
 

 

Abstract—In this study, we focus on obtaining approximate 

solutions to hypersingular Fredholm integral equations of the 

first kind that appear in water wave dynamics, elasticity, 

acoustics, fluid mechanics, and others. The proposed method is 

based on Chebyshev polynomials of the second kind in matrix-

vector forms. The analytical method was used to remove the 

singularity of the unknown function, whereas the asymptotic 

recurrence formula was used to remove the singularity of the 

hypersingular integral. A matrix equation whose solution is 

equivalent to the solution of the integral equation was obtained. 

Without using the collocation approach, this equivalent matrix 

equation has been transformed into a linear system of algebraic 

equations. A square coefficient matrix necessary for the 

algebraic system's solution has been extracted from the matrix 

equation. The solutions to four examples with tables and figures 

were provided. As it turns out, the derived approximate vector-

matrix polynomials solutions significantly converge to the exact 

ones. The absolute errors were uniform and symmetric, and 

they also demonstrated proximity to zero as the degree of 

approximation was increased. The presented method included 

only a few simple steps and was highly accurate and innovative. 

 
Index Terms— Hypersingular integral equations; chebyshev 

polynomials; computational method; wave dynamics; elasticity; 

acoustics; fluid mechanics. 

 

I. INTRODUCTION 

In many fields, such as nanotechnology, artificial 

intelligence, water wave dynamics, elasticity, acoustics, fluid 

mechanics, cracks problems, and others, papers have been 

published that present various methods and techniques for 

solving hypersingular integral equations [1-3]. Most of the 

boundary value problems of the Laplace and Helmholtz 

equations are transformed into equivalent boundary integral 

equations under the influence of Dirichlet or Niemann 

conditions. These integral equations are singular if the 

boundaries are open. This singularity may be of the Cauchy 

type, the weakly singular type, or the hypersingular type. 

Zhong Chen et al. [3] created a method for solving first-kind 

hypersingular integral equations in reproducing kernel spaces 

by improving the standard reproducing kernel method.   
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This method's solution techniques are laborious. Using 

Chebyshev polynomials of the second kind (CPS). Gerardo 

Iovane et al. [4] developed an efficient direct numerical 

collocation method. Mahiub et al. [5] created a method for 

approximating only the unknown function. The smooth 

kernel, the badly-behaved function, and the regular unknown 

are all approximated in the proposed technique by applying a 

newly established version of (CPS) in matrix-vector forms. 

The hypersingular kernel is replaced by an asymptotic 

recurrence expression based on the Chebyshev polynomials 

of the first kind. Shoukralla et al. [6-10] used several 

approaches and techniques to solve weakly singular 

Fredholm equations of the first kind with singular logarithmic 

kernel and singular unknown function. In [6,7], the author 

applied the Chebyshev and shifted Chebyshev polynomials to 

approximate the singular unknown function. The kernel's 

singularity is removed by numerical integration. In [8], the 

authors applied the economized monic Chebyshev 

polynomials to solve Fredholm integral equations with 

weakly singular kernels. In [9,10], the authors solved 

Fredholm's integral equation of the first kind with logarithmic 

kernels. In the first article, they employed monic Chebyshev 

polynomials, and in the second article, they used a different 

technique through the Vandermonde matrix.  

However, we are more interested in investigating the 

application of the normalized second-kind Chebyshev 

polynomials in matrix-vector forms as a new method for 

solving hypersingular integral equations of the first kind. We 

must consider the numerous publications [11–20] that have 

been published to solve the second-kind regular and weakly 

singular linear Volterra and Fredholm integral equations. 

Rules for the distribution of the interpolation nodes were 

created to guarantee the removal of the integral equation's 

singularity. We begin by obtaining the coefficients from each 

Chebyshev polynomial and creating a square coefficient 

matrix. Second, using three matrices, we express the regular 

unknown function, the poorly known behaved function, the 

given data function, and the smooth kernel.  

