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Abstract—In this study, we introduce a model for a single-
species fish population characterized by two distinct stages:
mature and immature. Traditionally, assuming a constant
natural mortality rate for any fish species is impractical.
Therefore, we propose a time-dependent function to represent
natural mortality, acknowledging its exponential decrease over
time. However, an indefinite decrease would inaccurately imply
zero mortality over infinite time, which contradicts real-world
conditions. To address this, we explore a mortality step function
that declines exponentially between successive birth events
within a generation. Our analysis focuses on examining the
local and global stability of equilibrium points. Additionally,
we develop a sustainable harvesting strategy using a straight-
forward quadratic Lyapunov function.

Index Terms—Stage Structure, Time dependent mortality,
Global Stability, Lyapunov Function, Harvesting.

I. INTRODUCTION

AMajor proportion of the earth’s surface is encompassed
by water surfaces, most particularly by the oceans,

and so they have a significant influence on the terrestrial
environment.Oceanography encompasses various scientific
disciplines, including biology, physics, chemistry, geology,
and meteorology, all of which are involved in studying the
oceans and their related phenomena. The study of marine
animals and how they interact with their environment and one
another is known as marine biology. Fish is a crucial source
of the protein that people eat worldwide. The world’s natural
reserve fisheries are currently being overfished and are not
being harvested sustainably to the tune of roughly 70 percent.
Fisheries managers must understand biological processes
and factors to accurately define what constitutes overfishing.
Since collecting biological data to assess fish stocks is
costly and fish populations are not easily observed, fisheries
managers often estimate biological characteristics based on
catch data and fishing inputs. Schaefer (1954) introduced the
approach that has become the accepted method for using
fisheries data in stock assessment: first, one must specify an
equation that links output (catch) to fishing inputs (effort)
and latent fish abundance (stock), and then one must specify
a state equation for biological dynamics in terms of the latent
stock variable. Thus, catch and effort data are the sole sources
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for reconstructing population parameters econometrically.
Both fields are concerned with determining the sustainable
extraction levels of resources and recognize the link between
biological dynamics and economic production functions. As
a result, inferring fish stocks from fishery data has historically
drawn the interest of both economists and fishery biologists
(Comitini and Huang, 1967; Pella and Tomlinson, 1969;
Wilen, 1976). However, more recently, investigations into
the biological dynamics and connections between economic
output have grown apart.

The maritime ecology is abundant in resources. Exploiting
the biological community helps countries’ economies grow.
Fishing is one of the activities included in marine biology.
In a marine ecosystem zone, a fishery is one that studies
the interactions between the marine population and the
harvesting system. We’ve seen in recent years that unlawful
exploitation has a severe influence on fish populations in the
oceans, contributing to the destruction of the environment.

