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The Optimal Subset Estimation of Distributed
Redundant Data

Congfan Zhang, Guangbao Guo

Abstract—This paper discusses the issue of estimating the
optimal subset from redundant distributed data in the context
of the big data environment. A method based on LIC is
proposed, which can effectively extract useful information
from distributed redundant data and identify the optimal data
subset. Through a series of experiments, the paper verifies the
performance of the LIC method in improving data quality
and utilization efficiency, and evaluates its effectiveness. The
results show that the LIC method has significant advantages in
handling large-scale, high-dimensional and complex distributed
datasets.

Index Terms—distributed redundant data, optimal subset
estimation, LIC method, performance evaluation.

I. INTRODUCTION

ITH the continuous expansion of data scale, dis-

tributed data storage and processing have become
essential means for big data analysis. However, this data
processing method also poses the challenge of data re-
dundancy. Redundancy refers to the presence of duplicate
or similar information within the data, while distribution
signifies that the data is scattered across multiple sources
or databases. Redundant data not only occupies additional
storage space but also potentially leads to the waste of
computing resources and may even compromise the accuracy
of data analysis. Therefore, accurately estimating the optimal
subset of redundant distributed data is of significant practical
importance. This article employs LIC technology to analyze
the data in order to extract useful information from redun-
dant distributed data. LIC technology can comprehensively
consider the temporal and spatial distribution characteristics
of the data, thus enabling a more effective extraction of
redundant information.

A. Current Research Status

The development of redundant distributed data processing
has attracted significant attention. In the field of distributed
statistical inference, Guo et al. [7] introduced the LIC crite-
rion in their study, emphasizing its effectiveness in enhanc-
ing interval estimation within distributed systems. The LIC
criterion serves as a powerful methodology for identifying
the most informative subsets of data, which is particularly
important in scenarios with limited computational resources
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and data distributed across multiple locations. Guo [2] con-
ducted a comprehensive exploration of parallel statistical
computation, arguing that this approach provides a trans-
formative pathway for enhancing statistical inference. In his
paper titled “Parallel Statistical Computation and Statistical
Inference,” Guo discusses the growing demand for efficient
computational techniques in the context of increasingly large
and complex datasets.

The references Wang et al. [1], Guo et al. [3], Guo
et al. [4], Li et al. [5] and Guo et al. [8] serve as ma-
jor sources for other key studies on distributed statistical
inference. Reference J et al. [6] emphasizes research on
high-dimensional statistics, while references Guo et al. [9]
and Guo et al. [10] highlight studies on online learning
algorithms. References Song et al. [11] focus on inference
related to missing response variables. References Guo et
al. [12]-[14] explore knowledge related to parallel inference
and dynamic linear models. Overall, the literature reflects a
concerted effort to enhance statistical methodologies through
distributed computing, thereby paving the way for more
efficient and effective analyses of large-scale data.

B. Our Work

This article presents a practical and efficient method for
solving the problem of optimal subset estimation in redun-
dant distributed data. Firstly, we introduce the principles and
implementation details of the LIC criterion, as well as its
advantages in extracting redundant information. Secondly,
we present experimental results and performance evaluations
to verify the feasibility and superiority of this method
through actual data. Finally, we explore the application
prospects and future development directions of this method
in related fields. To validate the effectiveness of the method
presented in this article, a comprehensive set of experiments
was conducted. Firstly, we constructed a simulation data set
that simulates redundant distributed data of varying sizes,
dimensions, and distributions. Then, we applied the method
we proposed to process the simulation data and compared its
performance with existing methods. The experimental results
demonstrate that LIC exhibits significant advantages in han-
dling large-scale, high-dimensional, and complex distributed
data sets.

II. METHOD AND THEOREM
A. Notation

We define the the empirical covariance matrix A =

T

XIuthIOpt \nfopt where XIopt ~ anom Onlopt7 Topt |»

I,,; is optimal subsets indicate set function, >, is sym-
p . . . . . .Opt

metric and invertible matrix, X!,..., X™ert is independent

realizations, in addition 0 is Gauss distribution mean

NJIopt
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value matrix, R™%ertis a set of real numbers, a € R™ortis a
matrix on the set of n; . dimensional real numbers.

opt

B. Theorem and Proof

Theorem 1. The probability that the matrix

X1 XIT o /ni1,., belongs to the set SJr of symmetric and
positive definite matrices, where S = {AAT | A € R¥*P}
and A is a real-valued matrix, is unity. In other words, it
holds with certainty that XIothIY; " /n1,., is a symmetric
and positive definite matrix.

opt opt

opt

Proof of Theorem 1.

