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Abstract—This paper discusses the transmission of COVID-
19 using the SEIQRS model consisting of five population
compartments: Susceptible, Exposed, Infected, Quarantined,
and Recovered, where population who have recovered from
the disease can be reinfected. The model yields two equi-
librium points: disease-free and endemic, which are then
analyzed for stability using the Trace-Determinant method
and the Routh-Hurwitz criterion. To mitigate the spread of
COVID-19, optimization of control variables is implemented
that covers non-pharmaceutical interventions, vaccination, and
quick quarantine response. Utilizing the Pontryagin’s minimum
principle allows for the most efficient control, ensuring that the
costs incurred for implementing these controls are minimized.
Finally, several graphical simulations are presented to observe
population dynamics for disease-free and endemic scenarios, as
well as the sensitivity of parameters that affect the outbreak.
Another graphical simulations are also given to illustrate
the differences between scenarios with and without controls,
showing that with controls in place, the number of infected
individuals can be reduced to zero.

Index Terms—COVID-19, SEIQRS model, Trace-
Determinant, Routh-Hurwitz, Pontryagin’s minimum principle.

I. INTRODUCTION

IN early 2020, the World Health Organization (WHO)
designated Corona Virus Disease 2019 or COVID-19 as a

global health emergency. The first recorded case occurred in
Wuhan, China [1]. WHO identified that this disease is caused
by infection with the Severe Acute Respiratory Syndrome
Coronavirus-2 (SARS-CoV-2). Transmission predominantly
occurs among humans via respiratory droplets, direct contact,
or objects contaminated with the virus.

COVID-19 represents a newly emerging disease. There-
fore, understanding regarding its management and prevention
remains limited. Researchers around the globe are actively
developing vaccines aimed to establishing immunity against
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SARS-CoV-2, with the goal of reducing or even prevent-
ing its transmission. Consequently, the WHO advocates for
strategies that interrupt the transmission chain, which include
fundamental protective measures such as maintaining per-
sonal hygiene, early detection, isolation, and quarantine, all
aimed at minimizing infection rates.

In addition to these basic protective measures, strength-
ening the immune system is critical to ensure the body can
effectively resist viral attacks [2]. Even in cases where indi-
viduals contract the COVID-19 virus, they may experience
only mild symptoms, allowing for self-management through
isolation. Vaccination is another vital component [3], [4],
enabling individuals to reduce their risk of infection and
contribute to the suppression of the virus’s spread.

Mathematical modeling has emerged as a significant tool
for understanding the dynamics of COVID-19, particularly
by indentifying the factors that influence its transmission and
spread. These models are intended to serve as valuable ref-
erences for policymakers in formulating strategies to control
the outbreak.

Various mathematical models representing the transmis-
sion dynamics of COVID-19 have been documented in the
literature [5], [6], including the SIR model (Susceptible-
Infected-Recovered) and the SAIU model (Susceptible-
Asymptomatic-Infectious-Unreported). Further studies fo-
cusing on populations with symptomatic and asymptomatic
infections can be found in [7], [8]. Beyond the SIR and
SAIU frameworks, the dynamics of COVID-19 can also
be described by other models that incorporate quarantine
measures, such as the SIQR model [9] and the SEIQR model,
which includes exposed individuals [10], [11]. Additionally,
the SEICR model considers populations with comorbidi-
ties [12].

Research has not only concentrated on the formulation of
mathematical models and the dynamics affecting the Sus-
ceptible, Infected, and Recovered compartments but has also
explored the impact of vaccination on disease transmission,
as outlined in [13], [14], [15].

Furthermore, the control of COVID-19 spread can be
achieved through non-pharmaceutical interventions, includ-
ing mask-wearing, social distancing, and maintaining per-
sonal hygiene [16], [17], as well as specific measures like
quarantine, hospitalization, and environmental controls [18].
Some studies have also examined the integration of vaccina-
tion, a pharmaceutical measure, with isolation strategies, a
form of non-pharmaceutical intervention, to mitigate disease
spread [19]. It should be noted that mathematical models of
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COVID-19 are not merely theoretical constructs; they can be
practically applied to address real-world challenges faced by
various countries, such as India [6] and Nigeria [20].