Interesting studies have been conducted on the dynamics
of fishery populations. In [1], Fulgence et al. explicitly
examined the effects of fractional-order derivatives on the
dynamics of the fishery model, and they used the Jacobian
matrix and the Lyapunov direct technique to look into the
local and global asymptotic stability of the equilibrium
points. In [2], a Holling II functional response prey-predator
model with harvesting for fisheries resources in a two-patch
environment—a free fishing zone and a reserve zone where
fishing is severely prohibited—was proposed and studied by
Yunfei et al. By including a temporal delay in the harvesting
period, the author took into account a prey-predator fisheries
model and discussed the selective harvesting of fish over a
specific age or size in [3]. In [4], the bioeconomic harvesting
of a prey-predator fishery when both species are affected
by toxins generated by other species was discussed by T.
Das et al. Flugence Mansal et al. presented a mathematical
bioeconomic model of a fishery with a variable price in [5].
M. Javidi et al. introduced a fractional-order prey-predator
model and dealt with the mathematical behaviour of the
model in [6]. In [7], a delayed stage-structured predator-prey
model with non-monotone functional responses is proposed
by the author, Younghi Xia et al. T. K. Kar et al. proposed
a multispecies harvesting model with interference [10]. In
[11], the issue of non-selective harvesting in a prey-predator
system when both prey and predator species follow the
law of logistic growth is examined in the study by K. S.
Chaudhuri et al. Jia Wo et al. used a multispecies size-
spectrum model (MSSM) deployed in the coastal ecosystem
of the North Yellow Sea, China, to analyze the dynam-
ics of multispecies fisheries under data-limited conditions
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[12].Kinfe Hailemariam Hntsa et al. studied fish resource
harvest using a predator at the highest sustainable yield
according to mathematical modelling [13]. In [14-16], the
authors give a lot of attention to stage-structured models.
In [20], S. Shalini Priya et al. studied a multicompartmental
mathematical model for HIV/AIDS transmission in Ethiopia.
In [21], Susila Bahri et al. analyzed the spread of the
Omicron virus using the Next Generation Matrices method,
considering various vaccination rates of 10 In [8] Tang,
Chen discussed a single species of fish population with two
stage structures, viz., an immature and mature population,
where they suggested equal death rates for both population
segments. But in [9] Gao, Chen rectified this naturally
unreasonable concept by changing the equal death rates to
two different constant rates of mortality. It is a fact that
natural mortality decreases exponentially with time (i.e., age
of the fish), but this decrement cannot go infinitely because
otherwise, at infinite time, there will be no mortality at all,
which is totally unrealistic. This idea of natural mortality
allows us to consider a mortality step function that decreases
exponentially within a new birth and the next birth process,
i.e., within a generation. These functional values repeat in
every new generation.

II. METHODS

This paper is organized as follows: Section 1 introduces
the formulation of the two-stage structured fish population
model incorporating step-function mortality. Section A ex-
amines the existence and uniqueness of solutions to validate
the model. Section B focuses on the analysis of local stability
at equilibrium points. Finally, Section C addresses the global
stability of the model using a straightforward quadratic
Lyapunov function.

1) Model Description: In [1], the authors explored a
single-species fish population model with two distinct stage
structures, assuming a constant mortality rate for both stages.
However, this assumption is not realistic. To address this
limitation, we propose a model where the mortality rate de-
pends on both population size and time. It is well-established
that the risk of natural mortality is inversely proportional to
age (i.e., time). Therefore, if the mortality function decreases
over time within each interval between birth events, the mor-
tality function for an immature population can be expressed
as follows:

f(t) =



e−(t−τ) 0 ≤ t ≤ τ
e−(t−2τ) τ ≤ t ≤ 2τ
e−(t−3τ) 2τ ≤ t ≤ 3τ
.
.
.
e−(t−nτ) (n− 1)τ ≤ t ≤ nτ

Here t represents instantaneous time and τ represents birth
pulse.
Thus our two stage structured fish population model takes
the form

dx

dt
= be−

y(t)
y0 y(t)− cx(t)− d1f(t)x(t), (1)

dy

dt
= cx(t)− d2y(t)− hy(t), (2)

In this model, x(t) and y(t) denote the population densities
of immature and mature fish at time t, respectively. The
parameter b represents the reproduction rate, while y0 in-
dicates the maximum recruitment capacity of an adult fish
within the ecosystem, which we refer to as the maximum
recruitment parameter. The maturity rate is denoted by c, d1
and d2 represent the mortality rates for immature and mature
fish, respectively, and h is the harvesting rate applied to the
mature population.

A. Existence and uniqueness of a solution of the model

In this section, we construct a two-stage structured fishery
model with time-dependent mortality represented in Equa-
tions (1) and (2). The main aim of this section is to find the
condition of existence and uniqueness of the fishery model.
Suppose we consider the following functions:

u1(t, x) = be−
y(t)
t0 y(t)− cx(t)− d1f(t)x(t), (3)

u2(t, y) = cx(t)− d2y(t)− hy(t). (4)

We define the following sets: C([0, nτ ],R) denote the Ba-
nach space of all continous and differentiable functions from
[0, nτ ] to R and

C[0, nτ ] = {x : [0, nτ ] → R such that
dx

dt
∈ c[0, nτ ]},

(5)
n being a positive integer.
For simplification we consider the maximum norm
which is defined by the following equation ∥u1∥ =
supt∈[0,nτ ]|u1(t, x)|. Here we consider the partial derivative
equation defined by
dx
dt = u1(t, x),

dy
dt = u2(t, x).

