaxation prob-
lem, a comprehensive branch-and-bound algorithm is proposed
for globally solving the sum-of-linear-ratios problem, and its
convergence is established. Finally, numerical experiments are
conducted to confirm the viability and efficacy of the proposed
algorithm.

Index Terms—Sum-of-Linear-Ratios problem, Linear Relax-
ation, Branch and Bound, Outcome-Space.

I. INTRODUCTION

THE primary focus of this paper is on addressing the
sum-of-linear-ratios problem as outlined below:

(SLR) :

min f (x) =
P∑
i=1

ni (x)

di (x)

s.t. Ax ≤ b, x ≥ 0.

where ni (x) and di (x) are linear functions on Rn,

ni (x) = cTi x+ di =

n∑
j=1

cijxj + di,

di (x) = eTi x+ fi =
n∑

j=1

eijxj + fi,

A ∈ Rm×n, b ∈ Rm, for each i = 1, 2, · · · , P , ci, ei ∈
Rn, di, fi, cij , eij ∈ R. X is defined as a non-empty bounded
closed set:

{
x ∈ Rn | Ax ≤ b, x ≥ 0

}
.
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If the condition eTi x+ fi < 0 holds, redefine the expres-

sion as cTi x+di

eTi x+fi
=

−(cTi x+di)
−(eTi x+fi)

. This transformation ensures
that the denominator becomes positive while preserving the
essence of the original problem. Consequently, we assume
that di (x) > 0.

Given the numerator cTi x+di,
cTi x+di+M(eTi x+fi)

eTi x+fi
can be

constructed, where M represents a sufficiently large constant
to ensure that

cTi x+ di +M
(
eTi x+ fi

)
> 0.

Therefore, in this paper, for all x ∈ X , it is given that
cTi x+ di > 0 and eTi x+ fi > 0 for indices i = 1, 2, · · · , P .

As time progresses, optimization problems are gaining
increasing attention. Among these, the sum-of-linear-ratios
problem—a specialized type of optimization problem—has
attracted considerable interest from industry experts and
researchers due to its wide-ranging applications in portfo-
lio optimization, transportation planning, data analysis, risk
management, computer vision, and other fields [1]–[6].

The presence of multiple local optimal solutions in the
sum-of-linear-ratios problem makes it challenging to identify
the global optimum. The ongoing research endeavor has
aimed at swiftly and efficiently identifying the global optimal
solution. Until now, numerous global optimization algorithms
have been devised to address the challenge posed by the
sum-of-linear-ratios problem, including branch-and-bound
series algorithms [7]–[9], image space methods [10], region
segmentation algorithms [11], polynomial time approxima-
tion algorithms [12], [13], inner and outer approximation
algorithms [14], proximity point algorithms [15], and so
on. In 2019, Shen [16] introduced a compression technique
specifically tailored for the generalized sum-of-polynomial-
ratios problem. This method employs straightforward trans-
formation and reduction strategies to convert the initial
problem into a standard form of geometric programming.
Compared with other methods, this method can more effec-
tively solve the original problem. Subsequently, Ozkok [17],
building on the definition of continuity in terms of (ϵ, δ),
integrated the convergence conditions with the objective
function of the sum-of-linear-ratios problem. He constructed
an iterative constraint at a point within the feasible domain
and analyzed the feasibility of the iterative algorithm by
generating random large-scale test problems. In the same
year, Shen [18] formulated an outer-space branch-and-bound
approach for addressing the generalized linear multiplicative
programming problem. Additionally, Shen established the
global convergence properties of the algorithm and furnished
an assessment of its computational complexity. In 2022,
Jiao [19] introduced an efficient rectangular branch-and-
bound algorithm in outer space to globally solve the general
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sum-of-linear-ratios problem, based on the unique premise
that the denominator does not equate to zero. The author
presented and analyzed numerical results to demonstrate the
algorithm’s efficacy.

