
 

 
Abstract—In general, there are two acceptance strategies that 

are adopted in swarm-based metaheuristics. The first strategy is 
a stringent acceptance strategy where a solution candidate is 
accepted for replacement only if it improves the current 
solution. On the other hand, the second strategy is a loose 
acceptance strategy where a solution candidate is always 
accepted for replacement without considering the comparative 
quality between the candidate and the current solution. Despites 
the massive development of swarm-based metaheuristics, the 
investigation of the acceptance strategy is hard to find as many 
studies focused on assessing their proposed metaheuristics 
compared to the existing metaheuristics. Based on this problem, 
this work is aimed to investigate the performance of these 
acceptance strategies in the relation with the performance of the 
metaheuristics. Moreover, some conditional acceptance 
strategies where the worse candidate has an opportunity to 
replace the current solution are introduced and assessed. These 
strategies are implemented in two new swarm-based 
metaheuristics including golden search optimization (GSO) and 
total interaction algorithm (TIA). The result shows that the 
performance difference among these five acceptance strategies 
is not significant so that the key finding is that the acceptance 
strategy is not the key determinant for the performance of 
metaheuristics, especially the swarm-based ones in 23 classic 
functions and EED problem. Meanwhile, a mixed relation is 
found in engineering design problems. In the future, more 
studies to investigate the contribution of other factors that 
construct the metaheuristics is important. 

 
Index Terms—swarm intelligence, metaheuristic, acceptance, 

golden search optimization, total interaction algorithm. 
 

I. INTRODUCTION 

 ETAHEURISTIC is highly related to optimization 
works. Many optimization studies employed 

metaheuristics as optimization techniques after the model has 
been built due to several reasons. The first reason is that there 
are a lot of metaheuristics available to be utilized in various 
fields. The second reason is that metaheuristics are flexible 
[1] to be implemented in various fields of studies as they 
abstracts the problem formulation by focusing on the 
objective function and the constraints or boundaries. Third, 
metaheuristics utilize iterative and stochastic process [2] so 
that they are adaptive with environment with limited 

 
 

 

computational resources with the consequence that they do 
not guarantee the exact optimal solution but only the quasi-
optimal one [1]. 

Some studies were conducted by employing, improving, 
or combining the existing metaheuristics to solve practical 
optimization problems. The examples are as follows. Grey 
wolf optimizer and teaching learning-based optimization 
were combined to optimize the security of smart grid system 
[3]. Ant colony optimization (ACO) has been combined with 
independent component analysis (ICA) algorithm to reduce 
the noise of night vision image [4]. Harris hawk optimization 
has been improved to solve the problem of the non-line-of-
sight errors in the ultra-wide band light detection and ranging 
(LiDAR) system [5]. The popular marine predator algorithm 
(MPA) has been employed to solve various optimization 
works, such as power flow [6], structural damage detection 
[7], heat-power system [8], super capacitor model [9], and so 
on. The classic particle swarm optimization (PSO) has been 
employed in many optimization studies, such as timetabling 
[10], 5G network [11], big data clustering [12], fresh product 
distribution [13], image retrieval system [14], network 
reconfiguration [15], load shedding [16], energy management 
[17], and so on. grey wolf optimization (GWO) has been 
utilized to solve a lot of optimization works, such as task 
scheduling in cloud system [18], lung cancer classification 
[19], DC-DC boost converter, [20], and so on. 

On the other hand, there are also a lot of studies that focus 
on introducing new metaheuristics, especially based on 
swarm intelligence. These metaheuristics can be called as 
swarm-based metaheuristics. Some metaheuristics utilized 
the animal behavior as metaphors, such as walrus 
optimization algorithm (WaOA) [21], Komodo mlipir 
algorithm (KMA) [22], stochastic komodo algorithm (SKA) 
[23], marine predator algorithm (MPA) [24], coati 
optimization algorithm (COA) [25], pelican optimization 
algorithm (POA) [26], golden jackal optimization (GJO) [27], 
crayfish optimization algorithm (COA) [28], and so on.. 
Some metaheuristics exploit physical mechanism as 
metaphor, like swarm magnetic optimizer [29]. Some 
metaheuristics do not used metaphors so that the 
nomenclature is based on their main strategy, such as golden 
search optimization (GSO) [30], group better-worse 
optimization (GBWO) [31], total interaction algorithm (TIA) 
[32], fully informed search algorithm (FISA) [33], average 
subtraction-based optimization (ASBO) [34], three 
influential members based optimization (TIMBO) [35], 
ransom selected leader based optimization (RSLBO) [36], 
multiple interaction optimizer (MIO) [37], and so on. 
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In general, this massive studies on metaheuristics are 
conducted in two tracks. The first track is by introducing new 
metaheuristic whether it is constructed based on certain 
metaphor or free from metaphor. In this track, the proposed 
metaheuristic was assessed with standard theoretical sets of 
functions, such 23 classic functions or CEC series as primary 
optimization problem. In some studies, some additional 
engineering optimization problems were also added as 
complementary problems like mechanical engineering design 
problem [38]. The additional assessment is the sensitivity 
assessment. As an iterative based technique, an assessment 
with certain values of maximum iteration is conducted to 
observe the performance improvement due to the increase of 
maximum iteration.  

