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Abstract − This paper is an optimal approach to the Inventory 

Model. Here, we estimate efficient inventory control for the 

supply chain process to balance customer demand, minimize 

costs, and promote sustainable practices. It is imperative to 

integrate a non-linear, time-dependent quadratic demand 

function and a judiciously designed delayed payment policy to 

formulate an efficient inventory model for a diminishing 

commodity. We aim to maximize inventory choices while 

considering the effects of variations in demand, deteriorating 

products, and the flexibility of delayed payment plans. And also, 

the study begins by formulating a mathematical model that 

captures the non-linear relationship between time-dependent 

quadratic demand and inventory management. The model 

considers the effect of product deterioration over time and 

introduces a delay payment policy to accommodate customers' 

financial preferences. The objective is to optimize the total 

inventory cost concerning different decision variables associated 

with delayed payments. 

 

   Index Term  − green inventory, deteriorating product, time-

dependent demand, delay payment, optimization, simulation-

based methods, total cost, and customer service. 
 

I. INTRODUCTION 
 

   Effective inventory management significantly contributes 

to the success of businesses as it directly influences customer 

satisfaction, operational expenses, and environmental 

sustainability. There is a growing emphasis on implementing 

green practices in various aspects of business operations, 

including inventory management. Green inventory 

management optimizes inventory decisions while 

considering the environmental impact and sustainable 

objectives. This paper focuses on developing an optimal 

green inventory, such as perishable goods, pharmaceuticals, 
and electronics. Businesses need to consider the impact of 

product deterioration in their inventory management 

strategies to minimize loss and ensure product quality. 

Additionally, customer demand for products often exhibits 

non-linear, time-dependent patterns due to certain factors 

such as seasonality, promotional activities, and market trends. 

Incorporating these non-linear demand patterns into 

inventory models can lead to more accurate forecasting and 

improved inventory control decisions. Furthermore, allowing 

customers to delay payment for their purchases can be an 

effective strategy for businesses to attract and retain 

customers.  
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   Providing a permissible delay payment option gives 

customers the flexibility to manage their cash flow while 

ensuring timely order fulfilment. However, businesses must 

carefully balance the financial implications of delayed 

payment with the costs associated with inventory holding, 

ordering, and potential stock-outs. This study aims to create 

an optimum green inventory model that tackles the issues of 

a deteriorating product, non-linear quadratic demand, and 

delayed payment.  The model aims to optimize the total 
inventory cost concerning different decision variables such as 

holding costs, ordering costs, shortage costs, and penalty 

costs associated with delayed payments. 

   The proposed model will reduce waste, minimize 

environmental impact, and promote sustainability in 
supply chain operations by integrating green practices 

into the inventory management process. To achieve the 

research objective, a mathematical model has been 

formulated that captures the non-linear relationship between 

time-dependent quadratic demand, product deterioration, and 

delay payment policies. 

The model will be optimized using numerical optimization 

techniques and simulation-based methods. The proposed 

model will be validated through a case study in the relevant 

industry, providing practical insights and demonstrating the 

model's effectiveness in real-world scenarios. Y. Huang et al. 

[1] investigated optimizing pricing strategies and inventory 

replenishment decisions to maximize the supply chain's 

overall profit, considering consumer demand and potential 

lost sales. J. Zhang et al. [2] created appropriate pricing and 

lot-sizing rules that maximize the total profit of the supply 

chain while achieving the specified service level. S. Liu et al. 

[3] researched pricing and inventory control systems 

that maximize the overall profit, taking into account the 

deterioration rate of the item and the likelihood of 

backlogging. B. C. Giri et al. [4] considering the non-

instantaneous degradation rate of the products, it was 

explored to find the best values for these decision factors 

to maximize the overall profit. M. Ghahremanloo et al. [5] 

examined a novel method for creating a fuzzy inventory 

model for non-instantaneously deteriorating products with 

partial shortage backlogs. The goal is to create a cost-

effective inventory control plan that considers changes in 

demand and the potential for a partial backlog. S. D. Wu et 

al. [6] created to calculate the ideal price and lot-sizing 

options that maximize the overall profit, including the 

influence of stock-dependent demand and the potential of 

partial backlogging. S. S. Sana et al. [7] analyzed the ideal 

pricing and replenishment techniques to maximize overall 

profit, considering the dynamic nature of stock-dependent 

demand and the potential for partial backlog. I. Konstantaras 

et al. [8] developed pricing and inventory control rules 

that maximize the total profit, considering the deterioration 
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rate of the products and the likelihood of partial backlogging. 

K. Arshinder et al. [9] examined the impact of stock-

dependent demand and the risk of partial backlogging to 

identify optimal pricing and inventory replenishment 

methods that enhance overall profit. The research specifically 

delved into price and inventory control for deteriorating 

items. S. Yang and J. Ma [10] analyzed the best inventory 

policies for non-instantaneous degrading products to discover 

the ideal replenishment and price options that maximize the 

overall profit, given the stock-dependent demand pattern and 

the risk of partial backlogging.  

   A. A. Taleizadeh et al. [11] developed the best 

replenishment plans for items that don't deteriorate instantly 

to find the best inventory control strategies that optimize total 

profit, taking into account the impact of demand that depends 

on stock levels and the possibility of partial back-ordering.  