Drawing inspiration from Jiao [20], this paper introduces
an outcome-space branch-and-bound algorithm specifically
designed to address the sum-of-linear-ratios problem. During
the construction of the relaxation problem, two relaxations
were performed. Unlike Jiao [20], where both relaxations
utilized the same construction method, our approach em-
ploys different methods for each relaxation. By integrat-
ing the branching process within the outcome-space, we
incorporated an acceleration methodology and formulated a
branch-and-bound algorithm tailored for the outcome-space,
accompanied by a convergence proof. The final numerical
experiments demonstrate the effectiveness of the proposed
algorithm.

The framework of this paper is outlined as follows: In the
second section, we derive an equivalent problem, denoted
as (EP ), from the sum-of-linear-ratios problem (SLR) by
employing an equivalent transformation technique. We then
introduce the relaxation problem (RLP ) for the equiva-
lent problem (EP ), which is formulated using a two-step
relaxation based on the characteristics of the equivalent
function. In the third section, we detail the branch operation
and acceleration methodology within the outcome-space,
culminating in the proposal of the outcome-space branch-
and-bound algorithm. In the fourth section provides a proof
of global convergence for the algorithm, supported by two
theorems. The fifth section is numerical experiment and
comparison of numerical results. The sixth section is the
conclusion.

II. EQUIVALENT PROBLEM AND RELAXATION
PROGRAMMING

A. Equivalent problem

Prior to addressing the original problem (SLR), it under-
goes an equivalent transformation:

For all x ∈ X , tackle the subsequent linear programming
problems:

x0
i =


min xi

s.t. Ax ≤ b,
cTi x+ di > 0, i = 1, 2, · · · , P,
eTi x+ ei > 0, i = 1, 2, · · · , P,

x0
i =


max xi

s.t. Ax ≤ b,
cTi x+ di > 0, i = 1, 2, · · · , P,
eTi x+ ei > 0, i = 1, 2, · · · , P,

The initial rectangle X0 =
[
x0, x0

]
=
[
x0
i , x

0
i

]
n×1

is
obtained. Notably, X0 encompasses all feasible solutions to
the original problem (SLR).

For all ni (x) > 0 and di (x) > 0, the equivalent
transformation is as follows:

ni (x)

di (x)
= e

ln
ni(x)

di(x)

= e[ln ni(x)−ln di(x)]

= exp [ln ni (x)− ln di (x)] .

For all x ∈ X , let
li = minx∈X cTi x+ di, ui = maxx∈X cTi x+ di,

Li = minx∈X eTi x+ fi, Ui = maxx∈X eTi x+ fi.
Subsequently, then problem (SLR) can be reformulated

into the equivalent problem presented hereinafter:

(EP ) :


min h (x) =

P∑
i=1

exp [φi (x)]

s.t. φi (x) = ln ni (x)− ln di (x),
x ∈ X.

It is evident that the problems (SLR) and (EP ) are equiv-
alent, indicating that they share the same optimal solutions
and corresponding values.

B. Relaxation programming problem

According to the properties of the equivalent problem, the
relaxation problem of problem (EP ) is established by two-
step relaxation.

First relaxation:
Let φl

i = ln li − ln Ui, φu
i = ln ui − ln Li.

Based on the monotonicity of logarithmic functions, the
following inequality is established:

ln li ≤ ln ni (x) ≤ ln ui, ln Li ≤ ln di (x) ≤ ln Ui.

Then it can be concluded that

ln ni (x)− ln di (x) ≤ ln ui − ln Li,

ln li − ln Ui ≤ ln ni (x)− ln di (x) .