Now we proceed to validate our proposed model in the
following way:

Theorem 2.1: We assume that the functions x and y admit
upper bounds. Then the function u1 and u2 are Lipschitz
continous with Lipschitz constant α and β.

Proof: Using the defined norm, we obtain the following
relationship:
∥u1(t, x1)− u1(t, x2)∥
= ∥be

−y
y0 y − cx1 − d1e

−(t−nτ)x1 − {be
−y
y0 y − cx2 −

d1e
−(t−nτ)x2}∥, for (n− 1)τ < t ≤ nτ, n ∈ Z+,

= ∥c(x1 − x2) + d1e
−(t−nτ)(x1 − x2)∥

≤ c∥x1 − x2∥+ d1e
−(t−nτ)∥x1 − x2∥,

= (c+ d1e
−(t−nτ))∥x1 − x2∥

< (c+ d1e
τ )∥x1 − x2∥,

= α∥x1 − x2∥,
where α = c + d1e

τ . This shows that u1 is Lipschitz
continous and α is the Lipschitz Constant.
Next to show that u2 is Lipschitz continous. we take the
following steps:
∥u2(t, y1)− u2(t, y2)∥
= ∥{cx− d2y − hy1} − {cx− d2y2 − hy2}∥,
= ∥d2(y1 − y2) + h(y1 − y2)∥,
≤ d2∥y1 − y2∥+ h∥y1 − y2∥,
= (d2 + h)∥y1 − y2∥,
where β = d2 + h. Therefore u2 is Lipschitz continous and
β is the Lipschitz constant.

Theorem 2.2: The Picard operators defined by the
following relations are bounded
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Tx = x(0) +

∫ nτ

(n−1)τ

u1(t, x) dt, (6)

My = y(0) +

∫ nτ

(n−1)τ

u2(t, y) dt, (7)

(n− 1)τ < t ≤ nτ, n ∈ Z+.

Proof: Applying the defined norm and Using triangular
inequality, we derive the relationship

∥Tx− x(0)∥ = ∥
∫ nτ

(n−1)τ

u1(t, x) dt∥,

(n− 1)τ < t ≤ nτ, n ∈ Z+,

≤
∫ nτ

(n−1)τ

∥u1(t, x) dt∥. (8)

From theorem 2.1, the function u1 is Lipschitz continous,
which implies that the function u1 is continous and bounded
as well. That is ∥u1∥ ≤ ϵ, where ϵ is positive constant.
Equation (8) can be now written in the following form

∥Tx− x(0)∥ ≤
∫ nτ

(n−1)τ

ϵ dt,

= ϵτ. (9)

Similarly,

∥My − y(0)∥ = ∥
∫ nτ

(n−1)τ

u2(t, x) dt∥,

(n− 1)τ < t ≤ nτ, n ∈ Z+,

≤
∫ nτ

(n−1)τ

∥u2(t, x) dt∥. (10)

Again from theorem 2.1, the function u2 is Lipschitz conti-
nous, i.e the function u1 is continous and also bounded. That
is ∥u2∥ ≤ δ, where δ is a positive constant. Equation can
now be written as

∥My − y(0)∥ ≤
∫ τ

0

δ dt,

= δτ. (11)

Theorem 2.3: The Picard’s operators T and M of theorem
2.2 define contractions if

τ ≤ 1

α
, (12)

τ ≤ 1

β
. (13)