Y. Niu and S. Wang [12] devised a production-inventory 

model tailored for deteriorating products, incorporating 
factors such as trade credit terms, the time value of money, 

inflation, and the perishable nature of goods. This model aims 

to identify optimal production and inventory replenishment 

strategies that maximize overall profit. X. Wang et al. [13] 

explored the determination of optimal price and inventory 

replenishment techniques that optimize total profit, 

considering stock-dependent demand patterns and the 

potential for partial backlogging. Their research emphasized 

optimal pricing and inventory control for non-immediately 

degrading items. In a study by R. N. Mishra et al. [14], 

optimal replenishment alternatives for non-instantaneous 

deteriorating items were established. Their approach 
leveraged stock-dependent demand to derive optimal 

inventory control strategies, considering the dynamic nature 

of stock-dependent demand and the time-varying 

deterioration rate. K. Eshghi et al. [15] created inventory 

models for deteriorating products to build optimum inventory 

control techniques that maximize the overall profit, 

incorporating the dynamic nature of stock-dependent 

demand, the potential of partial backlogging, and the effect of 

advance payments. G. Zhang and J. Zhang [16] examined 

pricing and replenishment decisions for items experiencing 

non-instantaneous deterioration. They focused on 
determining the most effective pricing and replenishment 

policies that optimize overall profit, considering the dynamic 

nature of stock-dependent demand and the likelihood of 

partial backlog. L. A. San José et al. [17] formulated pricing 

and replenishment policies for non-instantaneous 

deteriorating items to identify optimal strategies that 

maximize total profit. Their analysis considered the dynamic 

nature of stock-dependent demand, the potential for partial 

backlog, and various operational constraints. M. Y. Jaber and 

M. Bonney [18] addressed the escalating inventory 

replenishment model, devising optimal pricing and inventory 

control strategies that maximize overall profit while 
incorporating stock-dependent demand and the potential for 

partial backlog. H. Zhang and G. Zhang [19] the study delved 

into an optimal pricing and inventory model, addressing the 

optimal pricing and inventory choices for items experiencing 

non-instantaneous deterioration. This model considered 

factors such as stock-dependent demand and partial backlog, 

considering the influence of user evaluations. The study aims 

to identify the best price and inventory control tactics for 

maximizing overall profit while considering the dynamic 

nature of stock-dependent demand, the likelihood of partial 

backlog, and the influence of user evaluations. X. Yu and X. 

Wang [20] devised the pricing inventory to identify the ideal 

price and inventory control strategies that maximize the 

overall profit, incorporating the dynamic nature of stock-

dependent demand, the potential of partial backlogging, and 
the effect of carbon emissions legislation. Y. Huang and G. 

Q. Huang [21] delved into a numerical study to understand 

the influence of different parameters on the decisions and 

profits of the supply chain and its constituent members. Y. 

Huang and G. Q. Huang [22] devised that when product cost 

is more significant than a certain echelon, the chain members’ 

profits will increase as the market becomes more sensitive to 

the retail price. 

   The outcomes of this study will add to the current literature 

on green inventory management. They will assist firms in 

enhancing their inventory decisions while considering 

environmental sustainability and financial performance. By 

adopting a practical, optimal green inventory model, 

businesses can achieve cost savings, improve customer 

service levels, and reduce their carbon footprint, contributing 

to a greener supply chain. Overall, a comprehensive and 

practical approach is presented for managing deteriorating 

product inventory with non-linear time-dependent quadratic 

demand and allowable delay payment, emphasizing the 

importance of green practices in inventory management and 

highlighting the benefits of sustainable supply chain 
operations. 

II. DECISION PARAMETERS AND CONSIDERATION 

 

  The following notations are used: the ordering cost (r), the 

level of green inventory I(t) at t, the deterioration rate θ, the 

inventory purchase cost P, h denotes the holding cost, s 

denotes the shortage cost for stock out period, α denote 

opportunity cost, due to end sale, Ie denote the interest 

earned, and Ir denote the interest charges with    Ir ≥ Ie. 
Decision Variables 

M, T, T1, TC (T1, T), TC1 (T1, T), for T1≥M and TC2 (T1, T) 

for T1< M  

Research Focus 

  The proposed approach is validated using the automotive 

industry, where non-linear demand patterns and shortage 

situations are every day. The results demonstrate the 
quadratic demand non-linear approach over traditional linear 

models regarding inventory performance metrics, such as fill 

rate, customer satisfaction, and total inventory costs. 

         D (t) =   {
𝑎 + 𝑏𝑡 + 𝑐𝑡2;   0 ≤ 𝑡 < 𝑇1

𝑎                    ;  𝑇1 ≤ 𝑡 < 𝑇
 

Where a > 0, 0 < b < 1, 0 < c < 1 

 

III. MODEL FORMULATION 

 

  The optimal inventory control decisions are developed; 

numerical optimization techniques and simulation-based 

methods are utilized. Also, the optimization process seeks to 

find the optimal replenishment time, order quantity, and 

permissible delay period that minimizes the total cost while 

satisfying customer demand requirements are established. 

The Simulation-based method is employed to assess the 

robustness of the proposed model under various demand 

scenarios and evaluate its performance in real-world 

applications. 