The second track is by employing the existing 
metaheuristic to solve practical optimization problem. This 
metaheuristic can be employed in its original form, the 
modified form, or the hybridized form. In general, the studies 
in this second track consists of two models. The first model 
is the model of the problem that consists of objective and 
constraints. The second model is the metaheuristic model 
whether it is the original or modified form. 

Despite massive development and implementation of 
metaheuristics, the assessment is conducted to assess the 
metaheuristic as a whole package. Meanwhile, in general, 
swarm-based metaheuristic is constructed by three aspects: 
searching strategy, swarm split, and the acceptance strategy. 
The searching strategy is constructed by three aspects: the 
type of searches, step size, and the random distribution. A 
new metaheuristic or the modification of the existing 
metaheuristics can be conducted by modifying one or 
multiple aspects. Unfortunately, studies which are dedicated 
to investigating these aspects in a more specific manner are 
hard to find.  

Based on this problem, this work is aimed at investigating 
the contribution of the acceptance strategies to the 
performance of the swarm-based metaheuristics. This work 
fills the gap in the metaheuristic development subjects where 
in general, the studies of metaheuristics focus on the 
introduction of new metaheuristics, modifying the existing 
metaheuristics, or employing the existing metaheuristics to 
solve practical optimization problems. 

The list of scientific contributions of this work is as 
follows. 

 This paper investigates the contribution the acceptance 
strategy to the performance of the swarm-based 
metaheuristics in the context of the quality of the final 
solution. 

 This paper compares five acceptance strategies 
including stringent acceptance strategy, loose 
acceptance strategy, and three conditional acceptance 
strategies. 

 This assessment is conducted by employing these 
strategies on two recent swarm-based metaheuristics. 

 This assessment is conducted by optimizing the 
theoretical optimization problems that are represented 
by the 23 classic functions and the practical 
optimization problem that is represented by the EED 
problem. 

The following sections of this paper are organized as 
follows. Section two presents the model of five acceptance 

strategies including the stringent acceptance strategy, loose 
acceptance strategy, and three conditional acceptance 
strategies. Section three presents the assessment of these 
strategies which are implemented in two new swarm-based 
metaheuristics in solving the theoretical optimization 
problems. Section four provides the discussion regarding the 
comprehensive analysis of the assessment result, findings, 
and limitations. Section five provides the concluding remarks 
and recommended paths for future studies. 

II. MODELS OF ACCEPTANCE STRATEGY IN SWARM-BASED 

METAHEURISTIC 

As mentioned previously, the acceptance strategy is a 
strategy to determine whether the solution candidate which is 
produced after the searching process will be accepted or 
rejected. In general, a solution candidate whose quality is 
better than the current solution will be accepted to replace the 
current solution. Meanwhile, there are several approaches 
that can be chosen in facing a solution candidate whose 
quality is worse than the current solution.  

There are five strategies that will be presented in this 
section. In the first strategy, a worse solution candidate is 
rejected for the replacement. In the second strategy, a worse 
solution candidate is still accepted for the replacement. In the 
next three strategies, the worse solution candidate still has 
opportunity for replacement based on a stochastic calculation. 
In the third strategy, a static threshold is set. If a generated 
random number is less than the threshold, then the worse 
solution candidate will be accepted. Otherwise, this solution 
candidate is rejected. In the fourth strategy, the threshold is 
not static but is obtained by dividing the iteration with the 
maximum iteration. In the fifth strategy, the threshold is 
obtained based on an exponential calculation of the iteration. 
Simulated annealing is the classic example of metaheuristic 
that employ conditional acceptance strategy. The summary of 
recent metaheuristics and their acceptance strategy is 
provided in Table 1. 
 

TABLE I 
LIST OF SEVERAL RECENT METAHEURISTICS AND THEIR ACCEPTANCE 

STRATEGY 
No Metaheuristic Metaphor Acceptance 

1 WaOA [21] walrus strict 
2 KMA [22] komodo loose 
3 GWO [39] grey wolf loose 
4 MPA [24] marine predator loose 
5 COA [25] coati strict 
6 POA [26] pelican strict 
7 GJO [27] golden jackal loose 
8 COA [28] crayfish strict 
9 GSO[30] - loose 
10 GBWO [31]  strict 
11 FISA [33] - strict 
12 ASBO [34] - strict 
13 TIMBO [35] - strict 
14 RSLBO [36] - strict 
15 SMO [29] magnet strict 
16 MIO [37] - strict 

 
The first strategy is a worse candidate is rejected for the 

replacement. This strategy is called a stringent acceptance 
model. This strategy is designed to avoid the swarm toward 
the worse solution. This concept means that only a better 
solution candidate can replace the current solution. This 
strategy also plays an important role in keeping the current 
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solution still around the optimal solution. This strategy is 
employed in many swarm-based metaheuristics, such as TIA 
[32], GBWO [31], WaOA [31], COA [25], and so on. 

The second strategy is a worse solution candidate is still 
accepted to replace the current solution. It means that the 
quality of the solution candidate is not considered for the 
replacement. This strategy is called a loose acceptance model. 
This strategy may lead the swarm toward the worse solution. 
On the other hand, this strategy becomes the answer in facing 
the local optimal problem. This strategy is employed in many 
swarm-based metaheuristics, such as MPA [24], GWO [39], 
GSO [30], GJO [27], and so on.  