In this paper, we employ the SEIQRS model, which
accounts for the possibility of reinfection among individuals
who have recovered from COVID-19. We investigate the
feasibility of the model solutions by analyzing their positivity
and boundedness. Qualitative analyses are conducted on
the equilibrium points and their stability to determine the
conditions necessary for achieving both disease-free and
endemic states. To avoid endemic scenarios, we implement
an optimization control strategy focusing on three variables:
non-pharmaceutical interventions, quarantine measures, and
rapid responses by health authorities to isolate infected
individuals. The Pontryagin’s Minimum Principle is utilized
to ensure that control costs are minimized while effectively
preventing disease transmission. Finally, graphical simula-
tions are presented to visualize population dynamics and the
influence of control variables on the mitigation of disease
spread.

II. SEIQRS MODEL

In this study, the dynamics of the COVID-19 outbreak are
modeled using the SEIQRS framework, which comprises five
compartments: Susceptible individuals S̄, who are at risk of
contracting COVID-19; Exposed individuals Ē, who have
been exposed but are not yet infectious; Infected individuals
Ī , who are currently infectious; Quarantined individuals Q̄,
who are isolated to prevent further spread; and Recovered
individuals R̄, who have regained health following infection.

Fig. 1: Illustration of COVID-19 transmission dynamics
based on the SEIQRS model.

Figure 1 depicts the COVID-19 transmission process
through these five population compartments. The susceptible
population grows due to births at a rate ϕ and also through
recovered individuals who can be reinfected at a rate σ.
Conversely, the susceptible group decreases due to natural
mortality at a rate µ and by transitioning to the exposed
compartment at a rate β due to contact with infectious
individuals. Once the incubation period concludes, exposed
individuals transition to the infectious state at a rate α. It
is also imperative to implement quick responses, which may
include quarantining exposed individuals at a rate γ1 and
infectious individuals at a rate γ2. These infected populations
can recover at rates ξ1 and ξ2, respectively. As previously
mentioned, recovered individuals may be reinfected, revert-
ing to the susceptible at a rate σ. It is assumed that all
compartments experience mortality at the same rate µ.

Based on the description and the diagram in Figure 1, the
SEIQRS model for COVID-19 transmission can be expressed
as a system of differential equations as

dS̄

dt
= ϕN − βS̄Ī

N
− µS̄ + σR̄,

dĒ

dt
=

βS̄Ī

N
− (γ1 + α+ µ)Ē,

dĪ

dt
= αĒ − (γ2 + ξ1 + µ)Ī ,

dQ̄

dt
= γ1Ē + γ2Ī − (ξ2 + µ)Q̄,

dR̄

dt
= ξ1Ī + ξ2Q̄− (µ+ σ)R̄.

(1)

It is assumed that the total population N(t) across all
compartments remains constant over time, implying that
dN/dt = 0. Thus, from (1), we can derive

dN

dt
=

d(S̄ + Ē + Ī + Q̄+ R̄)

dt
= 0

ϕN − µ(S̄ + Ē + Ī + Q̄+ R̄) = 0

(ϕ− µ)N = 0.

Consequently, for the total population to remain constant, it
is necessary that ϕ equals µ, indicating that the birth and
death rate must match. Under this assumption, we define the
proportions for each compartment as follows

S =
S̄

N
,E =

Ē

N
, I =

Ī

N
,Q =

Q̄

N
,R =

R̄

N
,

which allows us to reformulate the ordinary differential
equations in (1) as

dS

dt
= ϕ− βSI − µS + σR,

dE

dt
= βSI − k1E,

dI

dt
= αE − k2I,

dQ

dt
= γ1E + γ2I − k3Q,

dR

dt
= ξ1I + ξ2Q− k4R.

(2)

where

k1 = α+ γ1 + µ, k2 = γ2 + ξ1 + µ,

k3 = ξ2 + µ, k4 = µ+ σ.