In this section, we capitalize on the fundamental principle
that sets residing in subspaces of dimensions lesser than their
ambient spaces possess a Gauss measure identically equal to
zero. This fundamental insight serves as the cornerstone of
our subsequent analysis.

The verification of symmetry is rather straightforward.
Consider the transpose operation applied to the given ex-
pression:

nIopt

nIopt
( > X XT> =— 3 (x.xn)"
Lopt ;=1 i=1

opt
Given that the transpose of a matrix product AB is
(AB)T = BT AT and noting that X} X; is symmetric (i.e.,
(XI'X;)T = X' X;), we have:

Mopt Mopt

72 XXT —ZXXT

Thus, the desired symmetry property is established.
We now turn our attention to the invertibility aspect,
initiating our discussion with the special case where d = 1.
In this one-dimensional setting, the probability that the
matrix ﬁ Z?j{“ X; X! fails to be invertible (i.e., is
singular) can be reformulated as follows:

L P Nopt
{ 3 XXT} {nll > (X)) —0}
opt i=1 opt ;1

Here, we have implicitly assumed that X; are scalar random
variables (as d = 1) and thus X; X reduces to (X;)2.

Given that the sum of non-negative terms can only be zero
if each individual term is zero, we have:

Pl iy (=0}
= P{(X;

2 = O,VZ e {13"'?n10pt}}

This probability is further bounded above by the probabil-
ity that any single term is zero, which, under the assumption
of non-degenerate Gaussian distributions for X;, is zero:

P{(X;)?=0,Vi} < P{(X1)?=0}=0

ny

Hence, the probability that the matrix Wlt S X XTI
is singular in the case d = 1 is zero, as deé)ired.

This concludes our proof of the invertibility and symmetry
properties under the specified conditions.

Consider now the scenario where d > 1. Take the first
k outcomes, denoted as X', ..., Xort. These vectors span

an affine subspace of dimension at most k within R™opt

Importantly, this affine subspace constitutes a null set under
any non-degenerate Gaussian distribution on R"™%rt

Next, we examine the probability of a specific event
related to these outcomes. Specifically, we consider
the probability that the sample covariance matrix,
ﬁ Zm"pt X; X}, is singular. This can be formulated as
follows:

nr

1
P

n Nopt
P {0 R\ (O, ) o (5 S XXE )0 = 0]

This simplifies to:

ot X XT}

=P min Z TX

n
a€R Topt \{O"Iopt} opt i=1

which is equivalent to saying that there exists a non-
zero vector a such that a is orthogonal to all X; for
t=1,...,n

Topt -

- P{aa € R"ort \ {0p, }:a Ll XZ}

opt
forall i € {1,...,n1,,,}.

Since the dimension of the affine subspace spanned by
X1, ..., X%rt is at most k (which is at most d — 1 in our
context, assuming k < d — 1), the probability of finding
such a non-zero orthogonal vector a is further bounded by
considering the case where k = d — 1:

R\ @05

forall i € {1,...,d}.

However, due to the properties of Gaussian distributions
and the fact that the Lebesgue measure dominates all non-
degenerate Gaussian distributions, we conclude that the event
described above—a non-zero vector a being orthogonal to
all X;—has probability zero. Hence:

Iopt
Z X X! =0
Mot i=1

This proves that affine subspaces of dimension at most d—

1 in R™ept are null sets under any non-degenerate Gaussian
distribution. (]

III. SIMULATION

A. Preparatory work

1) Index: To evaluate the accuracy of predictions in data
simulation, the MSE and MAE are utilized to measure the
difference between the true values and the estimated values.
The formulas for MSE and MAE, which quantify the errors,
are given as follows:

MSE = E(Y, —Y)®, MAE = E|Y, - Y.
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2) Redundant data preparation: We build the (X,Y) is
from the model Y; = X3 + ¢;, we can know X consists of
(X1,X5) and Y consists of (Y7,Y3). we can define as:

X1 = (X145) € R™*P Xy;5 ~ N(0,2).
Yi=X18+¢e1,n1 €(1,...,n—n,).
Xo = (Xgi5) € R"*P Xy, ~ F(X).