In multimodal problems, there are multiple optimal 
solutions but only one global optimal solution. The other 
solutions are the local optimal solutions. This circumstance 
becomes the classic issue for metaheuristic development 
which employs stochastic approach so that not all solutions 
are traced. This issue can be called the local optimal 
entrapment where the solution is trapped in the local optimal 
solution so that the global optimal solution is never found. 
Sometimes, a swarm member should move to the worse 
solution to reach the global optimal solution or at least a better 
optimal solution.  

By employing the first strategy, a swarm member will 
never move from its current solution because a worse solution 
is not accepted. Meanwhile, by employing the second 
strategy, there is an opportunity that the global optimal 
solution will be found. But there is also the opportunity that 
the swarm member is thrown away to worse area within the 
space. The second strategy provides better exploration 
capability by giving better opportunity to trace to wider 
space. 

The next three strategies can be seen as a compromise 
between the first strategy and the second strategy. The worse 
solution candidate still can replace the current solution or 
swarm member. But this replacement is not guaranteed. 
These three strategies are conducted based on a certain 
stochastic calculation. In the third strategy, the iteration is not 
considered in the decision-making process. Meanwhile, the 
iteration is considered in the decision-making process in the 
fourth and fifth strategies. 

In the third strategy, a fixed threshold is determined. The 
value of the threshold ranges from 0 to 1. This value is static 
during the iteration. Then, each time a worse solution 
candidate is produced, a uniform random number from 0 to 1 
is generated. If the generated random number is less than the 
threshold, then this solution candidate is accepted. On the 
other hand, if the generated random number is higher than the 
threshold, the solution candidate is rejected. In this context, 
the higher the threshold means the easier the worse solution 
candidate to replace the current solution. In other words, a 
higher threshold represents the more space for exploration 
while a lower threshold represents the more space for 
exploitation. The visualization of this threshold is presented 
in Fig. 1. 
 

 
Fig. 1 The conditional acceptance strategy where the threshold is static 
during iteration. 

 

 
Fig. 2 The conditional acceptance strategy where the threshold increases 
linearly during iteration. 

 
In the fourth strategy, the threshold is dynamic. It is 

determined by dividing the iteration with the maximum 
iteration. If a generated uniform random number from 0 to 1 
is higher than the threshold, then the worse solution candidate 
is accepted to replace the current solution or swarm member. 
Otherwise, this worse solution candidate is rejected. Based on 
the calculation, the threshold will increase as the iteration 
goes on. When the iteration is equal to the maximum iteration 
then the value of the threshold is 1. This increase of the 
threshold is linear to the iteration. The visualization of the 
threshold relative to the iteration is presented in Fig. 2. This 
circumstance shows that the worse solution tends to be 
difficult to accept as iteration goes on. This circumstance also 
represents the linear shifting from exploration to exploitation 
which is controlled by the iteration. 

In the fifth strategy, the threshold is also dynamic. The 
difference between the fourth and fifth strategy is that the 
trend of the threshold follows the sinusoidal functions. As 
known in sine function, the input ranges from 0 to π/2 so that 
the output of the sine function ranges from 0 to 1. The input 
from 0 to π/2 moves from the iteration 0 to the maximum 
iteration. But the rise in the output is not linear as it rises faster 
but steadily faster too. As the input which is uniformly spread 
from 0 to π/2, the output is not uniform from 0 to 1. As the 
worse solution candidate is only accepted if a uniformly 
generated random number should be higher than the 
threshold, then this strategy also represents the shifting from 
the exploration to exploitation as iteration goes on, but the 
portion of the exploitation is higher than the exploration. The 
visualization of this trend in threshold is presented in Fig. 3. 
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Fig. 3 The conditional acceptance strategy where the threshold follows 
sinusoidal trend during iteration. 

  
This concept is then mathematically formalized using (1) 

to (5). In general, the current solution or swarm member is 
annotated using x while the solution candidate is annotated 
using c. The objective function is annotated using f. The 
iteration is annotated using t while the maximum iteration is 
annotated using tmax. In this paper, the optimization employes 
minimization so that the first entity is better than the second 
entity if its quality is less than the quality of the second entity. 

The model of the first strategy is presented using (1). As 
shown in (1), the solution candidate is accepted for 
replacement only if its quality is better than the current 
solution. Otherwise, the current solution is still used in the 
next iteration. 
 

𝑥ᇱ = ൜
𝑐, 𝑓(𝑐) < 𝑓(𝑥)

𝑥, 𝑒𝑙𝑠𝑒
               (1) 

 
The model of the second strategy is presented using (2). 

As shown in (2), the solution candidate becomes the next 
solution automatically. The comparative quality between the 
solution candidate and the current solution. 
 
𝑥ᇱ = 𝑐                     (2) 
 

The models of the third to fifth strategies are formalized 
using (3) to (5) consecutively. In every model, there are three 
cases. In the first and second cases, the solution candidate is 
accepted to replace the current solution. In the third case, the 
solution candidate is rejected. Meanwhile, in the first case, 
the solution candidate is accepted because it is better than the 
current solution. On the other hand, in the second case, the 
solution candidate is still accepted although its quality is 
worse than the current solution. 