A. Positivity and Boundedness

This section investigates the solutions of the SEIQRS
model to ascertain whether the values remain positive and
are bounded above. The positivity of all population com-
partments suggests that the model articulated in (2) is bio-
logically viable.

Theorem 1. Let S(0), E(0), I(0), Q(0), and R(0) represent
non-negative initial conditions. The solutions of the model
given in (1) are positive for all t > 0.
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Proof. To demonstrate the positivity of the model’s solutions,
we consider the rates of change for each compartment within
the system (2). We obtain

dS

dt

∣∣∣
S=0

= ϕ+ σR ≥ 0;
dE

dt

∣∣∣
E=0

= βSI ≥ 0;

dI

dt

∣∣∣
I=0

= αE ≥ 0;
dQ

dt

∣∣∣
Q=0

= γ1E + γ2I ≥ 0;

dR

dt

∣∣∣
R=0

= ξ1I + ξ2Q ≥ 0.

Since the rates of change for all compartments are non-
negative, we conclude that the solutions S(t), E(t), I(t),
Q(t), and R(t) remain positive for all t > 0.

However, ensuring that all compartment variables are pos-
itive does not necessarily confirm the biological feasibility
of the SEIQRS model. It is equally essential to demonstrate
that the population sizes are finite or bounded.

Theorem 2. Let S(0), E(0), I(0), Q(0), and R(0) be non-
negative initial conditions. The solutions of the SEIQRS
model in (1) are bounded within the region

D =

{
(S,E, I,Q,R) ∈ R : 0 ≤ S,E, I,Q,R,≤ ϕ

µ

}
.

Proof. To establish boundedness, we consider the total pop-
ulation across all compartments N = S+E+I+Q+R and
sum the differential equations in the system (1), yielding

dN

dt
= ϕ− µN.

This implies that

lim
t→∞

sup(N(t)) ≤ ϕ

µ
.

Without loss of generality, we conclude that each population
compartment is constrained to a size no greater than ϕ

µ , es-
tablishing an upper bound. Thus, the domain of the solutions
can be expressed as

D =

{
(S,E, I,Q,R) ∈ R5

+ : 0 ≤ S,E, I,Q,R,≤ ϕ

µ

}
.

B. Basic Reproduction Number

The basic reproduction number, denoted as R0, represents
the average number of secondary infections produced by an
infected individual in a completely susceptible population. If
R0 exceeds one, the virus is capable of continuing its spread
among the susceptible individuals; conversely, if R0 is less
than one, the infection will eventually die out. A common
approach to calculating R0 is the Next Generation Matrix
(NGM) method. In this method, the compartments relevant to
the infected population, specifically the exposed (E), infected
(I), and quarantined (Q) compartments, are utilized.

To initiate this process, the Jacobian matrix is derived from
the three compartments referenced in equation (2), yielding

J =

−k1
ϕβ
µ 0

α −k2 0
γ1 γ2 −k3

 .

In the disease-free equilibrium, where all populations except
the susceptible compartment are zero, the value of S is

determined as S = ϕ
µ . Hence, the Jacobian matrix is con-

structed based on this disease-free equilibrium condition. The
matrix is then decomposed into the difference between the
transmission matrix F and the transition matrix V , expressed
as

J = F − V,

where

F =

0 ϕβ
µ 0

0 0 0
0 0 0

 , V =

 k1 0 0
−α k2 0
−γ1 −γ2 k3

 .

Subsequently, the inverse of the transition matrix V is
computed as

V −1 =

 1
k1

0 0
α

k1k2

1
k2

0
γ1k2+αγ2

k1k2k3

γ2

k2k3

1
k3

 .

This allows us to compute

FV −1 =

 ϕβα
µk1k2

ϕβ
µk2

0

0 0 0
0 0 0

 .

From this matrix, we can derive the characteristic equation

λ3 −
(

ϕβα

µk1k2

)
λ2 = 0, (3)

which leads to the eigenvalues

λ1 =
ϕβα

µk1k2
, λ2 = 0, λ3 = 0.