   An optimal green inventory system is developed for a 

deteriorating product with quadratic demand considering 
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time-dependent and allows customers to delay payment 

within a specified period.  The Mathematical model that 

captures the non-linear relationship between time-dependent 

quadratic demand and inventory management is developed in 

the interval [0, T1).   
   Hence, in the interval [0, T1), the non-linear model is 

formulated as follows: 

dI(t)

dt
= {

−a − bt − ct2 − θI(t) ;  0 ≤ t ≤ T1

−
a

1+δ(T−t)
                       ;  T1  ≤ t ≤ T                      

(1) 

The inventory level is obtained as, 

𝐼(𝑡)𝑒𝜃𝑡 =  ∫(−𝑎 − 𝑏𝑡 − 𝑐𝑡2)𝑒𝜃𝑡  dt + 𝑐1 

Use the boundary condition I(T1) = 0 we get                 

𝐼(𝑡) =
𝑎𝜃2−𝑏𝜃+2𝑐

𝜃3
[𝑒𝜃(𝑇1−𝑡) −  1] −

2𝑐

𝜃2
[𝑇1𝑒𝜃(𝑇1−𝑡) − 𝑡] 

+
1

𝜃
[𝑇1(𝑏 + 𝑐𝑇1)𝑒𝜃(𝑇1−𝑡) − (𝑏𝑡 + 𝑐𝑡2)] 

For the interval [T1, T).we obtain 

𝐼(𝑡) =   
𝑎

𝛿
𝑙𝑜𝑔 𝑙𝑜𝑔[1 +  𝛿 (𝑇 − 𝑡)] +  𝑐2, 

I(t) =
𝑎

𝛿
[

𝑙𝑜𝑔(1 + 𝛿(𝑇 − 𝑡))

−𝑙𝑜𝑔(1 + 𝛿(𝑇 − 𝑇1))
] 

Hence, the change in non-linear demand we get, 

I(T)= 
aθ2−bθ+2c

θ3
[eθ(T1−t) −  1] − 

2c

θ2
[T1eθ(T1−t) − t] 

+
1

θ
[T1(b + cT1)eθ(T1−t) − (bt + ct2)];  0 ≤ t < T1 

a

δ
[
log(1 + δ(T − t)) −

log(1 + δ(T − T1))
] ; T1 ≤ t < 𝑇                                     (2) 

Various Inventory Costs by Using Non-Linear Demand 

Pattern  

Green Inventory Holding Cost Estimation 

HC =  h ∫ I(t)dt
T1

0
 

      = h {(aθ2 − bθ + 2c) (
eθT1  – 1

θ4
) −  

2cT1

θ3 eθT1 +

T1eθT1

θ2
(b + cT1) −

T1

6θ
(6a + 3bT1 +  2cT1

2)}                        (3) 

Estimation of Deterioration Cost 

DC = 𝑃𝜃 ∫ 𝐼(𝑡)𝑑𝑡
𝑇1

0
 

      = 𝑃𝜃 {(𝑎𝜃2 − 𝑏𝜃 + 2𝑐) (
𝑒𝜃𝑇1  – 1

𝜃4
) − 

2𝑐𝑇1

𝜃3 𝑒𝜃𝑇1 +

          
𝑇1𝑒𝜃𝑇1

𝜃2
(𝑏 + 𝑐𝑇1) −

𝑇1

6𝜃
(6𝑎 + 3𝑏𝑇1 +  2𝑐𝑇1

2)}              (4)  

Stock-Out Period Estimation of Shortage Cost 

SC = 𝑠 ∫ 𝐼(𝑡)𝑑𝑡
𝑇

𝑇1
 

      = 𝑠 {
𝑎

𝛿2
[𝛿(𝑇 − 𝑇1) − 𝑙𝑜𝑔 (1 + 𝛿(𝑇 − 𝑇1))]}                 (5) 

Estimation of Opportunity Cost 

OC = α ∫ (a −
a

1+δ(T−t)
) dt

T

T1
 

       = 
aα

δ
{δ(T − T1) − log (1 + δ(T − T1)) }                      (6) 

    Deterioration of products is a common phenomenon in 
industries such as perishable goods, pharmaceuticals, and 

electronics. Businesses need to consider the impact of product 

deterioration in their inventory management strategies to 

minimize losses and ensure product quality.   Additionally, 

customer demand for products often exhibits non-linear, 

time-dependent patterns due to seasonality, promotional 

activities, and market trends. Incorporating these non-linear 

demand patterns into inventory models can lead to more 

accurate forecasting and improved inventory control 

decisions. 

 Furthermore, allowing customers to delay payment for 
their purchases can be an effective strategy for businesses to 

attract and retain customers. Providing a permissible delay in 

payment option gives the customer the flexibility to manage 

their cash flow while ensuring timely order fulfilment. 

However, businesses must carefully balance the financial 

implications of delayed payment with the costs associated 
with inventory holding, ordering, and potential stock-outs. 

Therefore, the credit period M is estimated as the permissible 

delay in settling the accounts in two cases. 

Case1:𝑀 ≤  𝑇1 

Estimation of Interest Earned 

IE1 = 𝑃𝐼𝑒 ∫ (𝑇1 −  𝑡)(𝑎 + 𝑏𝑡 + 𝑐𝑡2)
𝑇1

0
𝑑𝑡 

      = 
𝑃𝐼𝑒 𝑇1

2

12
[6𝑎 + 2𝑏𝑇1 + 𝑐𝑇1

2]                                                (7)  

Estimation of Interest Payable 

Ip =𝑃𝐼𝑟 ∫ 𝐼(𝑡)
𝑇1

𝑀
𝑑𝑡  

      =  𝑃𝐼𝑟 {
𝑎𝜃2−𝑏𝜃+2𝑐

𝜃4
[𝑒𝜃(𝑇1−𝑀) + 𝑀𝜃 − (1 + 𝜃𝑇1)] −

 
2𝑐

𝜃3
[𝑇1(𝑒𝜃(𝑇1−𝑀) − 1) +

𝜃

2
(𝑀2 − 𝑇1

2)] +

 
1

𝜃2
[
𝑇1(𝑏 + 𝑐𝑇1)(𝑒𝜃(𝑇1−𝑀) − 1) +

𝑏𝜃

2
(𝑀2 − 𝑇1

2)

+
𝑐𝜃

3
(𝑀3 − 𝑇1

3)
]}            (8) 

 A combination of numerical optimization techniques 

and simulation-based methods is utilized to obtain 
optimal inventory control decisions. The 

optimization aims to establish the best replenishment time, 

order amount, and allowable wait duration to 

minimize overall cost while meeting client demand criteria. 