𝑥ᇱ = ቐ

𝑐, 𝑓(𝑐) < 𝑓(𝑥)

𝑐, 𝑓(𝑐) ≥ 𝑓(𝑥) ∧ 𝑈(0,1) < 𝑇

𝑥, 𝑓(𝑐) ≥ 𝑓(𝑥) ∧ 𝑈(0,1) ≥ 𝑇
         (3) 

 

𝑥ᇱ =

⎩
⎨

⎧
𝑐, 𝑓(𝑐) < 𝑓(𝑥)

𝑐, 𝑓(𝑐) ≥ 𝑓(𝑥) ∧ 𝑈(0,1) >
௧

௧

𝑥, 𝑓(𝑐) ≥ 𝑓(𝑥) ∧ 𝑈(0,1) ≤
௧

௧

        (4) 

𝑥ᇱ =

⎩
⎨

⎧
𝑐, 𝑓(𝑐) < 𝑓(𝑥)

𝑐, 𝑓(𝑐) ≥ 𝑓(𝑥) ∧ 𝑈(0,1) > sin (
௧గ

ଶ௧
)

𝑥, 𝑓(𝑐) ≥ 𝑓(𝑥) ∧ 𝑈(0,1) ≤ sin (
௧గ

ଶ௧
)

      (5) 

 
 

algorithm 1: general model of swarm-based metaheuristic 
1 begin 
2  for all x in X 
3   perform random search 
4  end for 
5  for t=1 to tm 
6   for all x in X 
7    perform search 
8    employ acceptance strategy 
9   end for 
10  end for 
11 end 

 
The difference between (3) to (5) is mainly on the 

threshold that is employed. Equation (3) shows that the 
threshold is static. Equation (4) shows that the threshold is the 
division between the iteration and the maximum iteration. 
Equation (5) shows that the threshold is the sine value of the 
division of iteration with the maximum iteration relative to 
π/2. 

In general, the acceptance strategy is implemented during 
the iteration phase in the swarm-based metaheuristic. The 
acceptance strategy is not implemented in the initialization 
phase as the initial swarm member is generated for the first 
time in this phase. Meanwhile, in the iteration phase, the 
acceptance strategy is employed after a search is performed 
so that a solution candidate is generated. The illustration of 
general swarm-based metaheuristic can be seen in algorithm 
1. 

III. SIMULATION AND RESULT 

This section presents the evaluation of the five acceptance 
strategies. These five strategies are implemented into two 
new swarm-based metaheuristics: TIA and GSO. Both 
metaheuristics are chosen based on the reason that they 
employ different strategies. TIA employs stringent 
acceptance strategy which is the first strategy. On the other 
hand, GSO employs a loose acceptance strategy which is the 
second strategy. 

 
TABLE II 

 FUNCTIONS 
No Function Dim Space Target 
1 Sphere 30 [-100, 100] 0 
2 Schwefel 2.22 30 [-100, 100] 0 
3 Schwefel 1.2 30 [-100, 100] 0 
4 Schwefel 2.21 30 [-100, 100] 0 
5 Rosenbrock 30 [-30, 30] 0 
6 Step 30 [-100, 100] 0 
7 Quartic 30 [-1.28, 1.28] 0 
8 Schwefel 30 [-500, 500] -418.9 x dim 
9 Ratsrigin 30 [-5.12, 5.12] 0 

10 Ackley 30 [-32, 32] 0 
11 Griewank 30 [-600, 600] 0 
12 Penalized 30 [-50, 50] 0 
13 Penalized 2 30 [-50, 50] 0 
14 Shekel Foxholes 2 [-65, 65] 1 
15 Kowalik 4 [-5, 5] 0.0003 
16 Six Hump Camel 2 [-5, 5] -1.0316 
17 Branin 2 [-5, 5] 0.398 
18 Goldstein-Price 2 [-2, 2] 3 
19 Hartman 3 3 [1, 3] -3.86 
20 Hartman 6 6 [0, 1] -3.32 
21 Shekel 5 4 [0, 10] -10.1532 
22 Shekel 7 4 [0, 10] -10.4028 
23 Shekel 10 4 [0, 10] -10.5363 
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TABLE III 

ASSESSMENT RESULT ON HIGH-DIMENSION UNIMODAL FUNCTIONS EMPLOYED IN TOTAL INTERACTION ALGORITHM 
Function Parameters 1st strategy 2nd strategy 3rd strategy 4th strategy 5th strategy 

1 average 0.0007 0.0008 0.0008 0.0011 0.0009 
 average rank 1 2 2 5 4 

2 average 0.0000 0.0000 0.0000 0.0000 0.0000 
 average rank 1 1 1 1 1 

3 average 1.6352x101 0.6891 1.3463 2.0295 5.1403 
 average rank 5 1 2 3 4 

4 average 0.0536 0.0515 0.0480 0.0567 0.0426 
 average rank 4 3 2 5 1 

5 average 2.8887x101 2.8879x101 2.8928x101 2.8902x101 2.8909x101 
 average rank 2 1 5 3 4 