Yo =XofB+e9,n0 € (1,...,n,).

we can know 8 ~ Unif(0,2) and € = (e1,&2), where €1 ~
N(0,3),e5 ~ N(0,5), and run our simulation.

B. Simulation analysis

The steps of the simulation analysis include stability
analysis and sensitivity analysis. Stability analysis involves
observing the variations of n and p, while sensitivity analysis
focuses on the variations of K and n,. Then, selected
simulation data from three different distributions to conduct
experiments, resulting in the following three cases.

Case 1. X, = (X;;) € R"2%P, Xy;; ~ Po(6).

Scenario 1: Setting K = 10, p = 8, a = 0.05, n,, = 50,

vary n = 1000, 2000, 3000, 4000, 5000.

(a)

086

o | W LC & Lopt
| * lopt

N T e
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n n
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Fig. 1. Vary the value of n leads to changes in MAE and MSE.

From Figure 1, with fixed K, p, n,, and vary n, observe
that the trends of MAE and MSE are similar. Firstly, it is
evident that among LIC, Lopt and Iopt, LIC has the lowest
MAE and MSE, indicating the superior performance of the
LIC method. Subsequently, as n varies, we see an initial
increase in the curves. When n increases from 3000 to 4000,
MAE decreases from 0.212 to 0.156, while MSE decreases
from 0.152 to 0.088. However, as n further increases from
4000 to 5000, MAE increases from 0.156 to 0.171, and MSE
rises from 0.088 to 0.130. Therefore, we determine that the
optimal simulation state is achieved when n is set to 4000.

Scenario 2: Setting K = 10, n = 3000, o = 0.05, n, =
50, vary p = 8,9,10,11, 12.

From Figure 2, with fixed K, n, n,, and vary p, observe
that the trends of the MAE and MSE curves generated by
fitting are similar. However, the trend of the LIC curve is
decreasing. As p reaches 10, we can see that the values of
MAE and MSE reach their minima, which are 0.072 and
0.059, respectively. As p increases to 11, we find that MAE
and MSE change to 0.12 and 0.079, respectively. Therefore,
the optimal simulation state is achieved as p is set to 10.
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Fig. 2. Vary the value of p leads to changes in MAE and MSE.

Combining Scenario 1 and Scenario 2, the comparison
reveals that the MAE and MSE exhibit significantly sim-
ilar trends, both being smaller compared to the other two
algorithms (Iopt and Lopt). This demonstrates the good
stability of the LIC algorithm. Detailed numerical analyses
for Scenario 1 and Scenario 2 are provided below.

Scenario 3: Setting n = 6000, p = 8, a = 0.05, n,. = 50,
vary K = 5,10, 15, 20, 25.
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Fig. 3. Vary the value of K leads to changes in MAE and MSE.

From Figure 3, with fixed n, p, n, and vary K, observe
distinct differences in the trends of the MAE and MSE
fitting curves. Firstly, considering the MAE trend, it exhibits
a downward trend as K increases from 5 to 10, but then
an upward trend from 10 to 15. The specific MAE values
are 0.103, 0.174 and 0.046, respectively. As for the MSE
trend, the MSE curve generally displays a downward trend.
Notably, when K is 10, we identify it as an inflection point of
the downward trend, with an MSE value of 0.171. Therefore,
the optimal simulation state is achieved as K is set to 10.

Scenario 4: Setting n = 3000, p = 8, a = 0.05, K = 50,
vary n, = 30,40, 50, 60, 70.

From Figure 4, with fixed n, p, K, and vary n,., observe
that the trends of the MAE and MSE fitting curves are
similar. As n, changes from 40 to 50 and then to 60, the
degree of change is minimal. Specifically, the MAE values
are 0.072, 0.061 and 0.057, respectively, while the MSE val-
ues are 0.104, 0.099 and 0.095, respectively. However, as n,.
increases from 60 to 70, the MAE and MSE values change
significantly, to 0.057 and 0.099, respectively. Therefore, we
conclude that the optimal simulation state is achieved as n,
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Fig. 4. Vary the value of n, leads to changes in MAE and MSE.

is 60.