Proof: We have

∥Tx1 − Tx2∥ = ∥
∫ nτ

(n−1)τ

[u1(t, x1)− u1(t, x2)] dt∥,

(n− 1)τ < t ≤ nτ, n ∈ Z+,

≤
∫ nτ

(n−1)τ

∥[u1(t, x1)− u1(t, x2)] dt∥,

=

∫ nτ

(n−1)τ

∥[c(x1 − x2) + d1e
−(t−τ)

(x1 − x2)] dt∥,

=

∫ nτ

(n−1)τ

(c+ d1)∥x1 − x2∥ dt,

= (c+ d1)

∫ nτ

(n−1)τ

∥x1 − x2∥ dt,

= (c+ d1e
τ )τ∥x1 − x2∥. (14)

From equation (14) the operator T is a contraction if the
following condition holds:

τ ≤ 1

α
. (15)

Again,

∥Mx1 −Mx2∥ = ∥
∫ nτ

(n−1)τ

[u2(t, y1)− u2(t, y2)] dt∥,

(n− 1)τ < t ≤ nτ, n ∈ Z+,

=

∫ nτ

(n−1)τ

∥[u2(t, y1)− u2(t, y2)] dt∥,

=

∫ nτ

(n−1)τ

∥d2(y1 − y2) + h(y1 − y2)∥,

≤
∫ nτ

(n−1)τ

(d2 + h)∥y1 − y2∥ dt,

= (d2 + h)τ∥y1 − y2∥. (16)

From equation (16), the operator T is a contraction if the
following conditions hold:

τ ≤ 1

β
, β = d2 + h. (17)

Theorem 2.4: We assume the functions x1 and x2 be the
solutions of Equation (1) and the functions y1 and y2 be
the solutions of Equation (2). Then we have the following
condition

x1 = x2 and y1 = y2. (18)

Proof: Let us consider the function x1 be the solution
of Equation (1) then it satisfies the property expressed in the
following Equation

x1 = x1(0) +

∫ nτ

(n−1)τ

u1(t, x1) dt, (n− 1)τ < t ≤ nτ,

n ∈ Z+.
(19)

Again, if the function x2 is the solution of Equation (1), then
it satisfies the property expressed in the following Equation

x2 = x2(0) +

∫ nτ

(n−1)τ

u1(t, x2) dt, (n− 1)τ < t ≤ nτ,

n ∈ Z+.
(20)
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Then,

∥x1 − x2∥ = ∥
∫ nτ

(n−1)τ

[u1(t, x1)− u1(t, x2)] dt∥,

(n− 1)τ < t ≤ nτ, n ∈ Z+,

≤
∫ nτ

(n−1)τ

∥u1(t, x1)− u1(t, x2)∥ dt,

≤
∫ nτ

(n−1)τ

(c+ d1)∥x1 − x2∥ dt,

= (c+ d1)∥x1 − x2∥τ. (21)

From Equation (21) we have the following condition :

[1− (c+ d1)τ ]∥x1 − x2∥ ≤ 0. (22)

Since M is a contraction mapping if [1−(c+d1)τ ] ≥ 0, which
implies that ∥x1 − x2∥ ≤ 0 if T is a contraction mapping.
Using the definition of our norm we have,

∥x1 − x2∥ = 0 which implies that x1 = x2. (23)

Next, let function y1 be the solution of Equation (2), then it
satisfies the following property:

y1 = y1(0) +

∫ nτ

(n−1)τ

u2(t, y1) dt, (24)

(n− 1)τ < t ≤ nτ, n ∈ Z+.

