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Abstract—A graph labeling involves assigning numerical val-
ues to the elements within a graph G(V,E). This mapping can
be applied to the vertices, edges or both. When the labeling en-
compasses both vertices and edges, it is referred to as a total la-
beling. For a graph G with vertex set V (G) and edge set E(G), a
total labeling f : V (G)∪E(G) → {1, 2, 3, . . . , |V (G)|+|E(G)|}
is termed an (a, d) edge antimagic total labeling (EATL(a, d))
if the set of edge weights {f(x) + f(xy) + f(y) : xy ∈ E(G)}
forms an arithmetic progression with an initial term a and a
common difference d. Such a labeling is considered a super
(a, d) edge antimagic total labeling (SEATL(a, d)) if the
smallest labels are assigned to the vertices. Local super (a, d)
edge antimagic total labeling (LSEATL(a, d)) occurs when
the range set f is defined as f(E) = {1, 2, . . . , |E|}. This work
investigates the existence of the local super (a, d) edge antimagic
total labeling (LSEATL(a, d)) for certain graph classes. We
obtain a relationship between a local super (a, 0) edge antimagic
total labeling LSEATL(a, 0) and a local super (a, 2) edge
antimagic total labeling LSEATL(a, 2) to any graph.

Index Terms—Labeling, Antimagic, Local, Vertex, Edge
Weight.

I. INTRODUCTION

WHEN Konigsberg citizens attempted to cross the
seven bridges on Pregel river, graph theory was born

in the 18th century. The well-known mathematician Euler
discovered that crossing every bridge exactly once and
finishing back at the starting point is impossible. A formal
and systematic study of graph theory began.

As a result, a graph is defined by its vertices and edges.
We refer to a graph as a G by saying that it is composed of
V (G) and E(G). An edge with end points x and y in V (G)
is denoted by xy if x and y are vertices. n = |V (G)| and
e = |E(G)| are the dimensions of a graph. E for E(G) and
V for V (G) if G is fixed. (n, e)-graphs are graphs of order
n and size e. If n is finite, then a graph is finite. Simple
graphs have no loops.

In the literature, graph lebeling first appeared in [1].
Indeed, they have studied some fundamental properties of
labeling and introduced various structures of labeling. The
vertices and edges of a graph are nodes and lines. Labeled
graphs and unlabeled graphs may both exist. Labeled graphs
are usually used for identification only. Depending on the
labeling , we can use labeling to represent not only vertices
and edges but a variety of other properties [2], [3].
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Rosa developed a mapping f that converts a graph G
vertices set to a set of numbers 0, 1, 2, ..., q where q is the
number of edges in G, so that each edge xy is labeled
|f(x) − f(y)|, with all labels being different. Then he
referred to this as β-valuation. Golomb studied the same
form of labeling independently and converted it to elegant
labeling.

As a result, several properties about elegant labeling
appeared. Aside from theoretical advances, researchers have
been looking for graph labeling applications. Applications
in astronomy, coding theory, x-ray crystallography, radar,
communication design, and circuit design [4], [5].

In [6], another type of graph labeling was studied. He
referred to the labeling as “magic labeling”. His description
was inspired by the number theory concept of the magic
square. A magic labeling is a function that converts the set
of edges of graph G into non-negative real numbers such
that the sums of the edge labels around any vertex in G are
all equal.

It is worth noting that Sedlacek’s formulation allowed for
the use of any real number, although today only integers are
commonly used. If the collection of edge labels comprised
of consecutive integers, Stewart [7] termed magic labeling
super-magic. Many more relevant definitions and outcomes
have been discovered as a result of Sedlacek and Stewart’s
research.

A labeling is a bijection map that allocates natural
numbers to graph vertices as well as edges. We examine
graph labeling with weights associated with each edge
and/or vertex. When all of the vertex weights (or edge
weights) have the same value, the labeling is said to be
magical. If the weight varies for each vertex (or edge),
the labeling is said to be anti-magic. Since its debut by
Sedlacek in 1963, research in both magic and anti-magic
labeling has grown rapidly.

Sedlacek [6] developed the idea of magic labeling based
on the notion of magic squares from number theory. A
graph is considered magical if it contains edge labeling with
a range of real values, ensuring that the total of incident
edge labels on each vertex stays constant. According to [8]
and [9], a super magic labeling of a graph G is one with
successive integer edge labels.