Combining Scenario 3 and Scenario 4, the values of
MAE and MSE for the LIC algorithm are relatively large,
indicating poor model performance. As K increases, an
inflection point emerges when K = 15, where the values of
MAE and MSE begin to decrease, and the performance starts
to improve. Observe the value of n,, performance starts to
enhance after n,. reaches 60. Detailed numerical analyses are
presented in Scenario 3 and Scenario 4.

In summary, we have obtained the optimal values for
each variable in fitting the Po distribution to the data. When
{n,p, K,n,} are set to {4000, 10,10, 60}, the LIC achieves
the best fitting state. Therefore, under these conditions, we
can obtain the optimal subset.

We simulate a data set following a Poisson distribution
with A = 6. This means that, on average, six events occur
in each time interval.

In the simulation process, we employ the LIC criterion
to assess the redundancy of the data. The LIC criterion is
a statistical method designed to determine the presence of
redundant variables within a dataset. It rests on the premise
that when two or more variables exhibit a high degree of
correlation, they are likely to be redundant.

In our simulation, we calculate the LIC value for the
dataset and utilized this metric to identify the presence
of redundant variables. We discovered that, in the Poisson
distribution with A = 6, all observations are independent,
indicating the absence of redundancy. Consequently, in this
particular simulation scenario, there are no redundant vari-
ables.

Our simulation results indicate that for the Poisson dis-
tribution with A = 6, the variables in the dataset are not
redundant. This is likely due to the fact that in this specific
Poisson distribution, each event is independent and there is
no dependency between events. However, this does not imply
that redundancy is absent in all Poisson distributions. In other
Poisson distributions, if the average incidence rate of events
is relatively high or low, or if there exists some form of de-
pendency between events, redundant variables may emerge.
Therefore, it is crucial to utilize the LIC criterion to evaluate
redundant variables in datasets in practical applications.
Through this simulation study, we have gained a deeper
understanding of how to apply the LIC criterion to assess
redundant variables in Poisson distributions. This aids us in
more precisely identifying and handling redundant variables

in actual data analysis, thereby enhancing the accuracy and
reliability of the analysis.
Case 2. X2 = (X”) € RnQXp, Xgij ~ 6%]7(3)

Scenario 1: Setting K = 10, p = 8, a = 0.05, n,. = 50,
vary n = 1000, 2000, 3000, 4000, 5000.
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Fig. 5. Vary the value of n leads to changes in MAE and MSE.

From Figure 5, with fixed K, p and n, and vary n,
observe that the trends of MAE and MSE are similar. As
the value of n increases, both MAE and MSE gradually
increase. Specifically, as n increases from 3000 to 4000,
we find that MAE decreases from 0.108 to 0.075, while
MSE also decreases from 0.137 to 0.099. However, as n
increases from 4000 to 5000, both MAE and MSE begin
to gradually increase again. Therefore, we conclude that the
optimal simulation state is achieved as n is set to 4000.

Scenario 2: Setting K = 10, n = 3000, o = 0.05, n, =
50, vary p = §,9,10,11, 12.

(a) (b)
© © |
o | W LC & Lopt P
| * lopt
< |
<t
o :
w w ©
< %)
= =
o |
o o
\’_./\1 ° \—A
o

9 10 11 12
p p

w
(]
-
o
-
=
Y
N
=]

Fig. 6. Vary the value of p leads to changes in MAE and MSE.

From Fig. 6, with fixed K, n, n, and vary p, observe that
the trends of MAE and MSE are similar. As the value of p
increases, the values of MAE and MSE gradually decrease.
As p reaches 9, both MAE and MSE reach their minimum
values, which are 0.033 and 0.039 respectively. However, as
the value of p continues to increase, the values of MAE and
MSE gradually increase. Therefore, the optimal simulation
state is achieved as p is equal to 10.

Combining Scenario 1 and Scenario 2, a comparison of the
MAE and MSE values among the three algorithms reveals
that they exhibit the same trend as n increases. Moreover,
the LIC algorithm yields the smallest MAE and MSE values,
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further confirming its excellent stability. Detailed numerical
analyses are presented in Scenario 1 and Scenario 2.