6 average 4.8238 6.1815 5.5080 4.9191 4.9320 
 average rank 1 5 4 2 3 

7 average 0.0246 0.2643 0.1571 0.0423 0.0291 
 average rank 1 5 4 3 2 

 
TABLE IV 

ASSESSMENT RESULT ON HIGH-DIMENSION MULTIMODAL FUNCTIONS EMPLOYED IN TOTAL INTERACTION ALGORITHM 
Function Parameters 1st strategy 2nd strategy 3rd strategy 4th strategy 5th strategy 

8 average -1.7235x103 -7.9077x101 -2.2674x102 -3.4851x102 -5.4454x102 
 average rank 1 5 4 3 2 

9 average 0.2274 0.0024 0.4727 0.0049 0.1002 
 average rank 4 1 5 2 3 

10 average 0.0082 0.0070 0.0065 0.0063 0.0064 
 average rank 5 4 3 1 2 

11 average 0.0058 0.0003 0.0231 0.0376 0.0104 
 average rank 2 1 4 5 3 

12 average 0.8331 1.2699 0.9418 0.8298 0.7599 
 average rank 3 5 4 2 1 

13 average 2.9868 3.1963 3.1925 3.0079 3.0702 
 average rank 1 5 4 2 3 

 
TABLE V 

ASSESSMENT RESULT ON FIXED-DIMENSION MULTIMODAL FUNCTIONS EMPLOYED IN TOTAL INTERACTION ALGORITHM 
Function Parameters 1st strategy 2nd strategy 3rd strategy 4th strategy 5th strategy 

14 average 9.2971 1.2494x101 1.2901x101 1.2296x101 1.1724x101 
 average rank 1 4 5 3 2 

15 average 0.0046 0.0215 0.0201 0.0088 0.0102 
 average rank 1 5 4 2 3 

16 average -1.0110 -0.8823 -0.9305 -0.9297 -0.8834 
 average rank 1 5 2 3 4 

17 average 3.7152 1.0673x101 4.1293 6.2493 4.3921 
 average rank 1 5 2 4 3 

18 average 1.8019x101 1.5933x102 5.1323x101 4.9869x101 3.5941x101 
 average rank 1 5 4 3 2 

19 average -0.0495 -0.0495 -0.0495 -0.0495 -0.0495 
 average rank 1 1 1 1 1 

20 average -2.3183 -0.1427 -0.6593 -0.7924 -1.2651 
 average rank 1 5 4 3 2 

21 average -2.8638 -0.4071 -0.8076 -1.1624 -1.7222 
 average rank 1 5 4 3 2 

22 average -3.2520 -0.4498 -0.9556 -1.2880 -2.1359 
 average rank 1 5 4 3 2 

23 average -2.5871 -0.4878 -1.1415 -1.4282 -2.0815 
 average rank 1 5 4 3 2 

 
TABLE VI 

ASSESSMENT RESULT ON HIGH-DIMENSION UNIMODAL FUNCTIONS EMPLOYED IN GOLDEN SEARCH OPTIMIZATION 
Function Parameters 1st strategy 2nd strategy 3rd strategy 4th strategy 5th strategy 

1 average 3.2741x104 3.0638x104 2.9921x104 3.5133x104 3.3750x104 
 average rank 3 2 1 5 4 

2 average 5.4966x1033 1.9847x1039 1.0752x1040 1.3509x1037 1.0121x1035 
 average rank 1 4 5 3 2 

3 average 7.4495x104 6.8453x104 6.4050x104 6.2790x104 5.6410x104 
 average rank 5 4 3 2 1 

4 average 6.6322x101 5.9451x101 6.2827x101 6.1360x101 5.8332x101 
 average rank 5 2 4 3 1 

5 average 6.3658x107 5.6605x107 7.5547x107 5.6301x107 6.2597x107 
 average rank 4 2 5 1 3 

6 average 3.0918x104 3.0686x104 2.8142x104 2.9104x104 3.2650x104 
 average rank 4 3 1 2 5 

7 average 3.1716x101 3.5224x101 3.0913x101 3.2721x101 3.7816x101 
 average rank 2 4 1 3 5 
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TABLE VII 
ASSESSMENT RESULT ON HIGH-DIMENSION MULTIMODAL FUNCTIONS EMPLOYED IN GOLDEN SEARCH OPTIMIZATION 

Function Parameters 1st strategy 2nd strategy 3rd strategy 4th strategy 5th strategy 
8 average -2.2367x103 -2.4113x103 -2.2784x103 -2.5789x103 -2.6385x103 
 average rank 5 3 4 2 1 

9 average 2.8053x102 2.6911x102 2.6911x102 2.7281x102 2.9245x102 
 average rank 4 1 1 3 5 

10 average 1.9174x101 1.9086x101 1.8545x101 1.8762x101 1.8979x101 
 average rank 5 4 1 2 3 

11 average 2.9647x102 3.0877x102 2.9908x102 3.1871x102 3.1614x102 
 average rank 1 3 2 5 4 

12 average 1.2575x108 1.0350x108 1.0867x108 1.1136x108 8.6555x107 
 average rank 5 2 3 4 1 

13 average 2.8087x108 2.1910x108 2.6117x108 2.2338x108 2.5367x108 
 average rank 5 1 4 2 3 

 
TABLE VIII 

ASSESSMENT RESULT ON FIXED-DIMENSION MULTIMODAL FUNCTIONS EMPLOYED IN GOLDEN SEARCH OPTIMIZATION 
Function Parameters 1st strategy 2nd strategy 3rd strategy 4th strategy 5th strategy 