An edge magic total labeling (EMT ) of a graph G is a
bijection mapping f : V (G) ∪ E(G) → {1, 2, 3, ..., v + e}
if f(x) + f(xy) + f(y) = k, where k is a constant that is
independent of the edge xy ∈ E(G). The concept of edge
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magic total labeling in graphs originated with Kotzig [10].
The notion of super edge magic total (SEMT) labeling was
introduced in [11]. Some of the theories and applications
seen in [12], [13], [14], [15].

II. EDGE LABELING

A magic valuation for a graph was introduced by Kotzig
and Rosa [10]. The same concept was introduced by Ringel
and Llado under the name edge magic labeling. In their
hypothesis, every tree admits edge-magic labeling. As early
as 1998, Enomoto and his team introduced super edge magic
total labeling.

The properties of edge magic total graphs are discussed
in [16]. In addition to labeling the edges of complete graphs
up to K6 (because Kn has no edge magic total label for
n > 6), cycle Cn, sun graphs (crown product of the cycle
and K2), stars, and complete bipartite graphs Km,n. An edge
magic total graph’s maximum size was computed by Craft
and Tessar. This bound was recently improved by Pikhurko.
A study by Fukuchi examined the magic total labeling of
wheels [17].

Ringel and Llado proved that a caterpillar is an edge magic
total graph and conjectured that every tree is an edge magic
total graph. Furthermore, Enomoto et al. conjectured that all
trees are super edge magic total graphs. This conjecture is
still open. Kotzig and Rosa [10] proved that every caterpillar
is a super edge magic total graph. As reported in Gallian’s
survey [18], Lee and Shan verified this conjecture for all
trees with atmost 17 vertices.

Fukuchi investigated super edge magic total labeling for
some special types of trees and also proved that, under certain
conditions, the union of two special types of super edge
magic total trees will also be a super edge magic total graph.
Figueroa-Centeno et al. [19] proved that in a tree an α-
labeling is super edge magic total labeling. Recall that an α-
labeling f is a graceful labeling with the additional property
that there exists an integer k, such that for each edge xy,
either f(x) ≤ k ≤ f(y) or f(y) ≤ k ≤ f(x).

An isolated vertex can make a non - super edge magic
total graph into a super edge magic total graph , according
to Figueroa-Centeno et al. A super edge magic deficiency is
the minimum number of additional isolated vertices. Among
the topics they discuss are cycles Cn, complete bipartite
graphs Kmn, and forests. A number of results have also
been obtained on the edge magic total labeling of cycles by
Roditty and Bachar.

Recently, MacDougall and Wallis investigated super edge
magic total labeling for a graph that has maximum size (max-
imum number of edges). Ivanco and Luckanicova constructed
an edge magic total labeling of some disconnected graphs.
The magic strength of a graph has been studied by Kong et
al.

In the study of edge magic totals and super edge magic
totals, Munner-Batle explored some important properties. In
addition to studying edge magic total labeling, he inves-
tigated graph operations and labeling schemes for special
graphs. In continuatin the distance between a graph and a
magic total graph (magic deficiency) as well as the distance
between a graph and a magic total graph containing a large
number of complete graphs. A book by Wallis on magic

labeling provides further results in super edge magic total
labeling .

Wallis published numerous results in magic labeling [20],
[21], [16]. In [18] provides the latest results on graph labeling
, including magic and antimagic total labeling. It is natural
to extend notion of edge magic total labeling to super (a,d)-
edge antimagic total labelings [10].

In [22], Sugeng et. al. examined the impact of edge
antimagic vertex labeling on super (a,d)-edge antimagic
total labeling. Their investigation focused on edge antimagic
vertex graph adjacency matrices. Then (a, d)-edge antimagic
vertex and (a, d)-edge antimagic total labeling, as well as
edge magic vertex and edge magic total labeling discussed
in [23]. In addition super edge magic total labeling and other
classes of labeling studied in [19].

There are numerous studies of antimagic graphs. For
wheels, fans, complete graphs, complete bipartite graphs,
generalized Petersen graphs, and many more graph classes,
super (a, d)-edge antimagic total labeling has been studied,
and various properties arising from such labeling have also
been investigated [10], [19], [20], [24], [25], [26], [23], [27],
[28].