The monomial basis row matrix is the first; the square 

known matrix is the second, and the unknown functional 

value matrix is the third. As a result, we are given a matrix 

equation equivalent to the solution of the hypersingular 

integral equation without applying the collocation method. 

Then, we convert the matrix equation into an algebraic linear 
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system whose solution provides values to the unknown 

coefficients of the approximated unknown function. 

Moreover, we obtain the continuous vector-matrix 

approximate polynomial solution for the integral equation.  

The resulting vector-matrix approximate polynomials with 

fewer degrees significantly converge to the exact ones, as 

seen in the provided tables and figures, demonstrating the 

novelty and viability of the proposed approach. 
 

II. MATRIX-VECTOR CHEBYSHEV POLYNOMIALS METHOD 

 

Consider the hypersingular Fredholm integral equation of the 

first kind 

 

( ) ( ) ( ) ( ) ( )
1 1

1 2

1 1

, , =  ; 1 1k x t t dt k x t t dt x x  

− −

+ −     
 

(1) 

 

Where ( )2 ,k x t  is a regular square-integrable function of t  

and x , and ( )x  is a smooth given function. The Hadamard 

finite part concept is used to explain the first integral, where 

( )
( )

1
1

2
,

t x
k x t

−
=  is the hypersingular kernel. The unknown 

function ( )x  becomes zero at the endpoints of the 

integration domain that is ( )1 0  = . To remove the 

singularity of the unknown function, we put it in the form 

( ) ( ) ( ) ( ) 2; 1t t t t t   = = −  (2) 

 

Where ( )x  is a smooth, regular, unknown function to be 

determined. Here, the given kernel ( )2 ,k x t  is a regular 

smooth kernel defined on the square ( ) , , 1 , 1x t x t−   . The 

Chebyshev polynomials of the second kind ( ) 0
m

nU t ; 0m   

on the interval  1,1−  are defined by 

( ) ( )

( ) ( )

1

1
2

1

2 cos  ;
1

0  ;  

 1  
 ;  

2

n
n

n

k

i j

k
U t t

n

i j

t U t U t dt
i j





=

−

 = −
  +




− = 
=





 

 

 

 

 
(3) 

 

Applying ( ) 0
m

nU t ; 0m   on the interval  1,1−  to 

approximate both ( )t  and ( )t , yields the approximate 

functions ( )n t  and ( )n t each of degree at most n  in the 

forms 

( ) ( ) ( ) ( ) ( )
0

C  ,  C F
n

T T
n i i n

i

t AU t t t t 

=

= =   =   
 

(4) 

 

We have extracted the coefficients of each Chebyshev 

polynomials ( )  0
n

i i
U t

=   and created a square coefficient 

matrix C , in ascending powers of t ; the matrix   0
=

n
i i

A
=

  

is the unknown coefficients column matrix to be determined; 

the matrix   0
F=

n
i i


=

 is the known coefficients column 

matrix of the badly behaved function ( )t , which can be 

calculated by using (3), and ( )
0

ni

i
t t

=
  =
 

 is a row matrix 

of the monomial basis functions. Hence, we find the matrix-

vector approximate Chebyshev polynomials ( )n x  in the 

form 

( ) ( ) ( ) ( ) ( )F C C  ;  T T T
n t t t t t =    =    (5) 

  

The given function ( )t  is approximated similar to ( )n t  

via the known coefficients column matrix   in the form  

( ) ( )  

( ) ( )

0

1
2

1

C  ;  =  ;

2
  = 1  

nT
n i i

i i

x x

x U x x dx

 

 


=

−

=   

−
  

(6) 

 

The kernel ( )2 ,k x t  is approximated with regard to the 

variable t  so that it is transformed into a product of three 

matrices; the third one is a column matrix with each element 

representing one of the kernel's values, which is a function of 

the second variable x . Thus, we get the single matrix-vector 

approximate form of the kernel ( )2 ,k x t  denoted by ( )2, ,nk x t  

via  ( 1) 1n +  column  matrix  2E ( )x in the form 

( ) ( ) ( ) ( ) ( ) 