14 average 3.6605x101 1.2402x101 2.2731x101 2.3156x101 1.3922x101 
 average rank 5 1 3 4 2 

15 average 0.0849 0.4188 0.0379 0.5161 0.1364 
 average rank 2 4 1 5 3 

16 average -0.7724 -0.6922 -0.6621 -0.8358 -0.9173 
 average rank 3 4 5 2 1 

17 average 2.2027 1.7329 2.3434 2.1649 1.8252 
 average rank 4 1 5 3 2 

18 average 9.0030x101 2.1156x101 1.0705x102 2.6793x101 7.6161x101 
 average rank 5 2 1 3 4 

19 average -0.0082 -0.0114 -0.0157 -0.0115 -0.0060 
 average rank 4 3 1 2 5 

20 average -1.8883 -2.1027 -2.2732 -2.0803 -1.8349 
 average rank 4 2 1 3 5 

21 average -1.5597 -1.8033 -2.1171 -1.4151 -1.7751 
 average rank 4 2 1 5 3 

22 average -1.1257 -2.3757 -2.2582 -1.5889 -1.6753 
 average rank 5 1 2 4 3 

23 average -1.5287 -2.4679 -2.1369 -2.1447 -2.0804 
 average rank 5 1 3 2 4 

 
 

In the first evaluation, the set of 23 classic functions is 
chosen as the optimization problems. This set is chosen as it 
covers various circumstances of optimization problems. It 
contains seven high dimension unimodal functions (HDU), 
six high dimension multimodal functions (HDM), and ten 
fixed dimension multimodal functions (FDM). A detailed 
description of these functions is presented in Table 2. The 
swarm size is 5 and the maximum iteration is 20. The 
threshold is set to 0.5. 

The result of the assessment is presented in Table 3 to 
Table 8. Table 3 to Table 5 exhibit the result where the 
metaheuristic is TIA. On the other hand, Table 6 to Table 8 
exhibit the result where the metaheuristic is GSO. There are 
two parameters observed in each table: the average fitness 
score and the average rank. 

Table 3 to Table 5 show that the stringent acceptance 
strategy performs the best in the first evaluation. It produces 
the best result in sixteen functions which can be distributed in 
four HDUs, two HDMs, and ten FDMs. On the other hand, 
the loose acceptance strategy produces the best result in six 
functions which can be distributed in three HDUs, two 
HDMs, and one FDM.  

In general, the performance difference among strategies 
is narrow. This narrow performance difference can be found 
in six HDUs, four HDMs, and ten FDMs. The wide 
performance difference can be found in f7, f9, and f11. 

The result of the second evaluation also shows that the 
stringent acceptance strategy is not so dominant as in the first 

evaluation. The first to fifth strategies provide the best result 
in 2, 6, 9, 1, and 5 functions respectively. Moreover, the 
performance difference among the five acceptance strategies 
is narrow in 22 functions. The wide performance difference 
occurs only in f15. 
 

TABLE IX 
ASSESSMENT RESULT ON EED PROBLEM IN TOTAL INTERACTION 

ALGORITHM 

Strategy 
Total Cost (IDR/hour) 

pd = 12,228 MW pd = 13,108 MW 
1st strategy 21,130,047,367 23,456,590,460 
2nd strategy 22,049,290,048 24,208,747,198 
3rd strategy 21,810,359,021 24,000,454,685 
4th strategy 21,427,325,392 23,649,622,928 
5th strategy 21,317,966,725 23,699,068,075 

  
TABLE X 

ASSESSMENT RESULT ON EED PROBLEM IN GOLDEN SEARCH 

OPTIMIZATION 

Strategy 
Total Cost (IDR/hour) 

pd = 12,228 MW pd = 13,108 MW 
1st strategy 22,083,441,218 24,141,855,544 
2nd strategy 21,917,531,019 24,034,430,994 
3rd strategy 21,966,035,832 24,381,204,827 
4th strategy 22,370,867,986 24,045,912,344 
5th strategy 22,341,984,211 24,311,585,049 
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TABLE XI 
ASSESSMENT RESULT ON ENGINEERING DESIGN PROBLEMS USING TOTAL INTERACTION ALGORITHM 

Strategy 
Optimal Score 

Pressure Vessel Speed Reducer Welded Beam Spring 
1st strategy 1.1526x101 3.5797x103 7.7874x109 1.8387x101 
2nd strategy 3.8225x1012 3.6660x103 8.0026x1012 8.9294x102 
3rd strategy 5.9537x1011 3.6050x103 2.6313x1011 1.4363x102 
4th strategy 4.1380x1012 3.6711x103 9.1442x1012 9.8231x102 
5th strategy 4.2430x1012 3.6544x103 9.2001x1012 1.5546x103 

 
TABLE XII 

ASSESSMENT RESULT ON ENGINEERING DESIGN PROBLEMS USING GOLDEN SEARCH OPTIMIZATION 

Strategy 
Optimal Score 

Pressure Vessel Speed Reducer Welded Beam Spring 
1st strategy 1.6805x106 3.8554x103 4.8900x109 4.0148x101 
2nd strategy 2.1342x106 3.8595x103 7.8645x1010 4.6500x101 
3rd strategy 1.7974x106 3.8605x103 1.4328x1010 4.3449x101 
4th strategy 2.5664x106 3.8800x103 2.9640x1010 3.6004x101 
5th strategy 2.3248x106 3.8779x103 7.2907x109 3.9250x101 

 
In the second use cases, the economic emission dispatch 

(EED) problem represents the constrained problem. EED 
problem is an optimization problem which is the variance of 
economic load dispatch (ELD) problem. Its objective is to 
minimize both operational cost and emission reduction cost 
of a power system that consists of a certain number of power 
plants or generating units. Each generating unit provides 
power within its own power range while these generating 
units work collectively to meet the power demand where the 
accumulated power of all generating units should be equal to 
the power demand. 