Furthermore, if we assume that the function y2 is the solution
of Equation (2), then it satisfies the following property of the
form

y2 = y2(0) +

∫ nτ

(n−1)τ

u2(t, y2) dt,

(n− 1)τ < t ≤ nτ, n ∈ Z+. (25)

Then using the difference between equations (24) and (25)
we obtain the following relationship:

∥y1 − y2∥ = ∥
∫ nτ

(n−1)τ

[u2(t, y1)− u2(t, y2)] dt∥,

(n− 1)τ < t ≤ nτ, n ∈ Z+,

≤
∫ nτ

(n−1)τ

∥u2(t, y1)− u2(t, y2)∥ dt,

≤
∫ nτ

(n−1)τ

(d2 + h)∥y1 − y2∥ dt,

= (d2 + h)τ∥y1 − y2∥. (26)

From Equation (26), we have the following condition:

[1− (d2 + h)τ ]∥y1 − y2∥ ≤ 0. (27)

Since M is contraction mapping if [1−(d2+h)τ ] ≥ 0 which
implies that ∥y1 − y2∥ ≤ 0 if M is a contraction mapping.
Then the definition of our norm gives

∥y1 − y2∥ = 0 which implies that y1 = y2. (28)

The above theorems prove that the solution of the proposed
model is unique.

B. Local stability analysis of the model’s equilibrium points

In this section, we analyze the local stability of our
fishery model using differential calculus. We employ the
Routh-Hurwitz criteria to assess stability in the context of
differential equations. The differential equations are defined
as follows:

dx

dt
= u1(x, y), (29)

dy

dt
= u2(x, y). (30)

The equilibrium points satisfy the equations (29) and (30)
by the following relationship:

u1(xeq, yeq) = 0 and u2(xeq, yeq) = 0. (31)

Here (xeq, yeq) indicates the equilibrium point of the fish
population model. After solving the equations, we get the
two equilibrium points. The first one is trivial equilibrium
points, i.e., (xeq, yeq) = (0, 0) . The trivial equilibrium point
represents the extinction of both populations. Stabilisation of
a zero population is an undesirable situation in any fishery
model. Thus, we aim to unstabilize this equilibrium point and
find the harvesting parameter range. We find the Jacobian at
the trivial equilibrium point, i.e., (xeq, yeq) = (0, 0) as

J(0,0) =

[
−c− d1f(t) b

c −d2 − h

]
. (32)

Assuming that λ is the eigenvalue of the Jacobian matrix.
The characteristic equation of the Jacobian matrix becomes

a1λ
2 + a2λ+ a3 = 0, (33)

Where the parameter values are given by the following

a1 = 1, (34)
a2 = c+ d1f(t) + d2 + h, (35)
a3 = (c+ d1f(t))(d2 + h)− cb. (36)

Using Rowth-Hurwitz Criteria for stability we get

s1 : a1 a3,

s2 : a2 0,

s3 :
a2a3
a2

= a3.

The equilibrium point (0, 0) is stable if

a1 > 0, a2 > 0, a3 > 0.

Therefore, we obtain the stability condition for the trivial
equilibrium point as

h >
cb

c+ d1f(t)
− d2. (37)

since the stability of the trivial equilibrium point is unde-
sirable. To unstabilise the equilibrium point (0, 0) we must
have

h ≤ cb

c+ d1f(t)
− d2. (38)

Next we assume that (xeq, yeq) be the coexisting equilibrium
point that satisfy the Equation (29) and (30).
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Then,

be
−yeq
y0 − cxeq − d1xeq = 0,

=⇒ be
−yeq
y0 − (c+ d1f(t))xeq = 0,

=⇒ xeq =
be

−yeq
y0

(c+ d1f(t))
. (39)

Now Putting value of xeq in the Equation (30) we have

cxeq − d2yeq − hyeq = 0,

=⇒ c
be

−yeq
y0

(c+ d1f(t))
− d2yeq − hyeq = 0,

=⇒ cbe
−yeq
y0 − (c+ d1f(t))d2 − (c+ d1f(t))h = 0,

=⇒ e
−yeq
y0 =

(c+ d1f(t))(d2 + h)

cb
,

=⇒ −yeq
y0

= ln
(c+ d1f(t))(d2 + h)

cb
,

=⇒ yeq = y0 ln
cb

(c+ d1f(t))(d2 + h)
. (40)

Putting the value of yeq in the equation (39) we have

xeq =
y0(d2 + h)

cb
ln

cb

(c+ d1f(t))(d2 + h)
.