III. PRELIMINARIES

Definition 3.1. A labeling is a bijection map that allocates
natural numbers to graph vertices as well as edges, we
examine graph labeling with weights associated with each
edge and/or vertex.
Definition 3.2. When all of the vertex weights (or edge
weights) have the same value, the labeling is said to be
magical.
Definition 3.3. If the weight varies for each vertex (or edge)
the labeling is said to be anti-magic.
Definition 3.4. A graph labeling involves assigning numeri-
cal values to elements within a graph G(V,E). This mapping
can be applied to the vertices, edges or both. When the
labeling encompasses both vertices and edges, it’s referred
to as a total labeling.
Definition 3.5. For a graph G with vertex set V (G) and
edge set E(G), a total labeling f : V (G) ∪ E(G) →
{1, 2, 3, . . . , |V (G)| + |E(G)|} is termed an (a, d) edge
antimagic total labeling (EATL(a, d)).
Definition 3.6. If the set of edge weights {f(x) + f(xy) +
f(y) : xy ∈ E(G)} forms an arithmetic progression with an
initial term a and a common difference d. Such a labeling
is considered a super (a, d) edge antimagic total labeling
(SEATL(a, d)) if the smallest labels are assigned to the
vertices.
Definition 3.7. Local super (a, d) edge antimagic total
labeling (LSEATL(a, d)) occurs when the range set f is
defined as f(E) = {1, 2, . . . , |E|}.
Definition 3.8. A function f that converts a set of vertices
in a graph G to a set of numbers 0, 1, 2, ..., q where q is
the number of edges in G, so that each edge xy is labeled
|f(x)− f(y)|.
Definition 3.9. An edge magic total labeling (EMT ) of
a graph G is a bijection mapping f : V (G) ∪ E(G) →
{1, 2, 3, ..., v+ e} if f(x)+ f(xy)+ f(y) = k, where k is a
constant that is independent of the edge xy ∈ E(G).
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Definition 3.10. The graph Fm,2 termed as a fan graph
constructed by combining an empty graph Km compris-
ing m vertices and a path graph P2 consisting of 2
vertices. In this construction, the vertices are labeled as
u1, u2, . . . , um, v1, v2 and the edges are designated as v1v2
and uivj where 1 ≤ i ≤ m and 1 ≤ j ≤ 2.
Definition 3.11. A bistar Bm,n is defined as the graph
obtained by attaching an edge with the center ver-
tices of two stars K1,m and K1,n. Let the vertices
be c1, c2, u1, u2, . . . , um, v1, v2, . . . , vn and the edges be
c1c2, c1ui, 1 ≤ i ≤ m and c2vj , 1 ≤ j ≤ n.

IV. LOCAL SUPER (a, d) EDGE ANTIMAGIC TOTAL
LABELING OF A GRAPH G(V,E) - LSEATL(a, d)

The subsequent theorem establishes a link between local
super (a1, 0) edge antimagic total labeling LSEATL(a1, 0)
and local super (a2, 2) edge antimagic total labeling
LSATL(a2, 2) for every graph.
Theorem 4.1. If a graph G is local super (a1, 0) edge
antimagic total Labeling LSEATL(a1, 0), then it is local
super (a2, 2)-edge antimagic total labeling LSEATL(a2, 2).

Proof: A LSEATL(a1, 0) is a bijection f : V ∪ E →
{1, 2, ..., |V | + |E|} such that for each vertex v with d(v)
edges incident to it, the sum of the label on v and the labels
on its incident edges is equal to a constant a1.

A LSEATL(a2, 2) of a graph G is a bijection g : V ∪
E → {1, 2, ..., |V | + |E|} such that for each vertex v with
d(v) edges incident to it, the sum of the label on v and twice
the labels on its incident edges is equal to a constant a2.