Simulation-based methods are employed to assess the 

robustness of the proposed model under various demand 

scenarios and evaluate its performance in real-world 

applications. The proposed optimal green inventory model is 

validated through the manufacturing industry's case study. 

The case study considers a deteriorating product with time-
dependent quadratic demand and allows buyers to postpone 

payment for a set amount of time. The results demonstrate 

that the proposed model leads to significant cost savings, 

improved customer service levels, and reduced 

environmental impact by promoting sustainable inventory 

management practices. The total system cost is as follows: 

TC1 = 
𝑟 + 𝐻𝐶 + 𝐷𝐶 + 𝑆𝐶 + 𝑂𝐶 + 𝐼𝑝− 𝐼𝐸1

𝑇
                                 (9) 

           = 
1

𝑇
{𝑟 + ℎ {(𝑎𝜃2 − 𝑏𝜃 + 2𝑐) (

𝑒𝜃𝑇1  – 1

𝜃4
) −  

2𝑐𝑇1

𝜃3 𝑒𝜃𝑇1 +
𝑇

1𝑒𝜃𝑇1

𝜃2
(𝑏 + 𝑐𝑇1) −

𝑇1

6𝜃
(6𝑎 + 3𝑏𝑇1 +   2𝑐𝑇1

2)} +

 𝑃𝜃 {(𝑎𝜃2 − 𝑏𝜃 + 2𝑐) (
𝑒𝜃𝑇1  − 1

𝜃4
) −  

2𝑐𝑇1

𝜃3 𝑒𝜃𝑇1 +
𝑇

1𝑒𝜃𝑇1

𝜃2
(𝑏 +

𝑐𝑇1) −
𝑇1

6𝜃
(6𝑎 + 3𝑏𝑇1 +  2𝑐𝑇1

2)} +  𝑠 {
𝑎

𝛿2
[𝛿(𝑇 − 𝑇1) −

𝑙𝑜𝑔 (1 + 𝛿(𝑇 − 𝑇1))] +
𝑏

2
[

𝑇3+2 𝑇1
3

3
− 𝑇𝑇1

2]} +  
 𝑎𝛼

𝛿
{𝛿(𝑇 −

𝑇1) − 𝑙𝑜𝑔 (1 + 𝛿(𝑇 − 𝑇1))} 

𝑃𝐼𝑟 {
𝑎𝜃2−𝑏𝜃+2𝑐

𝜃4
[𝑒𝜃(𝑇1−𝑀) + 𝑀𝜃 − (1 + 𝜃𝑇1)] −

 
2𝑐

𝜃3
[𝑇1(𝑒𝜃(𝑇1−𝑀) − 1) +

𝜃

2
(𝑀2 − 𝑇1

2)] +  
1

𝜃2
[𝑇1(𝑏 +

𝑐𝑇1)(𝑒𝜃(𝑇1−𝑀) − 1) +
𝑏𝜃

2
(𝑀2 − 𝑇1

2) +
𝑐𝜃

3
(𝑀3 − 𝑇1

3)]}  - 

𝑃𝐼𝑒 𝑇1
2

12
[6𝑎 + 2𝑏𝑇1 + 𝑐𝑇1

2]} 

   =  
1

𝑇
{𝑟 + (ℎ + 𝑃𝜃) {(𝑎𝜃2 − 𝑏𝜃 + 2𝑐) (

𝑒𝜃𝑇1  − 1

𝜃4
) +

𝑇
1𝑒𝜃𝑇1

𝜃3
[𝜃(𝑏 + 𝑐𝑇1) − 2𝑐] −

𝑇1

6𝜃
(6𝑎 + 3𝑏𝑇1 +  2𝑐𝑇1

2)} +
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 𝑎(𝑠+𝛿𝛼)

𝛿2
{𝛿(𝑇 − 𝑇1) − 𝑙𝑜𝑔 (1 + 𝛿(𝑇 − 𝑇1))} +

𝑠𝑏

2
[

𝑇3+2 𝑇1
3

3
−

𝑇𝑇1
2] + 𝑃𝐼𝑟 {

𝑎𝜃2−𝑏𝜃+2𝑐

𝜃4
[𝑒𝜃(𝑇1−𝑀) + 𝑀𝜃 −   (1 + 𝜃𝑇1)] −

 
2𝑐

𝜃3
[𝑇1(𝑒𝜃(𝑇1−𝑀) − 1) +

𝜃

2
(𝑀2 − 𝑇1

2)] +  
1

𝜃2
[𝑇1(𝑏 +

𝑐𝑇1)(𝑒𝜃(𝑇1−𝑀) − 1) +
𝑏𝜃

2
(𝑀2 − 𝑇1

2) +
𝑐𝜃

3
(𝑀3 − 𝑇1

3)]} - 

𝑃𝐼𝑒 𝑇1
2

12
[6𝑎 + 2𝑏𝑇1 + 𝑐𝑇1

2]}                      (10) 