Therefore our time-dependent coexisting equilibrium point is
(xeq, yeq), Where

xeq =
y0(d2 + h)

cb
ln

cb

(c+ d1f(t))(d2 + h)
, (41)

yeq = y0 ln
cb

(c+ d1f(t))(d2 + h)
. (42)

We begin our study of local stability by focusing
on the coexisting equilibrium point i.e., (xeq, yeq) =

(y0(d2+h)
cb ln cb

(c+d1f(t))(d2+h) , y0 ln cb
(c+d1f(t))(d2+h) ). The

Jacobian matrix at the coexisting equilibrium point is

J(xeq,yeq) =

[
c− d1f(t) be

−yeq
y0 − b

y0
e

−yeq
y0 yeq

c −d2 − h

]
. (43)

If λ is an eigenvalue of the Jacobian matrix defined by
equation (43), then the characteristic equation of that matrix
is the following:

b1λ
2 + b2λ+ b3 = 0, (44)

Where the parameter values are given by the following

b1 = 1, (45)
b2 = (c+ d1f(t))(d2 + h), (46)

b3 = (c+ d1f(t))(d2 + h) ln
cb

(c+ d1f(t))(d2 + h)
. (47)

Using Rowth-Hurwitz Criteria for stability we get

s1 : b1 b3,

s2 : b2 0,

s3 :
b2b3
b2

= b3.

The coexisting equilibrium point (xeq, yeq) is stable if

b1 > 0, b2 > 0, b3 > 0.

Which gives

(c+ d1f(t))(d2 + h) > 0 (obvious)

and

ln
cb

(c+ d1f(t))(d2 + h)
> 0,

=⇒ h <
cb

c+ d1f(t)
− d2.

Therefore, to locally stabilise the coexisting equilibrium
point, we must have

h <
cb

c+ d1f(t)
− d2. (48)

C. Analysing the harvesting strategy by constructing a Lya-
punov Function

In this part, we examine the global asymptotic stability
of the two-stage structure fish population model’s non-trivial
equilibrium point by defining a suitable Lyapunov function.
We examine the stability of the non-trivial equilibrium point,
which is defined by (x∗, y∗) . Where

x∗ =
y0(d2 + h)

cb
ln

cb

(c+ d1f(t))(d2 + h)
, (49)

y∗ = y0 ln
cb

(c+ d1f(t))(d2 + h)
. (50)

We define the Lyapunov function as

V = (
x− x∗

x∗ )2 + (
y − y∗

y∗
)2. (51)

Differentiating V with respect to t we have

dV

dt
=

2(x− x∗)

x∗2
dx

dt
+

2(y − y∗)

y∗2
dx

dt
,

=
2(x− x∗)

x∗2 [b(e
−y
y0 y − e

−y∗
y0 y∗)− (c+ d1f(t))

(x− x∗)] +
2(y − y∗)

y∗2
[c(x− x∗)− (d2 + h)

(y − y∗)],

≤ 2(x− x∗)

x∗2 [b(y − y∗)− (c+ d1f(t))(x− x∗)]

+
2(y − y∗)

y∗2
[c(x− x∗)− (d2 + h)(y − y∗)],

= −2(x− x∗)2

x∗∗ (c+ d1f(t)) +
2(x− x∗)(y − y∗)

x∗2 b

+
2(x− x∗)(y − y∗)

x∗2 c− 2(y − y∗)2

y∗2
(d2 + h), (52)

= −XTAX. (53)

[ obviously for y ≥ y∗, e
−y
y0 y− be

y∗
y0 ≤ y− y∗. Also for y <

y∗, e
−y
y0 y − be

y∗
y0 < y − y∗ provided maximum recruitment

parameter y0 is less or equal to the equilibrium position for
mature fish population represented by y∗, which is very much
logical from the practical point of view.]
The above equation (52) is in quadratic Form. where