According to the NGM method, the basic reproduction
number (R0) is defined as R0 = ρ(FV −1), where ρ denotes
the largest positive eigenvalue of the matrix FV −1 [21].
Therefore, the basic reproduction number is equivalent to
the eigenvalue λ1, which can be expressed as

R0 =
ϕβα

µk1k2
. (4)

C. Equilibrium Point

In the SEIQRS model described in equation (2), we
identify two equilibrium points: the disease-free equilibrium
and the endemic equilibrium. These are represented as

ϵ0 =

(
ϕ

µ
, 0, 0, 0, 0

)
(5)

and

ϵ∗ = (S∗, E∗, I∗, Q∗, R∗), (6)

where

S∗ =
k1k2
βα

,

E∗ =
k2k3k4(R0 − 1)

βα (k1k2k3k4 − αξ1σk3 − γ1ξ2σk2 − αγ2ξ2σ)
,

I∗ =
k3k4(R0 − 1)

β (k1k2k3k4 − αξ1σk3 − γ1ξ2σk2 − αγ2ξ2σ)
,

Q∗ =
k4(R0 − 1)(γ1k2 + αγ2)

βα (k1k2k3k4 − αξ1σk3 − γ1ξ2σk2 − αγ2ξ2σ)
,

R∗ =
(R0 − 1)(αξ1k3 + ξ2γ1k2 + αξ2γ2)

βα (k1k2k3k4 − αξ1σk3 − γ1ξ2σk2 − αγ2ξ2σ)
.
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For the endemic equilibrium point to exist, the following
conditions must hold:

R0 > 1,

k1k2k3k4 > αξ1σk3 + γ1ξ2σk2 + αγ2ξ2σ.

III. STABILITY ANALYSIS

To determine the stability of the equilibrium points, we
first derive the Jacobian matrix from equation (2), that is

J0 =


−βI − µ 0 −βS 0 σ

βI −k1 βS 0 0
0 α −k2 0 0
0 γ1 γ2 −k3 0
0 0 ξ1 ξ2 −k4

 (7)

Here, the variables S and I can be replaced with their
corresponding equilibrium values to analyze stability. Next,
we investigate the signs of the eigenvalues of the Jacobian
matrix, which are obtained by solving the characteristic
equation det(J0 − λI) = 0. The equilibrium point is stable
when all eigenvalues are negative.

A. Disease-Free Equilibrium

To evaluate the stability of the Disease-Free Equilibrium
(DFE), we substitute the equilibrium values from (5) into the
Jacobian matrix (7), resulting

J1 =


−µ 0 −βϕ

µ 0 σ

0 −k1
βϕ
µ 0 0

0 α −k2 0 0
0 γ1 γ2 −k3 0
0 0 ξ1 ξ2 −k4

 .

Calculating det(J1 − λI) = 0 gives the eigenvalues λ1 =
−µ, λ2 = −k4, and λ3 = −k3, along with the remaining
characteristic equation:

λ2 − Tλ+D = 0,

where T (trace) and D (determinant) are defined as

T = −(k1 + k2),

D = k1k2 −
βϕα

µ
.

(8)

Substituting the basic reproduction number R0 from (4) into
D, we obtain:

D = k1k2(1−R0).

The conditions for the characteristic equation to yield
negative eigenvalues are T < 0 and D > 0 (see [22] for
details). It follows that T is always negative, while D is
positive when:

k1k2 >
βϕα

µ
or equivalently, 1 > R0.

Thus, we conclude the stable condition for the DFE through
the following theorem.

Theorem 3. The disease-free equilibrium ϵ0 is locally
asymptotically stable if the basic reproduction number R0 <
1.

B. Endemic Equilibrium

To analyze the stability of the Endemic Equilibrium
(END), we similarly substitute the equilibrium values
from (6) into the Jacobian matrix (7), yielding

J2 =


k3k4(R0−1)

βW1
− µ 0 −k1k2

α 0 σ

−k3k4(R0−1)
βW1

−k1
k1k2

α 0 0

0 α −k2 0 0
0 γ1 γ2 −k3 0
0 0 ξ1 ξ2 −k4

 .