So

φl
i ≤ φi (x) ≤ φu

i . (1)

Second relaxation:
For all x ∈ X , let
φll
i = minx∈X φl

i, φ
lu
i = maxx∈X φl

i,
φul
i = minx∈X φu

i , φuu
i = maxx∈X φu

i ,

k1i =
exp(φlu

i )−exp(φll
i )

φlu
i −φll

i

,k2i =
exp(φuu

i )−exp(φul
i )

φuu
i −φul

i

,
gi (x) = exp [φi (x)], gli = k1i

(
1 + φl

i − lnk1i
)
,

gui = k2i
(
φu
i − φul

i

)
+ exp

(
φul
i

)
, L = exp

(
φl
i

)
.

On the definition interval
[
Y l, Y u

]
of Y , the following

inequalities can be obtained from the geometric properties
of exp (Y ) functions:

A (1 + Y − lnA) ≤ exp (Y ) ≤ A
(
Y − Y l

)
+ exp

(
Y l
)
,

where A =
exp(Y u)−exp(Y l)

Y u−Y l .
Drawing from the aforementioned, one can deduce that:

exp (φu
i ) ≤ k2i

(
φu
i − φul

i

)
+ exp

(
φul
i

)
,

k1i
(
1 + φl

i − ln k1i
)
≤ exp

(
φl
i

)
= L.

By combining (1), can be obtained

k1i
[
1 + φl

i (x)− ln k1i
]
≤ exp

(
φl
i

)
≤ exp [φi (x)] ,

exp [φi (x)] ≤ exp (φu
i ) ≤ k2i

[
φu
i (x)− φul

i

]
+ exp

(
φul
i

)
.

That is

gli ≤ L ≤ gi (x) . (2)
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Utilizing the information provided above, we can conclude
that the relaxation programming problem for problem (EP )
is:

(RLP ) :



min gl (x)

s.t. gl (x) =
P∑
i=1

gli,

gi (x) ≤ gui ,
x ∈ X.

The construction of the relaxation problem explicitly
demonstrates that feasible solutions for the equivalent prob-
lem (EP ) are also viable for the relaxation problem (RLP ).
Furthermore, the optimal achieved by relaxation problem
(RLP ) is not greater than the optimal value of the equivalent
problem (EP ). Consequently, the optimal solution of the
relaxation problem serves as a dependable lower estimate
for the optimal solution of the equivalent problem.

III. ALGORITHM

In this paper, a branch and bound algorithm is introduced
that is designed to attain the global optimal solution for
the original problem (SLR). This is accomplished by the
division of the rectangular space X0 where x resides.

A. Branch operation

In this paper, the dichotomy of parameter ω is used to
divide the rectangle. The purpose of the branch is to divide
the initial rectangle X0 into two smaller sub-rectangles,
potentially housing the globally optimal solution of the
equivalent problem (EP ) within each.

Let Xk =
[
xk, xk

]
⊆ X0 represent the current rectangle

to be divided, and for all xk ∈ Xk, divide Xk in the
following form:

Step 1: Calculate
ω = max

{(
xk
i − xk

i

) (
xk
i − xk

i

)
: i = 1, 2, · · · , n

}
,

If ω = 0, set xk
u−xk

u = max
{
xk
i − xk

i : i = 1, 2, · · · , n
}

,

xk
u =

xk
u+xk

u

2 .
Alternatively, identify the first xk

j ∈ argmaxω, record it

xk
u = xk

j .

Step 2: Record
x =

{
xk
1 , x

k
2 , · · · , xk

i−1, x
k
u, x

k
i+1, · · · , xk

n

}T
,

x =
{
xk
1 , x

k
2 , · · · , xk

i−1, x
k
u, x

k
i+1, · · · , xk

n

}T
.

The rectangle Xk is divided into two subrectangles by the
line of x and x or the hyperplane where the line is located:

Xk1 =
[
xk1, xk1

]
=

u−1∏
i=1

[
xk
i , x

k
i

]
×
[
xk
u, x

k
u

]
×

n∏
i=u+1

[
xk
i , x

k
i

]
,

Xk2 =
[
xk2, xk2

]
=

u−1∏
i=1

[
xk
i , x

k
i

]
×
[
xk
u, x

k
u

]
×

n∏
i=u+1

[
xk
i , x

k
i

]
.