XT =

[
x− x∗

y − y∗

]
column matrix

and

A =

[
2(c+d1f(t))

x∗2 −( b
x∗2 + c

y∗2 )

−( b
x∗2 + c

y∗2 )
2(d2+h)

y∗2

]
. (54)
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If the matrix A defined on (54) is positive-definite, then the
coexisting equilibrium point is stable, and we can find the
range for the harvesting parameter. The following steps are
taken to show A is positive-definite.

a11 =
2(c+ d1f(t))

x∗2 > 0 always

and

if a11a22 − a12a21 > 0,

=⇒ 4(c+ d1f(t))(d2 + h)

x∗2y∗2
− (

b

x∗2 +
c

y∗2
) > 0,

=⇒ d2 + h >
(b+ c)2

4x∗2y∗2(c+ d1f(t))
− d2,

=⇒ h >
(b+ c)2

4x∗2y∗2(c+ d1f(t))
.

Thus, to globally stabilise the coexisting equilibrium point
(x∗, y∗) we have the range

(b+ c)2

4x∗2y∗2(c+ d1f(t))
< h <

cb

c+ d1f(t)
− d2. (55)

III. RESULTS AND DISCUSSION

This paper presents and analyzes a fish population model
with a two-stage structure and time-varying mortality rates.
The model differentiates between immature and mature fish
stages. We first establish the existence of equilibrium points
and then investigate their stability from both local and global
perspectives. To illustrate the model’s behavior, we perform
numerical simulations using the Mathematica programming
language, demonstrating the system’s dynamics and out-
comes.

Fig. 1 presents the phase diagrm of the system for the set
of parameter values d1 = 0.1, d2 = 0.01, c = 0.5, y0 =
5, τ = 1, h = 0.5, b = 10. This clearly shows that all
solutions ultimately stabilizes to the coexisting equilibrium
point, which we intend to.

Fig. 2 presents the time series plot of the immature
fish population for the parameter values d1 = 0.1, d2 =
0.01, c = 0.5, y0 = 5, τ = 1, h = 0.5, b = 2. The graph
shows oscillations within a small range of values.

Fig. 3 presents the time series plot of the mature fish
population for the parameter values d1 = 0.1, d2 = 0.01, c =
0.5, y0 = 5, τ = 1, h = 0.5, b = 2. The graph shows a very
little oscillation and almost stabilizing nature.

Fig. 4 presents the time series plot of the immature fish
population for the parameter values d1 = 0.1, d2 = 0.01, c =
0.5, y0 = 5, τ = 1, h = 0.5, b = 10. The graph Shows
increasing first then decreasing nature and then oscillations.

Fig. 5 presents the time series plot of the mature fish
population for the parameter values d1 = 0.1, d2 = 0.01, c =
0.5, y0 = 5, τ = 1, h = 0.5, b = 10. The graph shows no
oscillations at all and stabilizes to a fixed value.

Fig. 6 presents the time series plot of the immature fish
population for the parameter values d1 = 0.1, d2 = 0.01, c =
0.5, y0 = 5, τ = 1, h = 0.5, b = 100. The graph shows
increasing then decreasing and again increasing nature and
then oscillations but the length of oscillations interval is less
now.