In this work, the use case is a grid system in Indonesia 
named Java-Bali electricity system which is the biggest grid 
system in Indonesia. This system comprises eight generating 
units where six of them are thermal units while the two others 
are hydro-power units. The specification of this system 
including the power range, cost function constants, and the 
cost function can be found in [40]. There are two power 
demands that should be met, which are 12,228 MW and 
13,108 MW. The result is presented in Table 9 and Table 10. 
Table 9 provides the result where TIA is chosen as 
metaheuristic while Table 10 provides the result where GSO 
is chosen as metaheuristic. 

Table 9 shows the tough competition among strategies in 
both power demand scenarios when TIA is chosen. In the first 
power, the first strategy becomes the best performer in both 
power demand scenarios. On the other hand, the second 
strategy becomes the worst performer in both power demand 
scenarios. 

The tough competition also occurs when GSO is chosen 
as the metaheuristic as presented in Table 10. In the first 
power demand scenario, the second strategy becomes the best 
strategy while the fourth strategy becomes the worst strategy. 
Meanwhile, in the second power plant scenario, the second 
strategy becomes the best strategy while the third strategy 
becomes the worst strategy. 

The third use case is four engineering design problems. 
These problems include pressure vessel design problem, 
speed reducer design problem, welded beam design problem, 
and spring design problem. These four engineering design 
problems are constrained optimization problems. Meanwhile, 
in this third use case, the quadratic penalty function is 
implemented so that certain penalty is added to the objective 
function as consequence for constraint violation. A detailed 
description of these four engineering design problems can be 
found in [25]. Meanwhile the result of this assessment is 
provided in Table 11 for TIA and Table 12 for GSO. 

Table 11 reveals that the first acceptance strategy 
becomes the best option for TIA in handling four engineering 
design problems. This first strategy provides the best result 
compared to other strategies in four problems. The 
performance gap between the first strategy and the other four 
strategies in the pressure vessel design problem is very wide. 
Meanwhile, the gap among the other strategies in this 
problem is narrow. It can be said that there are two clusters in 
this pressure vessel design problem. The first cluster consists 
of the first strategy while the second cluster consists of the 
second to fifth strategies. Contrast circumstance occurs in the 
speed reducer design problem. In this second problem, the 
performance gap among the five strategies is narrow. The 
performance gap between the first strategy and other 
strategies is wide in welded beam design problem. This 
circumstance is like the first problem. But the distance 
between the first cluster and the second cluster is not so far as 
the first problem. The performance gap among the five 
strategies is wide in handling the spring design problem. But 
the performance gap between the best strategy and the worst 
strategy is not so wide as the first problem. Moreover, the 
distribution of the performance of these five strategies cannot 
be clustered as in previous problems.  

Overall, the result in Table 11 reveals that the stringent 
acceptance strategy plays a critical role in TIA in handling 
four engineering design problems with different critical 
levels. Meanwhile, accepting worse solution candidate with 
various scenarios as in the second to fifth strategies is not 
suitable for TIA. This significance is high in handling 
pressure vessel design problem, low or almost zero in 
handling speed reducer design problem, and moderate in 
handling both welded beam and spring design problems. 

Different circumstances are found in GSO as provided in 
Table 12. The performance gap between the best and worst 
strategies is not significant in all four engineering design 
problems. Meanwhile, the significance of these strategies is 
little bit moderate in handling welded beam design where the 
first strategy becomes the best strategy while the second 
strategy becomes the worst strategy. In this case, stringent 
acceptance is moderately better than loose acceptance. 

There are different levels of gap between TIA and GSO 
in handling engineering design problems. The best result of 
TIA is far better than the best result in GSO in handling 
pressure vessel design. Meanwhile, the worst result of TIA is 
far worse than the worst result in GSO. The performance of 
TIA and GSO tends to be equal in handling the speed reducer 
problem. In the welded beam design problem, the best result 
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in TIA is a little bit worse than GSO while the worst result in 
TIA is worse than GSO. In the spring design problem, the best 
result of TIA is better than the best result in GSO while the 
worst result of TIA is worse than the worst result in GSO. 

IV. DISCUSSION 

The evaluation result provides an important or key finding 
that the acceptance strategy is not the determinant factor of 
swarm-based metaheuristic. This result occurs in all 
assessments, whether the use case is a set of 23 functions or 
the EED problem. In other words, the contribution of the 
acceptance strategy in affecting the performance of swarm-
based metaheuristic is not significant. Moreover, by 
comparing the result in TIA and GSO, there are other factors 
that affect the performance difference between these two 
metaheuristics rather than the acceptance strategy.  