B. Acceleration technique

Utilizing the aforementioned branching operations, we
introduce a reduction strategy for each subrectangle, aimed
at eliminating intervals devoid of the global optimal solution
for the original problem, thereby enhancing the algorithm’s
efficiency. Specific acceleration techniques are detailed as
follows:

Without loss of generality, since we are dividing in the
outcome-space where x is, we can equivalently rewrite
the objective function of problem (RLP ) in the manner
presented below:

gl (x) =
n∑

i=1

αixi + δ.

Define UBk as the upper bound of the known global
optimal value after k iterations of the problem(SLR), let

RLB =
n∑

i=1,αi>0

αixi +
n∑

i=1,αi<0

αixi + δ,

ρq =
UBk−RLB+min

{
αqxq, αqxq

}
αq

,

X1
i =

{
Xi, i ̸= q, i = 1, 2, · · · , n,

(ρq, xq]
⋂

Xq, i = q;

X2
i =

{
Xi, i ̸= q, i = 1, 2, · · · , n,[

xq, ρq
)⋂

Xq, i = q.
Theorem 1: For any subrectangle X ⊆ X0, the following

conclusions holds:
(i) If RLB > UBk, then the subrectangle X does not

contain the global optimal solution of problem (SLR).
(ii) If RLB ≤ UBk, then for all q ∈

{
1, 2, · · · , n

}
,

When αq > 0, the subrectangle X1 =
(
X1

i

)
n×1

does not
contain the global optimal solution of problem (SLR).

When αq < 0, the subrectangle X2 =
(
X2

i

)
n×1

does not
contain the global optimal solution of problem (SLR).

Proof: (i) If RLB > UBk, then for all x ⊆ X , there is
UBk < RLB ≤ gl (x), that is,

UBk < RLB =

n∑
i=1,αi>0

αixi +

n∑
i=1,αi<0

αixi + δ ≤

gl (x) ≤ g (x).
Therefore, the subrectangle X lacks the global optimal

solution to the problem (SLR).
(ii) If RLB ≤ UBk, then for all q ∈

{
1, 2, · · · , n

}
, when

αq > 0, for all x ⊆ X1, we have xq > ρq , that is

xq >
UBk −RLB +min

{
αqxq, αqxq

}
αq

,

then
g (x) ≥ gl (x)

≥
n∑

i=1,i̸=q

min
{
αixi, αixi

}
+ δ + αqxq

≥
n∑

i=1,i̸=q

min
{
αixi, αixi

}
+ δ

+ αq ×
UBk −RLB +min

{
αqxq, αqxq

}
αq

= RLB + UBk −RLB

= UBk.
Therefore, for all x ⊆ X1, there is g (x) ≥ gl (x) > UBk,

indicating that the subrectangle X1 cannot possess a global
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optimal solution to the problem (SLR). Analogously, in the
case where αq < 0, the subrectangle X2 does not possess a
global optimal solution to the problem (SLR).

In summary, the theorem has been established.

C. Outcome-space branch-and-bound algorithm

Utilizing the aforementioned branch operation, we will
now present the branch-and-bound algorithm pertaining to
the outcome space:

Step 0 (Initialization): With a specified error tolerance ϵ >
0, determine the optimal solution x0 and its corresponding
optimal value LB0 = gl

(
x0
)

for the (RLP ) problem on
X = X0, and set UB0 = h

(
x0
)
.

Step 1 (Termination criteria): If UB0 − LB0 ≤ ϵ, the
calculation terminates, and x0 is the global optimal solution
to problem (SLR). Otherwise, initialize Q0 =

{
X0
}

, set
the iteration number k = 1, and proceed to step 2.