To solve the below equations, we obtain 𝑇∗𝑇1
∗ 

𝜕𝑇𝐶1(𝑇1,𝑇)

𝜕𝑇1
= 0   𝑎𝑛𝑑   

 𝜕𝑇𝐶1(𝑇1,𝑇)

𝜕𝑇
= 0                                     (11) 

Provided they satisfy the sufficient conditions 

[
𝜕2𝑇𝐶1(𝑇1, 𝑇)

𝜕𝑇1
2 ]

𝑎𝑡 (𝑇1
∗ ,𝑇∗)

> 0 [
𝜕2𝑇𝐶1(𝑇1, 𝑇)

𝜕𝑇2
]

𝑎𝑡 (𝑇1
∗ ,𝑇∗)

>    0  

𝑎𝑛𝑑 [(
𝜕2𝑇𝐶1(𝑇1,𝑇)

𝜕𝑇1
2 ) (

𝜕2𝑇𝐶1(𝑇1,𝑇)

𝜕𝑇2
) − (

𝜕2𝑇𝐶1(𝑇1,𝑇)

𝜕𝑇1𝜕𝑇
)

2

]> 0 

𝜕𝑇𝐶1(𝑇1,𝑇)

𝜕𝑇1
= 0 

1

𝑇
{(ℎ + 𝑃𝜃){(𝑎𝜃2 − 𝑏𝜃 + 2𝑐) (

𝑒𝜃𝑇1

𝜃3
)

+
𝑒𝜃𝑇1

𝜃3
[𝜃(𝑏 + 2𝑐𝑇1) − 2𝑐]

+
𝑒𝜃𝑇1

𝜃2
[𝜃(𝑏𝑇1 + 𝑐𝑇1

2) − 2𝑐𝑇1] 

 −
𝑇1

6𝜃
(3𝑏 +  4𝑐𝑇1) −

1

6𝜃
(6𝑎 + 3𝑏𝑇1 +  2𝑐𝑇1

2)} −

  
 𝑎(𝑠+𝛿𝛼)(𝑇−𝑇1)

1+𝛿(𝑇−𝑇1)
  + 𝑃𝐼𝑟 {

𝑎𝜃2−𝑏𝜃+2𝑐

𝜃5
[𝑒𝜃(𝑇1−𝑀) − 𝜃2)] −

 
2𝑐

𝜃3
[

𝑒𝜃(𝑇1−𝑀)

𝜃
(𝑇1 +  𝜃) − 𝜃𝑇1 − 1] +  

1

𝜃2
[(𝑏𝑇1 +

𝑐𝑇1
2)

𝑒𝜃(𝑇1−𝑀)

𝜃
+ (𝑒𝜃(𝑇1−𝑀) − 1)(𝑏 + 2𝑐𝑇1) − 𝜃𝑇1(𝑏 +

 𝑐𝑇1)]} −  
𝑃𝐼𝑒 𝑇1

6
[6𝑎 + 3𝑏𝑇1 + 2𝑐𝑇1

2]}  = 0                        (12) 

𝜕𝑇𝐶1(𝑇1,𝑇)

𝜕𝑇
= 0      ⇒

1

𝑇
{

 𝑎(𝑠+𝛿𝛼)(𝑇−𝑇1)

1+𝛿(𝑇−𝑇1)
} 

− 
1

𝑇2
{𝑟 + (ℎ + 𝑃𝜃) {(𝑎𝜃2 − 𝑏𝜃 + 2𝑐) (

𝑒𝜃𝑇1  −  1

𝜃4
)

+
𝑇1𝑒𝜃𝑇1

𝜃3
[𝜃(𝑏 + 𝑐𝑇1) − 2𝑐]

−
𝑇1

6𝜃
(6𝑎 + 3𝑏𝑇1 +  2𝑐𝑇1

2)} 

+ 
 𝑎(𝑠 + 𝛿𝛼)

𝛿2
{𝛿(𝑇 − 𝑇1) − 𝑙𝑜𝑔 (1 + 𝛿(𝑇 − 𝑇1))} 

            +  𝑃𝐼𝑟 {
𝑎𝜃2−𝑏𝜃+2𝑐

𝜃4
[𝑒𝜃(𝑇1−𝑀) + 𝑀𝜃 − (1 + 𝜃𝑇1)] −

 
2𝑐

𝜃3
[𝑇1(𝑒𝜃(𝑇1−𝑀) − 1) +

𝜃

2
(𝑀2 − 𝑇1

2)] 

+ 
1

𝜃2
[𝑇1(𝑏 + 𝑐𝑇1)(𝑒𝜃(𝑇1−𝑀) − 1) +

𝑏𝜃

2
(𝑀2 − 𝑇1

2) +

𝑐𝜃

3
(𝑀3 − 𝑇1

3)]}  - 
𝑃𝐼𝑒 𝑇1

2

12
[6𝑎 + 2𝑏𝑇1 + 𝑐𝑇1

2]} = 0            (13) 

 

IV. SOLUTION PROCEDURE ALGORITHM 

 

To find the optimal time period 𝑇1
∗, 𝑇∗  and minimize 

𝐶1(𝑇1, 𝑇) 

Step 1 Find i) to iv) 

i) Put T1, (1) = M 

ii) useT1 (1) into 12), find T(1) 

iii) Using T(1) we obtain T1,(2) from (13) 

iv) Continue (ii) and (iii) until optimum of T1 and T 

Step 2 to find T1, M. 

i) If  𝑀 ≤  𝑇1 , T1 is optimum, go to Step3 

ii) If  𝑀 > 𝑇1  , T1 is not optimum. Set  

T1 = M to find T from (13) and go to step 3. 