( ) ( ) ( )

2, 2 2 0

1
2

2

1

, C  ;  ,

2
= 1  ,

nT
n i i

i i

k x t t x x e x

e x t k x t U t dt


=

−

=    =

−
 (7) 

Moreover, we get 
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(8) 

 

For the first integral with the kernel ( )1 ,k x t , we replace 

( )t  with ( ) ( ) ( )n it t U t =  . Hence, we get [3] 

( ) ( )
( )

( )

( ) ( )

1 1 2

1, 2

1 1

1
,  A

1 A

n i

i

t
k x t t dt U t dt
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− −

−
=

−

= − +
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(9) 

 

 

By substituting (9), (8), and (6) into (1), we obtain the 

following matrix equation 

 

( ) ( ) ( )( ) ( )1 + C CT T
ii U x x x− +   =    (10) 

 

Where ( ) ( ) ( )( )1 + CT
ii U x x− +   is a ( )1 1n +  row 

matrix. By extracting the coefficients of each element of  

( ) ( ) ( )( )1 + CT
ii U x x− +   and create a square matrix   of 

order ( ) ( )1 1n n+  + ; by converting the matrix equation (12) 
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into an algebraic linear system, the unknown coefficient 

matrix   can be obtained by 
1A= CT−   (11) 

Substituting   from (11) into (5), we get the required 

solution ( )n t  of integral equation (1) in the following matrix 

form 

( ) 1F C C CT T T
n t −=     (12) 

III. COMPUTATIONAL RESULTS 

 

We designed a MATLAB R2019a code for the solution of 

four examples to find the approximate matrix-vector 

polynomial solutions ( )n t . The approximate solutions 

( )n it are found at the set of points 1:0.2:1it =− . The 

absolute errors are denoted by ( ) ( ) ( )n i i n iR t t t = − . The 

first kind's four hypersingular Fredholm integral equations 

are with algebraic and non-algebraic data functions and the 

smooth kernels.  

 

The obtained matrix-vector approximate solutions strongly 

converge to the exact ones. We make a comparison of CPU 

time between different examples 1,2,3, and 4 in Table 9. 

 

Example 1  

 

Consider the Fredholm integral equation of the second kind 

( )

( )
( ) ( )

1 1
3 3 3

2

1 1

16 31 16
t

dt t x t dt x x
t x


 

− −

+ = − −
−

   (13) 

Whose exact solution [4] is  ( ) ( )2 31 8 4t t t t = − −  .  

Table 1 compares the exact ( )it and obtained approximate 

solutions ( )n it  for 3,5,15,25n=  and 30n=  at 

1:0.2:1.it =− Table 2 displays the absolute errors for 

3,5,15,25n= and 30n= . Figure 1 illustrates the graphs of the 

exact solution and the approximate solution for 30n= . 

Figure 2 illustrates the approximate solutions for 

3,5,15,25n=  and 30n= .  The CPU total time are 7.883 sec., 

9.679 sec., 24.489 sec., 50.548 sec., and 68.498 sec. 

respectively. 

 

Example 2  

 

Consider the Fredholm integral equation of the second kind 

( )

( )
( )

1 1
2 2

2

1 1

12 3
8

x
xt e

dt t e t dt x
t x


 

− −

 
+ = − − − 

−  
   (14) 

Whose exact solution [5] is ( ) ( )2 24 1 1t t t = − −  . Table 3 

compares the exact ( )it  and obtained approximate 

solutions ( )n it   for  5,10,15n=  and 30n=  at 

1:0.2:1.it =− Table 4 displays the absolute errors for  

5,10,15n=  and 30n= . Figure 3 illustrates the graphs of the 

exact solution and the approximate solution for 30n= . 

Figure 4 illustrates the approximate solutions for  5,10,15n=  

and 30n= .  The CPU total time are 18.916 sec., 171.595 sec., 

182.947 sec., and 1173.969 sec. respectively.  