Scenario 3: Setting n = 3000, p = 8, a = 0.05, n,. = 50,
vary K = 5,10, 15, 20, 25.

(a) (b)
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Fig. 7. Vary the value of K leads to changes in MAE and MSE.

From Fig. 7, with fixed n, p, n, and vary K, observe that
the changing trends of MAE and MSE are similar. As K
varies from 5 to 10, MAE and MSE reach their minimum
values. However, as K increases from 10 to 15, MAE
and MSE begin to increase. As they reach their minimum
values, we can see that MAE and MSE are 0.045 and
0.091, respectively. Therefore, the optimal simulation state
is achieved as K is 10.

Scenario 4: Setting n = 3000, p = 8, a = 0.05, K = 50,
vary n, = 30,40, 50, 60, 70.
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Fig. 8. Vary the value of n, leads to changes in MAE and MSE.

From Fig. 8, with fixed n, p, K and vary n,., observe that
the changing trends of MAE and MSE are similar. As n,
gradually increases, MAE also gradually increases, decreases
slightly from 50 to 60, and gradually increases again from
60 to 70. Therefore, the optimal value of MAE is 0.088 as
n, is 60. MSE first decreases slightly and then increases,
gradually decreasing from 50 to 60 and gradually increasing
from 60 to 70. As a result, the optimal value of MSE is 0.132
as n,. is 60. Therefore, the best simulation state is achieved
as n,. is 60.

Combining Scenario 3 and Scenario 4, as the number of
partitions K increases, the performance of the LIC algorithm
initially deteriorates, reaching maximum MAE and MSE
values when K reaches 15. Subsequently, the performance
gradually improves. Comparative analysis reveals that the

best performance is achieved when K = 10. Meanwhile,
observing the nr value, optimal performance is also attained
when 7, = 60. In general, both the number of partitions K
and the variation of the parameter n, significantly impact
the overall performance of the model. Detailed numerical
analyses are provided in Scenario 3 and Scenario 4.

In summary, we have obtained the optimal values of
various variables for fitting data with the exponential dis-
tribution. When {n, p, K, n,.} are set as {4000, 10, 10,60},
the LIC reaches its best fitting state. Therefore, we can obtain
the optimal subset under these conditions.

To simulate this distribution, we first need to generate a
set of data. This data set will be based on the exponential
distribution with # = 3. Using this method, we can simulate
a random data set that conforms to specific parameter
settings.

In the simulation process, we employ the LIC criterion to
analyze the data. The LIC criterion is a method for evaluating
data redundancy, assisting us in determining whether there is
excessive duplicate information in the data set. By applying
the LIC criterion, we can gain insight into the structure and
patterns of the data set and decide whether data dimension
reduction or simplification processing is required.

The simulation results will indicate whether the data set
contains excessive redundant information. If the redundancy
is high, further processing of the data may be necessary to
reduce duplicate information. If the redundancy is low, the
data set may already be a relatively concise and effective
representation. Additionally, by comparing simulation results
under different parameter settings, we can gain a deeper
understanding of how parameters affect data redundancy.

In summary, by simulating data with an exponential distri-
bution and analyzing it using the LIC criterion, we can better
understand the level of data redundancy and take appropriate
measures accordingly. This is crucial during the data analysis
and preprocessing stages, as it helps us identify and address
unnecessary data redundancy, thus enhancing the efficiency
and accuracy of the analysis.

Case 3. X, = (X”) € anxp7 Xgij ~ NBZTL(lO, 1)

Scenario 1: Setting K = 10, p = 8, a = 0.05, n,. = 50,
vary n = 1000, 2000, 3000, 4000, 5000.
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Fig. 9. Vary the value of n leads to changes in MAE and MSE.

From Fig.9, with fixed K, p and n, and vary n, observe
that the trends of MAE and MSE are similar. As the value
of n increases, the values of MAE and MSE also gradually
increase. As n changes from 3000 to 4000, MAE decreases
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from 0.153 to 0.034, and MSE decreases from 0.131 to
0.056, reaching their minima. As the value of n continues
to increase, MAE and MSE gradually increase. Therefore,
we determine that the optimal simulation state is achieved
when 7 is set to 4000.