This result also raises a second finding regarding the 
shifting strategy from exploration to exploitation during 
iteration. As previously mentioned, the third, fourth, and fifth 
strategies are designed for this purpose. The objective of this 
shifting is to give opportunity for the optimization process to 
explore as wide as possible in the early iteration. 

On the other hand, the exploitation focus during the late 
iteration is designed to avoid the swarm member to be thrown 
away from the achievement so far so that the optimization 
should be restarted. This approach is conducted by several 
swarm-based metaheuristics such as MPA but in a different 
way. In MPA [24], this shifting is conducted by splitting the 
iteration into three equal frames and a specific search is 
performed in each frame. 

This third finding is that the type of problem does not have 
a relation with the chosen acceptance strategy in handling the 
23 standard functions. It is shown that all acceptance 
strategies perform similarly in general, whether the functions 
are unimodal or multimodal. It is also shown that the 
performance is similar whether the dimension is low as it is 
found in fixed dimension functions or high as it is found in 
high dimension functions. 

The fourth finding is that there is a mixed relation 
between the type of the problem and the chosen acceptance 
strategy in handling the engineering design problems. This 
relation depends on the metaheuristics that is chosen. In TIA, 
the stringent acceptance strategy performs the best in 
handling these engineering problems. The significance is 
high in handling pressure vessel, welded beam, and spring 
design problems. But the significance is low in handling 
speed reducer problem. On the other hand, the acceptance 
strategy plays a less significant role in GSO in all engineering 
design problems. 

There are several limitations in this study. First, this study 
employs only five acceptance strategies. Meanwhile, there 
are many unexplored conditional acceptance strategies. 
Second, there are only two swarm-metaheuristics chosen in 
this paper. Meanwhile, there are a lot of swarm-based 
metaheuristics that already exist and can be chosen as 
implementors. For example, future studies can be performed 
by changing the stringent acceptance strategy in WaOA [21], 
COA [25], and POA [26] with the loose or conditional 
acceptance strategy. Third, there are a lot of optimization 
problems, whether theoretical or practical ones, so that they 
cannot be accommodated in a single paper. There are other 

standard functions such as CEC series that can be used for 
additional evaluation. Moreover, there are a huge number of 
practical optimization problems where some of the problems 
are common, such as economic load dispatch problem (ELD) 
[41] and optimal power flow [42] which common in power 
system field, four engineering designs [38] which are 
common in mechanical field, and so on. Besides, there are 
also specific practical optimization problems that can be 
observed like vehicle routing problem [43], traveling 
salesman problem [44], vehicle scheduling [45], and so on. 

Future studies can also be conducted by combining 
acceptance with expanded adaptability. In general, 
adaptability can be defined as the ability to act based on the 
current condition or trend. The third to fifth acceptance 
strategies represent this adaptability. But there are a lot of 
various adaptive mechanisms that can be chosen which are 
related to the acceptance strategy. For example, in this paper, 
the decision is taken based on the solution candidate 
compared to the current solution. It is better if the trend is also 
concerned. Another action may be taken if the progress is too 
slow although improvement still takes place. 

Moreover, the observation can also be taken to the 
performance of the swarm contingent. In general, the 
acceptance strategy is taken based on the condition of only 
the related agent. It will be better if the decision is also taken 
based on the condition or performance of all agents, some 
agents, or other agents that are near the related agent. This 
approach can also be taken in future studies. 

V. CONCLUSION 

An investigation regarding various acceptance strategies 
in swarm-based metaheuristics has been performed in this 
paper. There are five acceptance strategies evaluated in this 
paper including the stringent acceptance strategy, loose 
acceptance strategy, and five conditional acceptance 
strategies. Two swarm-based metaheuristics which are total 
interaction algorithm and golden search optimization have 
been chosen as implementors. The 23 classic functions have 
been chosen as the unconstrained optimization problems. 
Meanwhile, the EED problem in Java-Bali power system has 
been chosen as the constrained optimization problem. The 
result shows that in general, the performance difference 
among the strategies is narrow i.e., not significant. This key 
finding highlights that the acceptance strategy is not the 
determinant factor in the performance of swarm-
metaheuristics in handling 23 classic functions and EED 
problem. Meanwhile, the acceptance strategy plays a 
significant factor for TIA in handling pressure vessel, welded 
beam, and spring design problems. Meanwhile, the 
acceptance strategy is not significant for TIA in handling the 
speed reducer problem. On the other hand, the acceptance 
strategy is not a significant factor for GSO in handling all four 
engineering design problems. 

There are four recommendations for future studies based 
on this work. First, future studies can be conducted by 
implementing these five acceptance strategies into more and 
various swarm-based metaheuristics. This track is important 
to provide a more comprehensive investigation regarding the 
relation between the acceptance to the performance of the 
swarm-based metaheuristics. Second, future studies can be 
conducted by investigating other factors that construct the 
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metaheuristics in the relation with the performance of the 
metaheuristics. This study is important to find the 
significance of these factors to the performance of 
metaheuristics. Third, future studies can also be taken by 
combining acceptance with the expanded adaptive strategy. 
Fourth, investigating or developing acceptance strategy that 
considers the circumstances of not only the related agent but 
the swarm or some agents is also interesting. 
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