 

 

 

Example 3  

 

Consider the Fredholm integral equation of the second kind 

( )

( )
( )

1 1
3

2

1 1

17
8

8

t x
dt tx t dt x

t x

 
  

− −

+ = − + −
−

   (15) 

Whose exact solution [5] is ( ) ( )3 21 2 1t t t = + −  . Table 5 

compares the exact ( )it  and obtained approximate solutions 

( )n it   for 5,10,15n=  and 30n=  at  1:0.2:1it =− . Table 6 

displays the absolute errors for 5,10,15n=  and 30n= . 

Figure 5 illustrates the graphs of the exact solution and the 

approximate solution for 30n= . Figure 6 illustrates the 

approximate solutions for 5,10,15n=  and 30n= .  The CPU 

total time for  5,10,15n=  and 30n=  are 10.376 sec., 20.010 

sec., 27.503 sec., and 87.723 sec. respectively. 

 

Example 4  

 

Consider the Fredholm integral equation of the second kind 

( )

( )
( ) ( )

( )( ) ( )

1 1
4

2

1 1

4 2

sin

sin
5 16 12 1

32

t
dt t x t dt

t x

x
x x






− −

+ =
−

− − + −

 
 (16) 

Whose exact solution [5] is ( ) ( )4 2 216 12 1 1 .t x x t = − + −

Table 7 compares the exact ( )it and obtained approximate 

solutions ( )n it  at 1:0.2:1it =−  for 15,25n=  and 35n= . 

Table 8 displays the absolute errors for 15,25n=  and 

35n= . Figure 7 illustrates the graphs of the exact solution 

and the approximate solution for 35n= . Figure 8 illustrates 

the approximate solutions for 15,25n=  and 35n= .  The 

CPU total time for 15,25n= , and 35n=  are 102.516 sec., 

407.342 sec., and 1063.603 sec. respectively. 

  

IV    CONCLUSION 

The hypersingular integral equations of the first kind are 

solved using a novel approach based on using matrix-vector 

versions of second-kind Chebyshev polynomials. Two square 

coefficient matrices are created to obtain a continuous 

approximate polynomial solution. The elements of the first 

matrix stand for the Chebyshev polynomials' coefficients, 

which are ordered by increasing power. The second matrix is 

constructed without using the collocation method to obtain a 

linear algebraic system equivalent to the hypersingular 

equation's solution. The solutions to the four examples 

demonstrate the viability and efficacy of the proposed 

method. 
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Table 1. A comparison between the exact solutions ( )it  and the obtained approximate solutions ( )n it  of example 1 for 

3,5,15,25,n= and 30n=  at 1:0.2:1it =− . 

it  ( )it  ( )3 it  ( )5 it  ( )15 it  ( )25 it  ( )30 it  

-1 0 -1.4252 -0.88459 -0.31974 -0.1962 -0.15932 

-0.8 -0.5376 -0.59343 -0.54483 -0.53783 -0.53768 -0.5377 

-0.6 0.5376 0.46758 0.52593 0.53681 0.53749 0.53751 

-0.4 0.99717 0.95836 0.99492 0.99717 0.99711 0.99716 

-0.2 0.72113 0.71558 0.71624 0.72074 0.72106 0.72114 

0 0 0 0 0 0 0 

0.2 -0.72113 -0.71558 -0.71624 -0.72074 -0.72106 -0.72114 

0.4 -0.99717 -0.95836 -0.99492 -0.99717 -0.99711 -0.99716 

0.6 -0.5376 -0.46758 -0.52593 -0.53681 -0.53749 -0.53751 

0.8 0.5376 0.59343 0.54483 0.53783 0.53768 0.5377 

1 0 1.4252 0.88459 0.31974 0.1962 0.15932 

 

Table 2. The absolute errors of the obtained matrix-vector approximate solutions ( )n it  of example 1 for 3,5,15,25,n= and 

30n=  at 1:0.2:1it =− . 