Scenario 2: Setting K = 10, n = 3000, o = 0.05, n,, =
50, vary p = 8,9,10,11, 12.
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Fig. 10. Vary the value of p leads to changes in MAE and MSE.

From Fig. 10, with fixed K, n and n, and vary p,
observe that the trends of MAE and MSE are similar. As
the value of p increases, both MAE and MSE initially
increase and then decrease. The minimum values of MAE
and MSE are achieved when p is 12, with values of 0.031
and 0.018, respectively. Therefore, the optimal simulation
state is achieved as p is set to 12.

Combining Scenario 1 and Scenario 2, the trends observed
for the three algorithms show slight variations but overall
consistency. Notably, the LIC algorithm consistently main-
tains the lowest MAE and MSE values compared to the other
two algorithms, which further demonstrates its excellent
stability. Detailed numerical analyses for both Scenario 1
and Scenario 2 are provided.

Scenario 3: Setting n = 3000, p = 8, a = 0.05, n,. = 50,
vary K = 5,10, 15, 20, 25.
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Fig. 11. Vary the value of K leads to changes in MAE and MSE.

From Fig. 11, with fixed n, p, n, and vary K, observe
that the change trends of MAE and MSE are similar. As the
value of K ranges from 5 to 10, MAE and MSE gradually
decrease. As the value of K ranges from 10 to 15, MAE and
MSE gradually increase. As the value of K is greater than
15, MAE and MSE show a decreasing trend. As the value

of K is equal to 10, MAE and MSE are 0.071 and 0.073,
respectively. Therefore, the best simulation state is achieved
when the value of K is 10.

Scenario 4: Setting n = 3000, p = 8, a = 0.05, K = 50,
vary n, = 30,40, 50, 60, 70.
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Fig. 12. Vary the value of n, leads to changes in MAE and MSE.

From Fig. 12, with fixed n, p, K and vary n,, observe
that the change trends of MAE and MSE are similar. We can
see that from 30 to 40, MAE and MSE gradually decrease,
and from 40 to 50, MAE and MSE gradually increase. We
believe that n,. achieves the best simulation effect at 40, with
MAE and MSE being 0.063 and 0.078, respectively.

Combining Scenario 3 and Scenario 4, the analysis of K
and n, reveals that the performance of the LIC algorithm
is significantly superior to the other two algorithms. For the
negative binomial distribution, the LIC algorithm achieves
optimal model performance when K = 10 and n, = 40.
This further underscores that both the number of partitions
K and the variation of parameter n, significantly influence
the overall performance of the model. Detailed numerical
analyses for both Scenario 3 and Scenario 4 are provided.

In summary, we obtain the optimal values of various vari-
ables for fitting the data with the negative binomial distribu-
tion. When {n, p, K, n,.} are respectively {4000, 12, 10,60},
the LIC achieves the best fitting state. Therefore, we can
obtain the optimal subset under this condition.

In the simulation process, we generate a random data set
with a negative binomial distribution. The size of the data set
is n, and each observation x originates from a latent random
variable Y, whose distribution parameters are r and p. In
the simulation, we simulate different shapes of the negative
binomial distribution by adjusting the values of r and p.

During the simulation, we apply the LIC criterion to
analyze the generated simulation data. Initially, we calculate
the similarity or correlation between each observation z and
the other observations in the data set based on the available
data. Subsequently, we utilize this similarity or correlation
information to assess the redundancy level within the data
set. Specifically, we evaluate the redundancy between differ-
ent data blocks by comparing their similarity or correlation.
If two data blocks exhibit high similarity or correlation, it
is considered that there is redundant information between
them.

Through simulation analysis, we reach some interesting
conclusions. Firstly, as the observations in the dataset come
from a negative binomial distribution with a larger r value,
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there is less redundant information in the dataset. This
is probably because a larger r value indicates that each
observation is more independent, without too much duplicate
information. Conversely, as r is small, there is more redun-
dant information in the dataset, as there is more duplicate
information between the observations. In addition, we also
found that when p is close to 1, there is less redundant
information in the dataset. This is because when p is close
to 1, each observation is more likely to succeed rather than
fail, thus reducing the occurrence of duplicate information.