Step 3 Calculate  𝑇𝐶1(𝑇1
∗, 𝑇∗) 

Case2: 𝑇1 < 𝑀 

Estimation of Interest Earned 

IE2 = 𝑃𝐼𝑒 {
∫ (𝑇1 −  𝑡)(𝑎 + 𝑏𝑡 + 𝑐𝑡2)

𝑇1

0
𝑑𝑡 +

(𝑀 − 𝑇1) ∫ (𝑎 + 𝑏𝑡 + 𝑐𝑡2)
𝑇1

0
𝑑𝑡 

} 

       = 
−𝑃𝐼𝑒 𝑇1

2

12
[6𝑎 + 4𝑏𝑇1 + 3𝑐𝑇1

2] +
𝑝𝐼𝑒 𝑇1𝑀

6
 

[6𝑎 + 3 𝑏𝑇1 + 2𝑐𝑇1
2]                                                               (14) 

Therefore, the total average cost 

 TC2 = 
𝑟 + 𝐻𝐶 + 𝐷𝐶 + 𝑆𝐶 + 𝑂𝐶− 𝐼𝐸2

𝑇
                                                (15) 

           = 
1

𝑇
{𝑟 + ℎ {(𝑎𝜃2 − 𝑏𝜃 + 2𝑐) (

𝑒𝜃𝑇1  – 1

𝜃4
) −  

2𝑐𝑇1

𝜃3 𝑒𝜃𝑇1 +
𝑇

1𝑒𝜃𝑇1

𝜃2
(𝑏 + 𝑐𝑇1) −

𝑇1

6𝜃
(6𝑎 + 3𝑏𝑇1 +  2𝑐𝑇1

2)} +  𝑝𝜃 {(𝑎𝜃2 −

𝑏𝜃 + 2𝑐) (
𝑒𝜃𝑇1  – 1

𝜃4
) −  

2𝑐𝑇1

𝜃3 𝑒𝜃𝑇1 +
𝑇

1𝑒𝜃𝑇1

𝜃2
(𝑏 + 𝑐𝑇1) −

𝑇1

6𝜃
(6𝑎 + 3𝑏𝑇1 +  2𝑐𝑇1

2)} +  𝑠 {
𝑎

𝛿2
[𝛿(𝑇 − 𝑇1) − log(1 +

𝛿(𝑇 − 𝑇1))]} +  
 𝑎𝛼

𝛿
{𝛿(𝑇 − 𝑇1) − log(1 + 𝛿(𝑇 − 𝑇1))} −

 
𝑝𝐼𝑒 𝑇1

2

12
[6𝑎 + 4𝑏𝑇1 + 3𝑐𝑇1

2] +
𝑝𝐼𝑒 𝑇1𝑀

6
[6𝑎 + 3 𝑏𝑇1 + 2𝑐𝑇1

2]} 

         =  
1

𝑇
{𝑟 + (ℎ + 𝑃𝜃) {(𝑎𝜃2 − 𝑏𝜃 + 2𝑐) (

𝑒𝜃𝑇1  − 1

𝜃4
) +

𝑇
1𝑒𝜃𝑇1

𝜃3
[𝜃(𝑏 + 𝑐𝑇1) − 2𝑐] −

𝑇1

6𝜃
(6𝑎 + 3𝑏𝑇1 +  2𝑐𝑇1

2)} 

+ 
 𝑎(𝑠 + 𝛿𝛼)

𝛿2
{𝛿(𝑇 − 𝑇1) − 𝑙𝑜𝑔 (1 + 𝛿(𝑇 − 𝑇1))}

− 
𝑃𝐼𝑒 𝑇1

2

12
[6𝑎 + 4𝑏𝑇1 + 3𝑐𝑇1

2] 

+
𝑃𝐼𝑒 𝑇1𝑀

6
[6𝑎 + 3 𝑏𝑇1 + 2𝑐𝑇1

2]}                                             (16) 

To find the optimal T*, T1* to get the optimum total 

inventory cost. 
𝜕𝑇𝐶2(𝑇1,𝑇)

𝜕𝑇1
= 0   𝑎𝑛𝑑   

 𝜕𝑇𝐶2(𝑇1,𝑇)

𝜕𝑇
= 0                                      (17) 

Provided the sufficient conditions 

[
𝜕2𝑇𝐶2(𝑇1,𝑇)

𝜕𝑇1
2 ]

𝑎𝑡 (𝑇1
∗ ,𝑇∗)

> 0   , [
𝜕2𝑇𝐶2(𝑇1,𝑇)

𝜕𝑇2
]

𝑎𝑡 (𝑇1
∗ ,𝑇∗)

>

0 𝑎𝑛𝑑 [(
𝜕2𝑇𝐶2(𝑇1,𝑇)

𝜕𝑇1
2 ) (

𝜕2𝑇𝐶2(𝑇1,𝑇)

𝜕𝑇2
) − (

𝜕2𝑇𝐶2(𝑇1,𝑇)

𝜕𝑇1𝜕𝑇
)

2

]> 0 

Now, we shall solve 
𝜕𝑇𝐶2(𝑇1, 𝑇)