Step 2: k ≥ 1.
Step 3 (Branch of outcome-space): According to the

dividing rule in section III-A, select the rectangle Xk

with a smaller optimal value and divide it into two parts
Xk1 and Xk2. Xk1

⋂
Xk2 is an empty set, and com-

bined with the acceleration technique in section III-B,
delete the subrectangles that do not contain the global
optimal solution. Denote Λ represent the collection of all
discarded sub-rectangles. So the remaining partition set is
Qk =

{
X | X ∈ Qk−1 ∪

{
Xk1, Xk2

}
, X /∈ Λ

}
, and let

R =
{
Xk1, Xk2

}
.

Step 4 (Delimiting and cutting branches): For subrectan-
gles Xk1 and Xk2, if Xkr is not an empty set and r = 1, 2,
determine the optimal solution xkr and the optimal value
LBk = gl

(
xkr
)

for problem (RLP ) within Xk1 and Xk2.
If UBk < LBk, then R = R \

{
Xkr

}
, leading to two

possible cases:
Case 1: If R is an empty set, go to step 2;
Case 2: If R is not an empty set, get Qk and update the

upper bound UBk = min
{
UBk−1, h

(
xkr
)}

. Select xk to
satisfy UBk = h

(
xk
)
, and proceed to step 5.

Step 5 (Judgment rule): Let
Qk+1 = Qk \

{
X : UBk

(
X
)
− LBk ≤ ϵ,X ∈ Qk

}
.

If Qk+1 is an empty set, the calculation stops, xk is
identified as the global optimal solution for problem (SLR)
with UBk being the corresponding global optimal value.
Alternatively, if Qk+1 is not an empty set, let k = k + 1,
select Xk to satisfy Xk = argminX∈Qk LB

(
X
)
, and revert

to step 2.

IV. CONVERGENCE ANALYSIS

The convergence of this algorithm on a global scale is
established in Theorems 2 and 3 presented hereinafter.

Theorem 2: For all x ∈ X0, during the running of
the algorithm, for the rectangle Xk to be branched,∣∣h (x)− gl (x)

∣∣→ 0 when △ = |x− x| → 0 .

Proof:
∣∣h (x)− gl (x)

∣∣ =

∣∣∣∣∣
P∑
i=1

gi (x)−
P∑
i=1

gli

∣∣∣∣∣ =

P∑
i=1

∣∣gi (x)− gli
∣∣, From equation (2), it can be transformed

into:

∣∣h (x)− gl (x)
∣∣ = P∑

i=1

∣∣gi (x)− gli
∣∣

=
P∑
i=1

∣∣gi (x)− L+ L− gli
∣∣

≤
P∑
i=1

|gi (x)− L|+
P∑
i=1

∣∣L− gli
∣∣ .

(3)

Record △1 = gi (x) − L and △2 = L − gli, and from
equation (2), it can be concluded that △1 ≥ 0 and △2 ≥ 0.

Let’s first prove the part △1:
△1 = gi (x)− L

= exp [φi (x)]− exp
(
φl
i

)
≤
∣∣φi (x)− φl

i

∣∣ supθi∈L(φl
i,φi(x)) exp (θi) ,

where L
(
φl
i, φi (x)

)
= βφl

i + (1− β)φi (x) and β ∈ [0, 1].
For △1, we mainly focus on the part of

∣∣φi (x)− φl
i

∣∣:
φi (x)− φl

i = ln ni (x)− ln di (x)− (ln li − ln Ui)

= ln ni (x)− ln li + ln Ui − ln di (x)

=
1

t1
[ni (x)− li] +

1

t2
[Ui − di (x)] ,

(4)

where t1 ∈ (li, ni (x)), t2 ∈ (di (x) , Ui).
At this time
ni (x)− li = cTi x+ di −min

(
cTi x+ di

)
= cTi

[
x−min (x)

]
≤ cTi (x− x) .

So when △ → 0, [ni (x)− li] → 0. Similarly, it can be
proven that when △ → 0, [Ui − di (x)] → 0.