By applying the LIC criterion, we can gain a better under-
standing of the redundant information in negative binomial
distribution datasets. This helps us better handle redundant
information in practical data analysis, such as improving data
usability and reliability through data dimension reduction
or simplified processing. Furthermore, this method can be
extended to other types of distributions and models, further
enriching our understanding and processing capabilities for
different types of data.

IV. CONCLUSION

In a distributed data environment, different data sources
may contain duplicate or highly correlated information,
which increases redundancy. Selecting the optimal subset can
reduce redundancy and improve the efficiency of estimation.
When selecting the optimal subset, the size of the subset
must be considered. A smaller subset may reduce redun-
dancy, but it may also lead to information loss or instability
in estimation. A larger subset may provide more information,
but redundancy will also increase. Therefore, there is an
optimal subset size that achieves a balance between estima-
tion redundancy and information content. Formulating clear
criteria for selecting the optimal subset is necessary. These
criteria should be determined by the fundamental properties
of the data, the goals of the analysis, and the accuracy
requirements for the estimation. Common criteria include
AIC, BIC, cross-validation, etc., which can help evaluate
the predictive and explanatory abilities of different subsets.

When determining the optimal subset, it is necessary
to choose an appropriate statistical model. The choice of
model should be based on the distribution of the data, the
dimensionality of the data, and the purpose of the analysis.
For example, linear regression, logistic regression, decision
trees, random forests, etc., may all be applicable in different
scenarios. In a distributed data environment, there may be
interactions between different data sources that affect the
selection of the optimal subset. Considering interactions can
help to more fully understand the relationships between data
and may reveal hidden patterns.As time passes, data may
change, requiring dynamic updating of the optimal subset.
Continuously monitoring changes in data and adjusting sub-
sets can ensure the timeliness and accuracy of estimation.
When selecting the optimal subset, consideration should be
given to the interpretability of the results. Complex models
or subsets that are difficult to interpret may limit their
application in decision-making. Balancing complexity and
interpretability is crucial.

Ensuring that the selected optimal subset has good gen-
eralizability is essential. Generalizability refers to a model’s
ability to perform well on new data. Appropriate validation
and cross-validation techniques can be used to assess and

improve a model’s generalizability. Proper data preprocess-
ing is crucial before selecting the optimal subset. This
includes cleaning up duplicates, missing or outlier values,
and possible feature scaling or normalization. These steps
can contribute to enhancing the accuracy and stability of the
estimation. For the selected subset, appropriate evaluation
metrics should be used for validation. These metrics should
be relevant to the analyzed problem and provide useful
feedback on model performance.

In summary, estimating an optimal subset for redundant
distributed data is a multifaceted problem that requires con-
sideration of the nature of the data, the purpose of analysis,
and statistical principles. By delving into these issues, more
accurate conclusions can be drawn and applied in practical
data analysis.

V. OUR FURTHER WORK

In practical applications, to enhance the realism and
accuracy of simulation results, we can flexibly set block
length and block number in an unconstrained manner, en-
abling the data to more accurately simulate actual situa-
tions. Simultaneously, based on our needs, we can replace
redundant distributions with alternative distributions, such as
high-dimensional models or probabilistic models, to better
adapt to different scenarios and requirements. This flexible
simulation approach can provide more meaningful references
and guidance for distributed data processing, assisting us in
better understanding and processing actual data.

In future work, we will further investigate the potential of
unconstrained settings for block length and block number in
simulations, as well as the substitution of redundant distribu-
tions with alternative ones. These adjustments will enhance
the flexibility of our method in handling distributed data.
Additionally, we will consider replacing existing models
with other types, including high-dimensional models and
probabilistic models, to broaden our application scenarios
and achieve more accurate results. Through these improve-
ments, we anticipate making more significant contributions
to the field of distributed data processing.

DATA AVAILABILITY

We have employed the LIC criterion to fit the relevant data
matrices of Poisson distribution, exponential distribution,
and negative binomial distribution respectively, thus simu-
lating distributed redundant data to study the optimization
of the LIC criterion for distributed redundant data. We have
packaged the implemented LIC criterion into an R package
called LIC, which is available for download at the following
URL: https://CRAN.R-project.org/package=LIC.
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