The characteristic equation det(J2 − λI) = 0 leads to two
eigenvalues λ1 = −k3 and λ2 = −k4, along with a third-
order characteristic equation

a3λ
3 + a2λ

2 + a1λ+ a0 = 0, (9)

where the coefficients are given by

a3 = 1,

a2 =
(µ+ k1 + k2)(W2 + k1k2k3k4(k1 + k2))

W1
,

a1 =
µ(k1 + k2)W2

W1
,

a0 =
k1k2k3k4(R0 − 1)

W2
.

(10)

The terms W1 and W2 from (10) are defined as follows

W1 = k1k2k3k4 − αξ1σk3 − γ1ξ2σk2 − αγ2σ,

W2 = ϕαβk3k4 − αξ1σk3 − αγ2ξ2σ − γ1ξ2σk2.

According to the Routh-Hurwitz criterion [23], the neces-
sary conditions for the characteristic equation to have nega-
tive roots are that all coefficients in (10) must be positive, and
a2a1 − a3a0 > 0. Thus, the conditions for a stable endemic
equilibrium are:

ϕαβk3k4 > αξ1σk3 + αγ2ξ2σ + γ1ξ2σk2,

k1k2k3k4 > αξ1σk3 + γ1ξ2σk2 + αγ2ξ2σ,

R0 > 1,

a2a1 > a3a0.

(11)

Thus, we formulate another theorem regarding the stability
and existence of the endemic equilibrium as follows.

Theorem 4. The endemic equilibrium ϵ∗ exists and is stable
when it satisfies the following conditions:

(i)ϕαβk3k4 > αξ1σk3 + αγ2ξ2σ + γ1ξ2σk2,

(ii) k1k2k3k4 > αξ1σk3 + γ1ξ2σk2 + αγ2ξ2σ,

(iii)R0 > 1,

(iv) a2a1 > a3a0.

IV. OPTIMAL CONTROL PROBLEM

In this section, we introduce control variables as strategies
to suppress the spread of the virus while minimizing costs.
The SEIQRS model in equation (2) is modified by incor-
porating three control variables. The first control variable,
denoted by u(t), represents the implementation of non-
pharmaceutical interventions, which include measures such
as mask usage, social distancing, and proper sanitation.
This variable is applied to both susceptible and infectious
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individuals. The second variable is the vaccination rate
v(t), administered to the susceptible population to confer
immunity against COVID-19. Lastly, the quick response
variable w(t) is applied to exposed individuals through
isolation measures, which may be self-imposed or enforced
by healthcare authorities [10]. Therefore, the model in (2)
can be modified as

dS

dt
= ϕ− β(1− u(t))SI − v(t)S − µS + σR,

dE

dt
= β(1− u(t))SI − (α+ γ1 + µ)E − w(t)E,

dI

dt
= αE − (γ2 + ξ1 + µ)I,

dQ

dt
= γ1E + γ2I − (ξ2 + µ)Q+ w(t)E,

dR

dt
= ξ1I + ξ2Q+ v(t)S − (µ+ σ)R.

(12)

The variables in equation (12) are referred to as the state
variables.

Our objective here is to minimize the costs incurred from
non-pharmaceutical interventions, vaccination, and quick re-
sponses to suppress the spread of COVID-19. By adapting
the objective functional from [12], we propose

J =

∫ tf

0

[ϵeE + ϵiI + ϵqQ

+
1

2

(
ϵuu

2 + ϵvv
2 + ϵww

2
)]

dt. (13)

As evident from (13), the cost includes contributions from ex-
posed individuals E, infected individuals I , and quarantined
individuals Q, with weighting factors ϵe, ϵi, and ϵq assigned
to each category. The non-linear terms reflect the relative
costs associated with more restrictive strategies.

Next, we need to calculate the values of the control
variables to minimize the cost J . Thus, we define the optimal
control as

J(u∗, v∗, w∗) = min{J(u, v, w) : u, v, w ∈ Ω},

where Ω is defined on the interval [0, tf ], and the opti-
mal controls (u∗(t), v∗(t), w∗(t)) are constrained between
0 and 1. A value of 0 indicates no application of non-
pharmaceutical interventions, vaccination, or quick response,
while a value of 1 indicates maximum implementation of
these controls.