Since [ni (x)− li] → 0, [Ui − di (x)] → 0, and t1, t2
are bounded quantities,

∣∣φi (x)− φl
i

∣∣ → 0 can be obtained.
Similarly, it can be proven that when

∣∣φi (x)− φl
i

∣∣ → 0,
△1 → 0, so when △ → 0, △1 → 0.

Next, we will prove that part △2:
△2 = L− gli

= exp
(
φl
i

)
− k1i

[
1 + φl

i (x)− ln k1i
]

= exp
(
φl
i

)
− exp

(
φl
i

)
× exp (wi)− 1

wi

×

(
1 + φl

i − ln
exp

(
φl
i

)
[exp (wi)− 1]

wi

)
= exp

(
φl
i

)
(1−Ki +Ki lnKi) ,

where wi = φlu
i − φll

i , Ki =
exp(wi)−1

wi
.

Similar to the proof of equation (4), it can be obtained
that when △ → 0,

∣∣φlu
i − φll

i

∣∣→ 0. When
∣∣φlu

i − φll
i

∣∣→ 0,
Ki → 1, then △2 → 0.

Therefore, when △ = |x− x| → 0, △1 → 0, △2 →
0, combined with equation (3),

∣∣h (x)− gl (x)
∣∣ → 0. This

theorem is proven.
Theorem 3: In the case where the algorithm’s iterative

process concludes after a finite number of steps, the global
optimal solution to problem (SLR) is attainable upon termi-
nation; Conversely, if the algorithm does not terminate within
a finite number of steps, it will produce an infinite sequence{
xk
}

, where each accumulation point of this sequence cor-
responds to the global optimal solution of problem (SLR).
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Proof: When the algorithm terminates after a finite
number of steps, it can be configured to conclude at step
k. Define x∗ as the optimal solution obtained by solving
problem (RLP ). Notably, x∗ is also the feasible solution
for problem (SLR). Consequently, it follows that gl

(
xk
)
≤

h (x∗) ≤ h
(
xk
)
.

According to the termination criteria:∣∣h (xk
)
− gl

(
xk
)∣∣ ≤ ϵ.

Combine the above two equations:

h
(
xk
)
≤ gl

(
xk
)
+ ϵ ≤ h (x∗) + ϵ ≤ h

(
xk
)
+ ϵ.

When the algorithm terminates within a finite number of
steps, the global ϵ-optimal solution to problem (SLR) can
be obtained.

If the algorithm cannot terminate within a finite number
of steps, an infinite sequence of feasible solutions

{
xk
}

for
the original problem (SLR) can be generated by solving
problem (RLP ). As the rectangular space of x continues to
subdivide, there is limk→∞xk = x∗ and LBk = gl

(
xk
)
≤

h (x∗) ≤ h
(
xk
)
= UBk, where x∗ is the accumulation point

of the sequence
{
xk
}

.
According to the algorithm,

{
LBk

}
and

{
UBk

}
are both

convergent sequences,then

limk→∞LBk ≤ h (x∗) ≤ limk→∞UBk.

The rectangle is continuously subdivided by the branch
operation in section III-A, and h (x) is a continuous function,
so

limk→∞LBk = limk→∞gl
(
xk
)

= h (x∗) =

limk→∞h
(
xk
)
= limk→∞UBk.

The theorem is proven.

V. NUMERICAL EXPERIMENTS

To showcase the effectiveness of the algorithm proposed
in this paper, numerical experiments will be presented to
demonstrate the superiority and inferiority of the algorithm
by comparing it with results from known references.

The following numerical experiments are compiled and
run on Matlab (2018b). All calculation processes are
performed on a personal computer with AMD Ryzen
77840HS w/Radeon 780M Graphics 3.80GHz processor
32GB of memory and Win11 operating system.