𝜕𝑇1

= 0 𝑎𝑛𝑑 
 𝜕𝑇𝐶2(𝑇1 , 𝑇)

𝜕𝑇
= 0:

𝜕𝑇𝐶2(𝑇1 , 𝑇)

𝜕𝑇1

0 

⇒
1

𝑇
{(ℎ + 𝑃𝜃) {(𝑎𝜃2 − 𝑏𝜃 + 2𝑐) (

𝑒𝜃𝑇1

𝜃3
) +

𝑒𝜃𝑇1

𝜃3
[𝜃(𝑏 +

2𝑐𝑇1) − 2𝑐] +
𝑒𝜃𝑇1

𝜃2
[𝜃(𝑏𝑇1 + 𝑐𝑇1

2) − 2𝑐𝑇1] −
𝑇1

6𝜃
(3𝑏 +

 4𝑐𝑇1) −
1

6𝜃
(6𝑎 + 3𝑏𝑇1 +  2𝑐𝑇1

2)} −
 𝑎(𝑠+𝛿𝛼)(𝑇−𝑇1)

1+𝛿(𝑇−𝑇1)
 𝑃𝐼𝑒 𝑇1[𝑎 + 𝑏𝑇1 + 𝑇1

2] 𝑝𝐼𝑒 𝑀 [𝑎 + 𝑏𝑇1 +

𝑐𝑇1
2]}     = 0                                                                       (18) 

𝜕𝑇𝐶2(𝑇1,𝑇)

𝜕𝑇
= 0=>

1

𝑇
{

 𝑎(𝑠+𝛿𝛼)(𝑇−𝑇1)

1+𝛿(𝑇−𝑇1)
} −

1

𝑇2 {𝑟 + (ℎ 𝑃𝜃) {(𝑎𝜃2 −

𝑏𝜃 + 2𝑐) (
𝑒𝜃𝑇1  − 1

𝜃4
) +

𝑇
1𝑒𝜃𝑇1

𝜃3
[𝜃(𝑏 + 𝑐𝑇1) − 2𝑐] −

𝑇1

6𝜃
(6𝑎 + 3𝑏𝑇1 +  2𝑐𝑇1

2)} 

+ 
 𝑎(𝑠 + 𝛿𝛼)

𝛿2
{𝛿(𝑇 − 𝑇1) − 𝑙𝑜𝑔 (1 + 𝛿(𝑇 − 𝑇1))}

− 
𝑃𝐼𝑒 𝑇1

2

12
[6𝑎 + 4𝑏𝑇1 + 3𝑐𝑇1

2] 

+
𝑝𝐼𝑒 𝑇1𝑀

6
[6𝑎 + 3 𝑏𝑇1 + 2𝑐𝑇1

2]} = 0                                     (19) 

Estimation of 𝑇∗and 𝑇1
∗and Minimize 

𝑇𝐶2(𝑇1, 𝑇) By using the following algorithm 

Analysis of T1 and T 

Discuss (i) - (iv) 
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i) Set T1, (1) = M 

ii) Put T1, (1) into (18), find T(1) 

iii) Using T(1) to find T1, (2), from (19) 

iv) Continue again (ii) and (iii) until optimum values of T1 

and T 
Analysis of T1 and M 

 i) If  𝑇1 < 𝑀, T1 is optimum, go to Step 3. 

ii) If  𝑇1 ≥ 𝑀, T1 is not optimum, set T1 = M, to find T  

     From (19) and then goes to Step 3. 

iii) To find 𝑇𝐶2(𝑇1
∗, 𝑇∗) we obtain, 

      TC (T1, T) = min (𝑇𝐶1(𝑇1
∗, 𝑇∗), 𝑇𝐶2(𝑇1

∗, 𝑇∗)) 

 

V. SOLUTION PROCEDURE FOR VARIOUS 

PARAMETERS 
 

Table I. ANALYSIS OF A DECISION VARIABLE 

WITH NON-LINEAR DEMAND PATTERN 

 

Table II. ANALYSIS OF VARIOUS PARAMETERS 

WITH NON-LINEAR DEMAND PATTERN 

M 

𝜹         5        10       15 

1 TC 

    𝑻𝟏
∗  

      𝑻∗ 

2.0338X106 

40.1351 

39.1288 

1.1791X106 

30.3806 

29.3668 

1.6868X 106 

36.7828 

35.7746 

2 TC                        

    𝑻𝟏
∗  

     𝑻∗ 

2.1346X106 

41.2534 
40.7517 

1.1869X106 

30.8397 
30.3353 

5.4686X 106 

57.6537 
57.1532 

3 TC 

    𝑻𝟏
∗  

    𝑻∗ 

2.4012X106 

43.4248 

43.0906 

1.3220X106 

32.8306 

32.4951 

5.2863X 107 

93.1734 

92.8401 

4 TC 

    𝑻𝟏
∗  

    𝑻∗ 

2.8832X106 

46.6932 

46.4427 

2.2862X106 

36.6153 

36.3643 

2.9507X 109 

149.7342 

149.4842 

5 TC 

    𝑻𝟏
∗  

    𝑻∗ 

3.7142X106 

51.1335 

50.9332 

5.6070X106 

42.6154 

42.4149 

1.7832X1012 

235.4709 

235.2709 

   The study results demonstrate the effectiveness of the 

proposed green inventory model in managing deteriorating 

products under non-linear, time-dependent demand patterns. 