A. Hamiltonian Function

To determine the optimal solution to the problem stated
in (12), we utilize the Hamiltonian function based on
Pontryagin’s minimum principle. The Hamiltonian function,
which combines the objective functional (13) with the state
equations from (12), is defined as

H = ϵeE + ϵiI + ϵqQ+
1

2

(
ϵuu

2 + ϵvv
2 + ϵww

2
)

+ λ1 (ϕ− β(1− u(t))SI − v(t)S − µS + σR)

+ λ2 (β(1− u(t))SI − (α+ γ1 + µ)E − w(t)E)

+ λ3 (αE − (γ2 + ξ1 + µ)I)

+ λ4 (γ1E + γ2I − (ξ2 + µ)Q+ w(t)E)

+ λ5 (ξ1I + ξ2Q+ v(t)S − (µ+ σ)R) .
(14)

Here, λ1, λ2, λ3, λ4, and λ5 are referred to as the adjoint or
co-state variables.

The values of these unknown co-state variables can be
determined by establishing their differential equations from
the negative derivative of the Hamiltonian function with
respect to S,E, I,Q, and R, yielding

dλ1

dt
=(λ1 − λ2) [β(1− u(t))I − λ1(v(t)− µ)− λ5v(t)] ,

dλ2

dt
=− ϵe + λ2 (α+ γ1 + µ− w(t))− λ3α

− λ4 (γ1 + w(t)) ,

dλ3

dt
=− ϵi + (λ1 − λ2)β(1− u(t))S + λ3(γ2 + ξ1 + µ)

− λ4γ2 − λ5ξ1,

dλ4

dt
=− ϵq − λ4(ξ2 + µ)− λ5ξ2,

dλ5

dt
=− λ1σ + λ5(µ+ σ),

(15)

with the transversality condition λi(tf ) = 0 for i =
1, 2, . . . , 5.

B. Stationary Condition

To achieve optimality, the Hamiltonian function must be
optimized with respect to the control variables. This leads to
the conditions

∂H

∂u
= 0,

∂H

∂v
= 0,

∂H

∂w
= 0.

Solving these equations gives us the control variable values
that minimize cost

u∗(t) =
(λ2 − λ1)βSI

ϵu
,

v∗(t) =
(λ1 − λ5)S

ϵv
,

w∗(t) =
(λ2 − λ4)E

ϵw
.

Since these values are constrained between 0 and 1, the
optimal solutions can be expressed as:

u∗(t) = min
{
1,max

[
0,

(λ2 − λ1)βSI

ϵu

]}
,

v∗(t) = min
{
1,max

[
0,

(λ1 − λ5)S

ϵv

]}
,

w∗(t) = min
{
1,max

[
0,

(λ2 − λ4)E

ϵw

]}
.

(16)

V. NUMERICAL SIMULATIONS AND DISCUSSION

This section presents graphical simulations to illustrate
stability in both disease-free and endemic scenarios. Addi-
tionally, we compare population dynamics under conditions
with and without the implementation of control strategies.
Furthermore, we examine the parameters that are sensitive to
the spread of the outbreak, as well as the variable controls.
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TABLE I: Parameter values for (a) disease-free and (b)
endemic conditions.

(a)

Parameter Value
ϕ 0.0113
β 0.1
µ 0.0113
σ 0.0005
α 0.4
γ1 0.2
γ2 0.3980
ξ1 0.182
ξ2 0.3

(b)

Parameter Value
ϕ 0.0113
β 0.1
µ 0.0113
σ 0.0005
α 0.4
γ1 0.0084
γ2 0.0040
ξ1 0.0199
ξ2 0.0416

A. Equilibria Stability

We commence with a simulation for the disease-free
equilibrium (DFE) utilizing the parameter values outlined in
Table Ia, where all initial population values are set to 0.2.
To achieve stability, it is essential to satisfy the condition
R0 < 1, as stated in Theorem 1. Using the parameters from
Table Ia, we calculate (4) to obtain R0 = 0.1107, which con-
firms a stable DFE. Consequently, the susceptible population
increases and approaches its limit, as illustrated in Figure 2.
The graph indicates that the susceptible population converges
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Fig. 2: Population dynamics for the SEIQRS model under
disease-free conditions.

to 1, while other compartments ultimately diminish to zero,
aligning with the equilibrium values outlined in (5).