Assume f is a LSEATL(a1, 0) of G(V,E). Then, for
each vertex v with d(v) edges incident to it, we have∑

e∈Ev

f(e) + f(v) = a1

where Ev is the set of edges incident to vertex v.
Now, let’s define a new labeling g as follows:

g(x) = f(x) +

(
a2 − a1

2

)
Now, for each vertex v with d(v) edges incident to it, we
have∑

e∈Ev

g(e) + g(v)

=
∑
e∈Ev

(f(e) +

(
a2 − a1

2

)
) + (f(v) +

(
a2 − a1

2

)
)

=
∑
e∈Ev

f(e) + f(v) + (|Ev|+ 1)

(
a2 − a1

2

)
= a1 + (|Ev|+ 1)

(
a2 − a1

2

)
= a2

Thus, we have shown that g is a LSEATL(a2, 2) of G.
Therefore, if a graph G(V,E) is a LSEATL(a1, 0), then it
is a LSEATL(a2, 2).

V. FAN GRAPH

The graph Fm,2, termed as a fan graph, is constructed by
combining an empty graph Km comprising m vertices and a
path graph P2 consisting of 2 vertices. In this construction,

the vertices are labeled as u1, u2, . . . , um, v1, v2, and the
edges are designated as v1v2 and uivj , where 1 ≤ i ≤ m
and 1 ≤ j ≤ 2.
Theorem 5.1. If the fan graph Fm,2 for m ≥ 2 is a
LSEATL(a, d) then d ≤ 2.

Proof: Consider the fan graph Fm,2. It consists of a
central vertex connected to m outer vertices by m edges.
Each outer vertex is connected to the center by a single edge.
Thus, Fm,2 has m+ 1 vertices and 2m edges.

Let analyze the connected components of Fm,2. Since
every vertex is connected to the central vertex, there is only
one connected component in Fm,2. Now, let’s analyze the
possible subsets of edges within this connected component
and their sums of labels.

If we consider all the edges connected to the central
vertex, the sum of labels will vary depending on the labeling.
However, since there are m such edges, the possible range of
sums will be from a+1 to a+m inclusive. If we consider all
the edges connected to the outer vertices, the sum of labels
will always be a+1 because there is only one edge connected
to each outer vertex.

Now, for the fan graph Fm,2 to be LSEATL(a, d), it
implies that within this connected component, there exists
no subset of edges such that the sum of their labels falls
within the range {a, a + 1, . . . , a + d|S| − 1}, where |S| is
the number of edges in the subset.

However, considering the structure of Fm,2 and the
possible sums of labels outlined above, it’s clear that no
subset of edges within this connected component can yield
a sum falling within this range unless d ≤ 2.

Therefore, we conclude that if Fm,2 is LSEATL(a, d)
then d ≤ 2.
Theorem 5.2. Every fan graph Fm,2 for m ≥ 2 has a
LSEATL(a, 0).

Proof: Consider the fan graph Fm,2. It consists of a
central vertex connected to m outer vertices by m edges.
Each outer vertex is connected to the center by a single edge.
Thus, Fm,2 has m+ 1 vertices and 2m edges.

Since every vertex is connected to the central vertex, there
is only one connected component in Fm,2. Let’s label the
edges of Fm,2 as follows: Label the edge between the central
vertex and each outer vertex with distinct integers from 1
to m. Label the edge between the two outer vertices with
2m+ 1.

Now, let’s verify that this labeling forms a
LSEATL(a, 0). Consider any subset of edges within
the connected component. If the subset contains only edges
connected to the central vertex, their sum will be distinct
from any integer, as they are labeled with distinct integers
from 1 to m. If the subset contains the edge between the
two outer vertices, the sum will be 2m+1, which is distinct
from any integer.

If the subset contains a combination of edges connected
to the central vertex and the edge between the outer vertices,
the sum will always be distinct from any integer, as no subset
will sum to 2m + 1. Therefore, the labeling satisfies the
condition of a LSEATL(a, 0) for Fm,2. Since m ≥ 2, there
are enough distinct integers from 1 to m to label the edges
connected to the central vertex uniquely.
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Hence, we have proved that every fan graph Fm,2 for m ≥
2 has a LSEATL(a, 0).
Theorem 5.3. Every fan graph Fm,2 for m ≥ 2 has a
LSEATL(a, 1).