Where Iter represents the number of iterations; Time
(seconds) represents the algorithm’s running time measured
in seconds; Additionally, p stands for the count of linear
fractions; m for the number of linear constraints; n is the
number of variables; Ave.NT represents the mean iteration
count, while Ave.time indicates the average running time;
Std.NT represents the standard deviation of the number
of iterations; Std.time represents the standard deviation of
running time. Except for iterations that are precise to one
decimal place, all other decimals are rounded to four decimal
places.

Example 1: (See [12], [21])

min
−x1 + 2x2 + 2

3x1 − 4x2 + 5
+

4x1 − 3x2 + 4

−2x1 + x2 + 3

s.t. x1 + x2 ≤ 1.5,
x1 − x2 ≤ 0,

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

Example 2: (See [22], [23])

min
3x1 + 5x2 + 3x3 + 50

3x1 + 4x2 + 5x3 + 50
+

3x1 + 4x2 + 50

4x1 + 3x2 + 2x3 + 50

+
4x1 + 2x2 + 4x3 + 50

5x1 + 4x2 + 3x3 + 50

s.t. 2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 2x3 ≤ 10,
9x1 + 7x2 + 3x3 ≥ 10,

x1, x2, x3 ≥ 0.

Example 3: (See [11], [21])

min
4x1 + 3x2 + 3x3 + 50

3x2 + 3x3 + 50
+

3x1 + 4x3 + 50

4x1 + 4x2 + 5x3 + 50

+
x1 + 2x2 + 4x3 + 50

x1 + 5x2 + 5x3 + 50
+

x1 + 2x2 + 4x3 + 50

5x2 + 4x3 + 50

s.t. 2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 2x3 ≤ 10,
9x1 + 7x2 + 3x3 ≥ 10,

x1, x2, x3 ≥ 0.

Example 4: (See [21], [24])

min−3x1 + 5x2 + 3x3 + 50

3x1 + 4x2 + 5x3 + 50
− 3x1 + 4x2 + 50

4x1 + 3x2 + 2x3 + 50

−4x1 + 2x2 + 4x3 + 50

5x1 + 4x2 + 3x3 + 50

s.t. 6x1 + 3x2 + 3x3 ≤ 10,
10x1 + 3x2 + 8x3 ≤ 10,

x1, x2, x3 ≥ 0.

Example 5: (See [8], [23])

min
37x1 + 73x2 + 13

13x1 + 13x2 + 13
+

63x1 − 18x2 + 39

13x1 + 26x2 + 13

s.t. 5x1 − 3x2 = 3,
1.5 ≤ x1 ≤ 3.

Example 6: (See [21], [25])

max
4x1 + 3x2 + 3x3 + 50

3x2 + 3x3 + 50
+

3x1 + 4x2 + 50

4x1 + 4x2 + 5x3 + 50

+
x1 + 2x2 + 5x3 + 50

x1 + 5x2 + 5x3 + 50
+

x1 + 2x2 + 4x3 + 50

5x2 + 4x3 + 50

s.t. 2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 3x3 ≤ 10,
5x1 + 9x2 + 2x3 ≤ 10,
9x1 + 7x2 + 3x3 ≤ 10,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Example 7: (See [8], [26])

max
37x1 + 73x2 + 13

13x1 + 13x2 + 13
+

63x1 − 18x2 + 39

−13x1 − 26x2 − 13

+
13x1 + 13x2 + 13

63x1 − 18x2 + 39
+

13x1 + 26x2 + 13

−37x1 − 73x2 − 13
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s.t. 5x1 − 3x2 = 3,
1.5 ≤ x1 ≤ 3.