Subsequently, we evaluate the endemic condition (END)
using distinct parameter values provided in Table Ib, ensuring
that R0 > 1 for stability, in accordance with Theorem 2.
Calculating R0 from (4) yields R0 = 2.8717, signifying
that the disease is propagating. The infected compartments
(exposed, infected, and quarantined) stabilize at positive
values, as confirmed by Figure 3. It can be observed from
this figure that the number of infected individuals experiences
an initial sharp increase due to the spread of the virus. This
is followed by a gradual decline as the infected individuals
begin to recover and leading to a stable state.

B. Population Dynamics with Control Variables

The SEIQRS model incorporating control variables is
simulated using the fourth-order Runge-Kutta method. The
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Fig. 3: Population dynamics for the SEIQRS model under
endemic conditions.

state equations presented in (12) are solved using a forward
step approach, while the co-state equations are resolved with
a backward step method.

TABLE II: Parameter values for the optimization problem.

Parameter ϵe ϵi ϵq ϵu ϵv ϵw

Value 0.1 0.1 0.1 0.01 0.001 0.001

Utilizing parameters from Table Ib along with the weights
in Table II, we analyze the dynamics of the control variables
as depicted in Figure 4. The results reveal that initially, non-
pharmaceutical interventions (represented by the red graph)
require intensive implementation to mitigate disease spread.
However, this need diminishes rapidly, requiring only mini-
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Fig. 4: Dynamics of control variables aimed at achieving
optimal conditions.

mal intervention over time. Conversely, vaccination efforts do
not experience a swift decline in intensity, as illustrated by
the green graph, which indicates a gradual reduction until
around day 300, at which point vaccination is no longer
necessary. The blue graph, representing quick response mea-
sures, follows a trend similar to that of non-pharmaceutical
interventions. Both control strategies necessitate a relatively
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Fig. 5: Susceptible population dynamics with and without
control.

brief period of high intensity to effectively manage disease
transmission, although the level of quick response is slightly
higher than that of non-pharmaceutical interventions.
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Fig. 6: Exposed population dynamics with and without
control.

Another simulations were conducted to compare popula-
tion dynamics with and without control strategies. Figures 5
and 6 display the dynamics of the susceptible and exposed
populations, respectively. When no controls are implemented,
the susceptible population gradually increases toward its
limiting value. In contrast, the implementation of controls
results in a marked decrease in susceptible individuals within
approximately five days, although this population begins to
rise again thereafter.

The analysis reveals that the control measures, particularly
vaccination, significantly reduce the exposed and infected
populations, as seen in Figures 6 and 7. Conversely, quick
response efforts notably influence the quarantined popula-
tion, where prompt quarantining leads to an increase in this
compartment initially, before it eventually declines as disease
transmission is effectively curtailed, as seen in Figure 8.

For the recovered population, as shown in Figure 9,
the administration of vaccination directly facilitates a rapid
increase in the number of individuals who recover, due to the

0 200100 30050 150 250
0

0.2

0.1

0.3

0.05

0.15

0.25

0.35

t(days)

I(
t)

No Control

With Control

Fig. 7: Infected population dynamics with and without con-
trol.
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Fig. 8: Quarantined population dynamics with and without
control.
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Fig. 9: Recovered population dynamics with and without
control.

immediate transfer of susceptible individuals to the recovered
category, bypassing the exposed and infected stages.
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C. Parameter Sensitivity

The next simulation seeks to identify the parameters that
significantly impact the level of virus transmission, including
the parameters influencing the level of control measures
aimed at mitigating the disease’s spread while minimizing
costs.
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Fig. 10: Comparisons the infected population dynamics with
varying γ2.