Fig. 7 presents the time series plot of the mature fish
population for the parameter values d1 = 0.1, d2 = 0.01, c =
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Fig. 1. Phase portrait of the fish population model for parameter values
d1 = 0.1, d2 = 0.01, c = 0.5, y0 = 5, τ = 1, h = 0.5, b = 10
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Fig. 2. Time series plot of immature fish population x with respect to time
t for parameter values d1 = 0.1, d2 = 0.01, c = 0.5, y0 = 5, τ = 1, h =
0.5, b = 2
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Fig. 3. Time series plot of mature fish population y with respect to time
t for parameter values d1 = 0.1, d2 = 0.01, c = 0.5, y0 = 5, τ = 1, h =
0.5, b = 2
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Fig. 4. Time series plot of immature fish population x with respect to time
t for parameter values d1 = 0.1, d2 = 0.01, c = 0.5, y0 = 5, τ = 1, h =
0.5, b = 10
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Fig. 5. Time series plot of mature fish population y with respect to time
t for parameter values d1 = 0.1, d2 = 0.01, c = 0.5, y0 = 5, τ = 1, h =
0.5, b = 10
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Fig. 6. Time series for immature fish population at d1 = 0.1, d2 =
0.01, c = 0.5, y0 = 5, τ = 1, h = 0.5, b = 100
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Fig. 7. Time series for mature fish population at d1 = 0.1, d2 = 0.01, c =
0.5, y0 = 5, τ = 1, h = 0.5, b = 100
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Fig. 8. Bifurcation diagram for immature fish population with respect to
the control parameter as the reproduction rate ”b”

0.5, y0 = 5, τ = 1, h = 0.5, b = 100. The graph shows stable
nature.

It is noticed from the time series plots that the reproduction
rate ”b” plays an important role in the dynamics of the
system. This forces us to investigate the bifurcation diagram
taking the reproduction rate ’b’ as the controlling parameter.

Fig. 8 presents the bifurcation diagram for the immature
fish population corresponding to the control parameter ”b”.
The unstable branches are represented by red colour and
green colour represents the stable branch. It is seen from

.............. ..............

.............
.............

.............
.............

.............
..............

..............
..............

..............
........
......

........

......
........
......

.......

......
........
......

........

......
........
......

.......

.......

.......

.......

.......

.......

......

.......

......

.......

......

.......

......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

.......

.......

......

........

*******

***

**********

**********
**********
**********
**********
**********
********** **********

********** **********
********** **********

********** **********
********** **********

********** ********** **********
********** ********** **********

********** ********** **********
********** ********** ********** **********

********** ********** ********** **********
********** ********** ********** ********** **********

********** ********** **********

Unstable Branch

Stable Branch 

. . . . . . .

* * * * * *

0 5 10 15 20 25 30

0

2

4

6

8

10

12

b- Reproduction rate of fish

y
-

M
a

tu
re

fi
s
h

p
o

p
u

la
ti
o

n
Fig. 9. Bifurcation diagram for mature fish population with respect to the
control parameter as the reproduction rate ”b”
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Fig. 10. Bifurcation diagram for immature fish population with respect to
the control parameter as the harvesting rate ”h”

the diagram that there are many unstable branches and only
one stable branch, which confirms that in the long run the
system stabilizes to a single point whatever time in the
year is considered for harvesting; provided the permissible
harvesting parameter range is ensured.

Also from the time series plots it is seen that the system
stabilizes earlier for higher values of ”b”.

Fig. 9 presents the bifurcation diagram for the mature fish
population with respect to the control parameter ”b”.

Fig. 10 and Fig. 11 presents the bifurcation diagram for the
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Fig. 11. Bifurcation diagram for mature fish population with respect to
the control parameter as the harvesting rate ”h”

immature and mature fish population taking the harvesting
parameter as the control parameter fixing the reproduction
rate ”b=7”. This figures again confirms the fact that in long
run the system stabilizes to a single value.

A. Limitations

This model does not account for mortality arising from
sudden environmental changes or predation. To enhance
its realism, future work could incorporate environmental
variables, account for predation by other species, or include
additional stages in the species’ life cycle.

IV. CONCLUSIONS

In this paper, we propose a two-stage structured fish
population model that incorporates a time-dependent step-
function for mortality. Our analysis reveals that the range
of harvesting parameters required to maintain a sustainable
population—one that avoids extinction at any stage—greatly
depends on the timing of the harvesting activities. We ob-
serve that minimal harvesting is optimal when the mortality
rate is at its peak, which aligns with real-world observations.
Our findings are corroborated through numerical simulations
and illustrated with graphical representations.
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