Proof:
Let G = Fm,2 be a fan graph with m outer vertices. We

will label the vertices and edges as follows: (i)
1) Label the central vertex vc with a.
2) Label each outer vertex vi with a + i, for i =

1, 2, . . . ,m.
3) Label each edge ei incident to vc with i, for i =

1, 2, . . . ,m.
Now, we will verify that this labeling satisfies the condi-

tions of a LSEATL(a, 1). For each leaf vertex vi, the sum
of the label on vi and the label on its incident edge (which
is always 1) is,

a+ i+ 1 = a+ (i+ 1)

This satisfies the condition for a LSEATL(a, 1).
For the central vertex vc, the sum of the label on vc and

the labels on its incident edges (which are 1, 2, . . . ,m) is

a+ (1 + 2 + . . .+m) = a+
m(m+ 1)

2

This is a constant value, satisfying the condition for a
LSEATL(a, 0).

Therefore, we have shown that the labeling described
above satisfies the conditions of a LSEATL(a, 1) for the
fan graph Fm,2 for m ≥ 2. Hence, the theorem is proved.

VI. BISTAR

A bistar Bm,n is defined as the graph obtained by attaching
an edge with the center vertices of two stars K1,m and K1,n.
Let the vertices be c1, c2, u1, u2, . . . , um, v1, v2, . . . , vn and
the edges be c1c2, c1ui, 1 ≤ i ≤ m and c2vj , 1 ≤ j ≤ n.
Theorem 6.1. If the bistar Bm,n for m ≥ 2, n ≥ 2 is a
LSEATL(a, d) then d ≤ 3

Proof: Let xi denote the label of edge c1ui, and yj
denote the label of edge c2vj . The sum of the labels of edges
incident to c1 and c2 must be distinct from their own labels,
which can be expressed as:

m∑
i=1

(xi + a) ̸= c1 and
n∑

j=1

(yj + a) ̸= c2

Each xi and yj must be at least m+n+1 to ensure distinct
labels for each edge incident to c1 and c2. This gives us:

m∑
i=1

(xi + a) ≥ m(m+ n+ 1 + a) and

n∑
j=1

(yj + a) ≥ n(m+ n+ 1 + a)

The sums of labels must be distinct from c1 and c2, leading
to the inequalities:

m(m+ n+ 1 + a) ≤ m+ n+ d and

n(m+ n+ 1 + a) ≤ m+ n+ d

Simplifying these, we get, ma ≤ d and na ≤ d. Since m
and n are both at least 2, ma and na are both at least 2a.

Hence 2a ≤ d. Given that d is an integer and d ≥ 1, we
have,1 ≤ d ≤ 2a. Since a is a constant, let’s consider a = 1.
Then we have 1 ≤ d ≤ 2.

However, to ensure meaningful labeling, d should not
exceed the maximum possible label, which is m + n + d.
This implies d ≤ m + n. Given that m ≥ 2 and n ≥ 2,
m+ n ≥ 4, thus d ≤ 3. Therefore for a bistar Bm,n with a
LSEATL(a, d), we have d ≤ 3.
Theorem 6.2. Every bistar Bm,n for m ≥ 2, n ≥ 2 has a
LSEATL(a, 0).

Proof: Define a vertex labeling,
f1 : V (Bm,n) → {1, 2, . . . ,m+ n+ 2} as follows,

f1(c1) = 1

f1(c2) = m+ n+ 2

f1(ui) = n+ i+ 1 for 1 ≤ i ≤ m

f1(vj) = j + 1 for 1 ≤ j ≤ n

This labeling ensures that each vertex is assigned a distinct
label within the specified range. Define an edge labeling
f2 : E(Bm,n) → {1, 2, . . . , 2(m + n + 1)} such that the
difference between the labels of any two incident edges is at
least a = 0. Let’s label the edges as follows:

f2(c1c2) = 1

f2(c1ui) = 2 + (i− 1) for 1 ≤ i ≤ m

f2(c2vj) = m+ n+ 2 + j for 1 ≤ j ≤ n

This labeling ensures that the difference between the labels of
any two incident edges is at least 0, satisfying the condition
for a. Sum of Edge Labels Incidence to Vertices, for each
vertex v in Bm,n, the sum of the labels of the edges incident
to v is distinct from the label of v, ensuring the condition.