Example 8: (See [27])

min

p∑
i=1

n∑
j=1

dijxj + C

n∑
j=1

cijxj + C

s.t.
n∑

j=1

akjxj ≤ 10, k = 1, 2, · · · ,m,

xj ≥ 0, j = 1, 2, · · · , n.
Among them, cij , dij , and akj are randomly produced

within [0, 10], C = 10; k = 1, 2, · · · ,m; j = 1, 2, · · · , n.
The outcomes of the computations for Example 1-Example

7 are displayed in Table I. The table clearly demonstrates
that our algorithm’s optimal solutions and values are not
significantly different from those in other references, with
some remaining consistent, such as in Example 3, Example
4, Example 6, and Example 7. Regarding the number of
iterations, the algorithm proposed in this paper exhibits
the fewest iterations in Examples 1 and 5, while having
more iterations than the algorithms from other references
in the remaining examples. From the perspective of running
time, the algorithm proposed in this paper outperforms other
algorithms in Example 1, Example 2, and Example 5, while
the difference in running time compared to other examples
is not significant.

From Table I, it is clear that the algorithm presented in this
paper is both feasible and effective. Next, we will exemplify
the performance of the algorithm when running random cases
through Example 8. For Example 8, the generation method
and error tolerance of the relevant data in reference [27] were
consistent. The algorithm was run 10 times, and the obtained
data results were compared with those in reference [27], as
shown in Table II.

As shown in Table II, the algorithm proposed in this paper
demonstrates a clear advantage in the number of iterations.
Through equivalent transformation and linear relaxation, we
have transformed the sum-of-linear-ratios problems that are
difficult to solve into linear programming problems, greatly
reducing the number of iterations. Regarding running time,
the change of the running time of the algorithm in this paper
conforms to the basic fact. Although the initial time used is
longer than that of the algorithm in the reference [27], with
the increase of the complexity of the example, the algorithm
in this paper is significantly better than that in the reference
[27], and the time used is significantly less.

From Table II, it is apparent that as p and n increase,
there are significant changes in the number of iterations
and running time used by the algorithm. Consequently, we
will conduct large-scale examples to delve deeper into the
computational efficiency of the algorithm. Increase p and n,
randomly run the algorithm 10 times, observe the changes
in iteration times and running time, and the specific results
are shown in Table III.

From Table III, it is evident that the algorithm in this paper
is feasible and effective in running large-scale examples.

Moreover, it can be seen that among the two factors that
affect the number of iterations and running time, the impact
of n is significantly greater than that of p. As p and n increase,
the number of iterations and running time of the algorithm
also gradually rise, with a slower increase in iteration times
and a more rapid change in running time. Notably, when
n increases to 2000, the running time of the algorithm in
this paper increases sharply. As shown in Table III, the time
is all above 400s. Therefore, when dealing with large-scale
numerical cases with variable dimensions less than 2000, the
algorithm demonstrates a distinct advantage in terms of time
efficiency.

In summary, from Table I concludes that the algorithm
proposed in this paper is practical, with the generated optimal
solutions and values aligning closely with those from other
references, and in some cases, outperforming them. Table II
highlights the algorithm’s performance with random cases,
demonstrating its advantage in terms of the number of
iterations. Finally, Table III explores two factors affecting
the algorithm’s efficiency and identifies the optimal operating
range for the proposed algorithm.

VI. CONCLUDING REMARKS

This paper introduces an equivalent transformation tailored
to the specific attributes of the objective function for sum-of-
linear-ratios problems. Two different relaxation methods are
employed to derive the relaxation problem. By integrating the
branch-and-bound framework with an acceleration strategy,
an outcome-space branch-and-bound algorithm is proposed.
Examples 1-7 showcase the viability of the proposed al-
gorithm. Due to the sufficient relaxation transformation of
the objective function, our algorithm uses fewer iterations
to solve numerical cases, offering certain advantages over
algorithms presented in other references. When solving large-
scale numerical cases, our algorithm has less running time
when solving numerical cases with variable dimensions less
than 2000. As the variable dimension continues to increase,
the time used will increase rapidly. So the future research
topic is how to reduce the running time of large-scale
numerical cases with high variable dimensions.
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