Here are the key findings: 

COST REDUCTION  

The quadratic demand model significantly reduces total 

inventory costs compared to traditional linear models. This is 

achieved by more accurately predicting demand variations, 

which leads to better replenishment strategies and optimized 
order quantities. 

ENVIRONMENTAL IMPACT 

The implementation of a green inventory system leads to 

lower environmental costs by minimizing product wastage 

due to deterioration. Businesses can maintain sustainability 

by managing stock levels more efficiently. 

CUSTOMER SATISFACTION 

By addressing stockouts and improving fill rates, the model 

enhances customer satisfaction. The quadratic demand model 

provides more precise stock levels, ensuring products are 

available when needed, even during periods of fluctuating 

demand. 
FINANCIAL FLEXIBILITY 

The introduction of a permissible delay in payment allows 

businesses to manage cash flow more effectively. This delay 

reduces financial strain while ensuring that businesses can 

meet customer demand without overstocking, leading to 

better financial performance. 

REAL-WORLD VALIDATION 

The model is validated through a case study in the automotive 

industry. It demonstrates robustness in handling complex 

demand patterns, with significant improvements in key 

metrics like inventory holding cost, deterioration cost, and 
shortage cost. 

OPTIMIZATION RESULTS 

The numerical results from the case study show the optimal 

replenishment time T* and inventory level T1* lead to 

minimized total costs (TC). The optimized values for T*and 

T1* help businesses balance holding, ordering, and shortage 

costs, improving overall profitability. 

 

VI. RESULTS AND CONCLUSION 

   The green inventory with a deteriorating product model that 

addresses the complex dynamics of non-linear time-

dependent quadratic demand and incorporates the concept of 

permissible delay payment is analyzed. The model provided 

a practical approach to optimizing inventory control 

decisions, balancing the trade-off between maintaining 

sufficient inventory levels and minimizing costs associated 

with deterioration and holding costs. This enables decision-

makers to make environmentally conscious choices while 
ensuring optimal inventory performance. Integrating the non-

linear time-dependent quadratic demand pattern captures the 

realistic demand variability, allowing for more accurate 

inventory forecasting and control. The inclusion of 

permissible delay payment enables businesses to manage 

cash flow effectively by delaying payment while maintaining 

an optimal inventory level, leading to improved financial 

flexibility. It provided a structured framework to guide 

decision-making related to inventory control, leading to 

improved efficiency and profitability. This study adds to the 

body of knowledge in inventory management by presenting a 
complete method that considers the interaction of demand 

dynamics, product deterioration, sustainability, and financial 

considerations. Further research can be developed by 

incorporating additional factors such as transportation costs, 

lead time variability, or product substitution.  

                                         𝜹 
M 1 5 

5     TC 

        𝑻𝟏
∗  

     𝑻∗ 

2.0338 X 106 

40.1351 
39.1288 

3.7142 X 106 

51.1335 
50.9332 

10    TC 

        𝑻𝟏
∗  

        𝑻∗ 

1.1791 X 106 

30.3806 
29.3668 

2.2862 X 106 

42.6151 
42.4149 

15    TC 

        𝑻𝟏
∗  

       𝑻∗ 

3.2121 X 105 

11.0863 

10.0056 

5.7590 X 106 

19.4125 

19.2094 

40    TC 

        𝑻𝟏
∗  

        𝑻∗ 

1.0078 X 108 

102.4787 

101.4786 

9.4914 X 1035 

935.6173 

935.4173 

50     TC 

         𝑻𝟏
∗  

         𝑻∗ 

3.9369 X 109 

153.5997 

152.5997 

5.6070 X 1063 

1.7427 X 103 

1.7425 X 103 
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TABLE III. A COMPARATIVE ANALYSIS WITH TRADITIONAL MODEL 
 

Aspect Non-Linear Demand Model 

(Based on Table I and II) 

Traditional Linear/Constant 

Demand Models 

Quadratic Demand Models 

Cost 

Behaviour 

(TC) 

Highly reactive to δ and M: As 

the deterioration rate increases, 

the total cost rises sharply, 

particularly at larger M values. 

Extremely high costs for larger δ 

values (e.g., from 2.0338×10⁶ to 

5.6070×10⁶³). 

More stable costs: Total costs 

tend to increase predictably as 

demand remains constant or grows 

linearly over time. 

Less responsive to δ, as 

deterioration is often simplified or 

excluded. 

Moderately complex: Costs 

increase more gradually 

compared to non-linear models 

but are more realistic than linear 

models due to the quadratic terms 

accounting for demand 

fluctuations. 

Cycle 

Time 

(𝐓𝟏
∗, 𝐓∗) 

Shortens with increasing M 

(e.g., from 11.0863 to 10.0056 at 

M=15 for δ=1). 

Lengthens as δ increases, 

indicating more frequent 

replenishment is needed for 

products that deteriorate more 

quickly. 

More stable cycle times: 

Typically, longer, as these models 

assume constant or predictable 

demand, requiring fewer 

replenishments. 

Deterioration may have less 

impact on cycle time if it's not a 

significant factor in the model. 

Similar trends but less extreme: 

Cycle times decrease as M 

increases, but the sensitivity is 

lower than in non-linear models. 
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Fig 1. Diagrammatic Representation of Table I. 
 

 

Fig 2. Diagrammatic Representation of Table II.  

IAENG International Journal of Applied Mathematics

Volume 55, Issue 2, February 2025, Pages 278-284

 
______________________________________________________________________________________ 