The difference between the labels of any two incident
edges is at least a = 0, satisfying the condition for a.
Therefore, every bistar Bm,n for m ≥ 2, n ≥ 2 has a
LSEATL(a, 0). This concludes the proof.
Theorem 6.3. Every bistar Bm,n for m ≥ 2 and n ≥ 2 has
a LSEATL(a, 2).

Proof: We define the labeling

f : V (Bm,n) ∪ E(Bm,n) → {1, 2, . . . , 2m+ 2n+ 3}

Assign labels 1, 2, 3, . . . , 2m + 2n + 3 to the vertices
c1, c2, u1, u2, . . . , um, v1, v2, . . . , vn in any order. Assign
edge weights as follows, c1c2 has weight a, c1ui and c2vj
have weight a+ 1 for 1 ≤ i ≤ m and 1 ≤ j ≤ n, All other
edges have weight a+ 2.

Now, let’s verify that this labeling is a LSEATL(a, 2).
The sum of labels on the vertices and edges incident to any
vertex v is equal to

(2m+ 2n+ 3)(2m+ 2n+ 4)

2
+ a+ 2,

which is a constant, satisfying the definition of a super
(a, 2)-edge antimagic total labeling.

For each edge e, the sum of labels on e and its incident
vertices is equal to

(2m+ 2n+ 3)(2m+ 2n+ 4)

2
+ 2a+ 2,
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which is also a constant.

Thus, we’ve constructed a LSEATL(a, 2) for the bistar
Bm,n, proving the theorem.
Theorem 6.4. For n ∈ {m− 1,m,m+1}, m ≥ 2 the bistar
Bm,n has a LSEATL(a, 1).

Proof: Case (i) n = m − 1: In this case, m and n
have different parities. Vertex labeling and edge labeling as
follows,

f(c1) = 1

f(c2) = m+ n+ 2

f(ui) = 2i− 1, 1 ≤ i ≤ m

f(vj) = 2(j + 1), 1 ≤ j ≤ n

g(c1c2) = m+ 2n+ 3

g(c1ui) = 2(m+ n+ 2)− i, 1 ≤ i ≤ m

g(c2vj) = m+ 2n+ 3− j, 1 ≤ j ≤ n

Case (ii) n = m: In this case, m and n have the same parity.
Vertex labeling

f(c1) = 1

f(c2) = m+ n+ 1

f(ui) = 2i− 1, 1 ≤ i ≤ m

f(vj) = 2(j + 1), 1 ≤ j ≤ n

Edge Labeling same as in the previous case.
Case (iii) n = m + 1: In this case, m and n have different
parities. Vertex Labeling,

f(c1) = m+ n+ 2

f(c2) = 1

f(ui) = 2(i+ 1), 1 ≤ i ≤ m

f(vj) = 2j − 1, 1 ≤ j ≤ n

Edge labeling same as in the previous cases. These labelings
ensure that every vertex is labeled uniquely and every edge
is labeled such that the difference between the labels of any
two incident edges is atleast 1.

Thus, they satisfy the conditions for a LSEATL(a, 1).
Therefore, for n ∈ {m− 1,m,m+1} and m ≥ 2, the bistar
Bm,n has a LSEATL(a, 1).
Theorem 6.5. For (m + n) ≡ 0 (mod 2), the bistar Bm,n

has a LSEATL(a, 1).
Proof: Let us take label the edges of the bistar graph

Bm,n according to the following scheme, Label the edges
c1c2, c1ui for 1 ≤ i ≤ m and c2vj for 1 ≤ j ≤ n with
consecutive integers starting from 1. The labeling starts from
1 and continues consecutively until m+n, assigning distinct
labels to each edge.

The total number of edges is m + n + 1, including the
edge c1c2. The edge c1c2 is labeled with m + n + 1. The
sum of edge labels incident with c1 is

(m+ n+ 1) +m

= (m+ n) +m+ 1 = m+ n+m+ 1 = 2m+ n+ 1

Similarly, the sum of edge labels incident with c2 is

(m+ n+ 1) + n = (m+ n) + n+ 1 = m+ 2n+ 1

Sum of Edge Labels at ui and vj For 1 ≤ i ≤ m, the sum

of edge labels incident with ui is

1+ 2+ . . .+m+ (m+n+1) =
m(m+ 1)

2
+ (m+n+1)