( )3 iR t  ( )5 iR t  ( )15 iR t  ( )25 iR t  ( )30 iR t  

1.4252 0.88459 0.31974 0.1962 0.15932 

0.05583 0.00723 0.00023 8E-05 1E-04 

0.07002 0.01167 0.00079 0.00011 9E-05 

0.03881 0.00225 0 6E-05 1E-05 

0.00555 0.00489 0.00039 7E-05 1E-05 

0 0 0 0 0 

0.00555 0.00489 0.00039 7E-05 1E-05 

0.03881 0.00225 0 6E-05 1E-05 

0.07002 0.01167 0.00079 0.00011 9E-05 

0.05583 0.00723 0.00023 8E-05 1E-04 

1.4252 0.88459 0.31974 0.1962 0.15932 
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Table 3. A comparison between the  exact  solutions ( )it  and the obtained matrix-vector approximate solutions ( )n it  of 

example 2 for 5,10,15,n=  and 30n=   at 1:0.2:1it =− . 

it  ( )it  ( )5 it  ( )10 it  ( )15 it  ( )30 it  

-1 0 0.65555 0.32058 0.23968 0.11948 

-0.8 0.936 0.91799 0.93747 0.93508 0.93601 

-0.6 0.352 0.35716 0.35235 0.35204 0.35201 

-0.4 -0.32995 -0.32798 -0.32958 -0.32987 -0.32993 

-0.2 -0.82303 -0.81697 -0.82199 -0.82253 -0.82303 

0 -1 -0.98907 -1.0001 -1.0001 -1 

0.2 -0.82303 -0.81597 -0.82187 -0.82249 -0.82303 

0.4 -0.32995 -0.32608 -0.32936 -0.32978 -0.32992 

0.6 0.352 0.35969 0.35264 0.35216 0.35203 

0.8 0.936 0.9205 0.93777 0.9352 0.93602 

1 0 0.65676 0.32065 0.2397 0.11949 

 

Table 4. The absolute errors of the obtained matrix-vector approximate solutions ( )n it  of example 2 for 5,10,15,n=  and 

30n=  at 1:0.2:1it =− . 

( )5 iR t  ( )10 iR t  ( )15 iR t  ( )30 iR t  

0.65555 0.32058 0.23968 0.11948 

0.01801 0.00147 0.00092 1E-05 

0.00516 0.00035 4E-05 1E-05 

0.00197 0.00037 8E-05 2E-05 

0.00606 0.00104 0.0005 0 

0.01093 1E-04 1E-04 0 

0.00706 0.00116 0.00054 0 

0.00387 0.00059 0.00017 3E-05 

0.00769 0.00064 0.00016 3E-05 

0.0155 0.00177 0.0008 2E-05 

0.65676 0.32065 0.2397 0.11949 

 

Table 5. A comparison between the exact solutions ( )it  and the obtained approximate solutions ( )n it  of example 3 for 

5,10,15,n=  and 30n=  at 1:0.2:1it =− . 

it  ( )it  ( )5 it  ( )10 it  ( )15 it  ( )30 it  

-1 0 -0.21859 -0.10686 -0.0799 -0.03983 

-0.8 -0.0144 -0.01477 -0.0145 -0.01442 -0.0144 

-0.6 0.4544 0.45617 0.45429 0.45422 0.45439 

-0.4 0.7992 0.80373 0.79938 0.79947 0.79923 

-0.2 0.96412 0.96226 0.96351 0.96379 0.96416 

0 1 0.99434 1.0007 1.0003 1 

0.2 0.99547 0.99413 0.99491 0.99516 0.99551 

0.4 1.0338 1.0409 1.0342 1.0342 1.0339 

0.6 1.1456 1.1525 1.1456 1.1453 1.1456 

0.8 1.2144 1.1889 1.2161 1.2131 1.2144 

1 0 0.65513 0.32055 0.23967 0.11948 

 

Table 6. The absolute errors of the obtained matrix-vector approximate solutions ( )n it  of example 3 for 5,10,15,n=  and 

30n=  at 1:0.2:1it =− . 