The first parameter under examination is γ2, the isolation
rate constant for the infected population. This value is varied
to assess its effect on the number of infected individuals.
As demonstrated in Figure 10, an increase in γ2, which
corresponds to enhanced isolation of the infected population,
leads to a reduction in disease transmission, as evidenced by
the decreasing number of infected individuals. This finding
aligns with the relationship between γ2 and R0, as illustrated
in equation (4), where both parameters exhibit an inverse
relationship.
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Fig. 11: Comparisons the non-pharmaceutical intervention
dynamics when β are varied.

The next parameters considered are ϕ, β, and γ1, which are
varied to evaluate their influence on the control variables u, v,
and w. The parameter β, which denotes the direct interactions
between the infected and susceptible populations, is analyzed
in relation to the implementation of non-pharmaceutical

interventions u. Figure 11 highlights that non-pharmaceutical
activities u, such as advisories and strict regulations for social
distancing, should be intensified in response to the increasing
number of susceptible individuals who, either knowingly
or unknowingly, come into direct contact with the infected
population.
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Fig. 12: Comparisons the non-pharmaceutical intervention
dynamics when ϕ are varied.

Regarding the parameter ϕ, which represents the growth
rate constant for the susceptible population, an increase in
its value necessitates an enhancement of vaccination efforts
v to prevent or mitigate the spread of the virus. Figure 12
indicates that during the initial 10 days of vaccination im-
plementation, optimal efforts are required when ϕ is raised
to 0.2113. Subsequently, vaccination efforts can be gradually
reduced to minimize costs and can be discontinued after day
200.
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Fig. 13: Comparisons the non-pharmaceutical intervention
dynamics when γ1 are varied.

Lastly, the parameter γ1, or the isolation rate constant
for the exposed population, is investigated for its impact
on the control variable w, which pertains to rapid response
measures. As a growing number of exposed individuals
become aware of their infection, for instance through PCR
testing, and promptly isolate themselves, the simulations
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illustrated in Figure 13 suggest that health authorities may
not need to intensify rapid response measures for isolating
these individuals. Rather, it may be adequate to reduce such
measures, thereby minimizing the associated costs.

VI. CONCLUSION

In this article, we have developed and analyzed the spread
of COVID-19 using the SEIQRS model, which incorporates
the possibility that individuals who have recovered may
become susceptible again. This indicates that there is a
potential for reinfection among recovered individuals. From
this model, two equilibrium states are identified: disease-free
and endemic.

To achieve the disease-free state, the basic reproduction
number must be maintained below one. Conversely, when
the basic reproduction number exceeds one, and the condi-
tions outlined in Theorem 4 are satisfied, an endemic state
emerges. One simulation conducted in this study demon-
strates that the disease can be effectively suppressed by
increasing the isolation rate of the infected population. This
outcome is attributed to heightened awareness and respon-
sibility among infected individuals regarding self-isolation.
This means that direct contact with the susceptible population
is reduced, resulting in a decrease in the number of infected
individuals.

We anticipated that the endemic scenario can be trans-
formed into a disease-free situation. Therefore, this paper
discussed three control variables: non-pharmaceutical inter-
ventions, vaccination, and quick response measures aimed
at mitigating the spread of the virus. The implementation
these controls has proven effective in suppressing the dis-
ease’s transmission. Utilizing Pontryagin’s minimum princi-
ple, these controls facilitate the prevention of virus spread at
minimal cost.

Furthermore, we have investigated three parameters con-
cerning their impact on the control variables. When the
direct contact rate between susceptible and infected individ-
uals rises, a simulation suggests that the implementation of
non-pharmaceutical interventions, such as social distancing,
should be intensified to prevent virus transmission. Similarly,
an increase in the growth rate of the susceptible population
necessitates a substantial enhancement in vaccination efforts.
Conversely, when the exposed population demonstrates a
high level of awareness regarding self-isolation, a simulation
indicates that health authorities need not intensify quick
response measures; instead, these measures can be scaled
back while still effectively preventing disease transmission.
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