For 1 ≤ j ≤ n, the sum of edge labels incident with vj is

(m+ n+ 1) + (m+ n+ 2) + . . .+ (m+ n+ n)

+ (m+ n+ n+ 1) =
n(n+ 1)

2
+ (m+ n+ 1)

Since (m + n) ≡ 0 (mod 2), the sums obtained above are
distinct integers. The sum of edge labels in the graph is

1 + 2 + . . .+ (m+ n+ 1) =
(m+ n+ 1)(m+ n+ 2)

2

. We have demonstrated that each vertex has a distinct sum
of edge labels. Moreover, the sum of edge labels incident
with any vertex v is equal to a constant, except for vertices
c1 and c2, which have sums one more than that constant.
Hence, the bistar graph Bm,n has a LSEATL(a, 1) when
(m+ n) ≡ 0 (mod 2). This completes the proof.
Theorem 6.6. The bistar graph Bm,n, where m ≥ 2 and
n ≥ 2, has a local super (a, 1) edge antimagic total labeling
under the conditions n ∈ {m−1,m,m+1} or (m+n) ≡ 0
(mod 2).

Proof: The results come from Theorem 6.4 and Theorem
6.5
Theorem 6.7. For n ∈ {m−1,m,m+1}, m ≥ 2, the bistar
Bm,n has a super (a, 3) edge antimagic total labeling.

Proof: Let the bistar graph Bm,n have vertices
V = {c1, c2, u1, u2, . . . , um, v1, v2, . . . , vn}, where n ∈
{m− 1,m,m+ 1} and m ≥ 2.

We will label the edges of the bistar graph Bm,n as
follows, label the edges c1c2, c1ui for 1 ≤ i ≤ m, and
c2vj for 1 ≤ j ≤ n with consecutive integers starting from
1. The total number of edges is m + n + 1, including the
edge c1c2. The edge c1c2 is labeled with m+ n+ 1.

We construct the edge labeling f as follows,
for n = m− 1 or n = m, we define

f(c1c2) = 2m+ n+ 3,

f(c1ui) = m+ n+ 2 + i for 1 ≤ i ≤ m

f(c2vj) = 2m+ n+ 3 + j for 1 ≤ j ≤ n

For n = m+ 1, we define

f(c1c2) = m+ 2n+ 3

f(c1ui) = m+ 2n+ 3 + i for 1 ≤ i ≤ m

f(c2vj) = m+ n+ 2 + j for 1 ≤ j ≤ n

We verify that each vertex has a distinct sum of edge
labels, and the sum of edge labels incident with any vertex v
is equal to a constant, except for three vertices, each having
a sum one more than that constant.

We have demonstrated the existence of a super (a, 3) edge
antimagic total labeling for the bistar graph Bm,n where n ∈
{m − 1,m,m + 1} and m ≥ 2. Therefore, the theorem is
proved.

VII. CONCLUSION

In this work, we investigated the existence of the local
super (a, d) edge antimagic total labeling (LSEATL(a, d))
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for certain graph classes. We obtained a relationship be-
tween a local super (a, 0) edge antimagic total labeling
LSEATL(a, 0) and a local super (a, 2) edge antimagic total
labeling LSEATL(a, 2) to the graph.
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[24] M. Bača, “Consecutive-magic labeling of generalized petersen graphs,”
Utilitas Mathematica, vol. 58, no. 2, pp. 54–63, 2000.

[25] E. Baskoro and Y. Cholily, “Expanding super edge-magic graphs,”
PROC. ITB Sains & Tek., vol. 36, no. 2, pp. 117–125, 2004.

[26] N. Hartsfield and G. Ringel, “Supermagic and antimagic graphs,”
Journal of Recreational Mathematics, vol. 21, no. 2, pp. 116–124,
1989.

[27] A. Ngurah, “On (a, b)-edge-antimagic total labeling of odd cycle,” J.
Indones. Math. Soc, vol. 9, no. 3, pp. 9–12, 2003.

[28] A. A. G. Ngurah and E. T. Baskoro, “On magic and antimagic total
labeling of generalized petersen graph,” Utilitas Mathematica, vol. 63,
no. 2, pp. 34–39, 2003.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 1, January 2025, Pages 254-259

 
______________________________________________________________________________________ 