( )5 iR t  ( )10 iR t  ( )15 iR t  ( )30 iR t  

0.21859 0.10686 0.079895 0.039828 

0.000374 0.0001 1.8E-05 4E-06 

0.00177 0.00011 0.00018 1E-05 

0.00453 0.00018 0.00027 3E-05 

0.00186 0.00061 0.00033 4E-05 

0.00566 0.0007 0.0003 0 

0.00134 0.00056 0.00031 4E-05 

0.0071 0.0004 0.0004 1E-04 

0.0069 0 0.0003 0 

0.0255 0.0017 0.0013 0 

0.65513 0.32055 0.23967 0.11948 
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Table 7. A comparison between the  exact  solutions ( )it  and the obtained matrix-vector approximate solutions ( )n it  of 

example 4 for 15,25,n=  and 35n=  at 1:0.2:1it =− . 

it  ( )it  ( )15 it  ( )25 it  ( )35 it  

-1 0 0.39869 0.24476 0.17664 

-0.8 -0.07584 -0.08047 -0.08048 -0.08048 

-0.6 -0.99712 -1.0016 -1.002 -1.0019 

-0.4 -0.46779 -0.47172 -0.47151 -0.47148 

-0.2 0.53458 0.53238 0.53255 0.53259 

0 1 1.0003 0.99993 1 

0.2 0.53458 0.53643 0.53656 0.53658 

0.4 -0.46779 -0.46421 -0.46409 -0.46408 

0.6 -0.99712 -0.99197 -0.99241 -0.99234 

0.8 -0.07584 -0.07105 -0.07117 -0.07119 

1 0 0.40021 0.24568 0.17731 

 

 

Table 8. The absolute errors of the obtained matrix-vector approximate solutions ( )n it  of example 4 for 15,25,n= and 

35n=  at 1:0.2:1it =− . 

( )15 iR t  ( )25 iR t  ( )35 iR t  

0.39869 0.24476 0.17664 

0.004628 0.004642 0.004644 

0.00448 0.00488 0.00478 

0.00393 0.00372 0.00369 

0.0022 0.00203 0.00199 

0.0003 7E-05 0 

0.00185 0.00198 0.002 

0.00358 0.0037 0.00371 

0.00515 0.00471 0.00478 

0.004795 0.004674 0.004653 

0.40021 0.24568 0.17731 

 

 

Table 9. Comparison CPU time between different examples 1,2,3, and 4. 
 

Examples ( )x  ( )1 ,k x t  ( )2 ,k x t  CPU time  

(sec) 

Example 1 for 

3,5,15,25n=  and 

30n=  

( )331 16x x− −  
2

1

( )t x−
 

3 3t x  7.883, 9.679, 

24.489,50.548 and 

68.498  

Example 2 for  

5,10,15n=  and 

30n=  

212 3
8

xe
x

 
− − − 

 
 2

1

( )t x−
 

2 xt e  18.916, 171.595, 

182.947, and 

1173.969  

Example 3 for 

5,10,15n=  and 

30n=  

3 17
8

8

x
x


 − + −  

2

1

( )t x−
 

tx  10.376, 20.010, 

27.503, and 

87.723  

Example 4 for 

15,25n=  and 

35n=  

( )( ) ( )4 2 sin
5 16 12 1

32

x
x x− − + −  2

1

( )t x−
 ( )4 sint x  

102.516, 407.342, 

and 1063.603  
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Fig. 1. The exact solution and the approximate solution for 30n= . 

 
 

 
Fig. 2. The approximate solutions for 3,5,15,25,n= and 30n= . 

 

 
Fig. 3. The exact solution and the approximate solution for 30n= . 
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Fig. 4. The approximate solutions for 5,10,15,n=  and 30n= . 

 
 

 
Fig. 5. The exact solution and the approximate solution for 30n= . 

 

 
Fig. 6. The approximate solutions for 5,10,15,n=  and 30n= . 
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Fig. 7. The exact solution and the approximate solution for 35n= . 

 
 

 
Fig. 8. The approximate solutions for 15,25,n=  and 35n= . 
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