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Abstract—Constrained multi-objective optimization problems
are ubiquitous in real life. However, the presence of constraints
makes the feasible domain complex, discontinuous and narrow.
Consequently, solving multi-objective optimization problems
becomes exceptionally challenging. Existing methods struggle to
efficiently find the Pareto front (PF) with both good convergence
and uniformity. To address this issue effectively, this paper
proposed a two-stage constrained multi-objective optimization
algorithm based on a three-population evolutionary algorithm
(TPEA). In the first stage, the TPEA algorithm is employed
to search for approximately constrained Pareto front (CPF).
In the second stage, a boundary value retention mechanism
was designed to enhance the quality of CPF. Additionally,
a local search method with an adaptive perturbation factor
is introduced to generate offspring, thereby increasing the
probability of generating a boundary point. To select the
better individuals for the next generation, a forward-looking
environmental selection strategy was proposed. The proposed
algorithm is compared with five algorithms. In the experiments,
38 benchmark test functions and three real-world problems are
employed. Experimental results demonstrate that the proposed
algorithm can obtain the CPFs with better convergence, uni-
formity, and diversity than five compared algorithms.

Index Terms—constrained multi-objective, two-stage, bound-
ary value reservation, environmental selection, forward looking.

I. INTRODUCTION

MULTI-OBJECTIVE Optimization Problems (MOPs)
need to consider multiple objective functions simulta-

neously in the optimization process. Unlike traditional single-
objective optimization problems (SOPs) [1], MOPs involve
optimizing a vector of decision variables to achieve the best
possible outcomes for each objective function, often under
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specific constraints or to strike a balance and find compro-
mise solutions across various objectives. These problems are
prevalent in real-world scenarios and typically feature one
or more equality or inequality constraints, such as structural
optimization [2], [3], [4], engineering design [5], [6], [7]. In
general, the mathematical definition of CMOPs is described
as: 

minF (x) = (f1(x), f2(x), . . . , fm(x))
s.t.

gi(x) ≤ 0, i = 1, 2, · · · , p;
hi(x) = 0, i = p+ 1, p+ 2, · · · , q

(1)

where x = (x1, x2, · · · , xD) is a D-dimensional decision
variable within the decision space. The objective function
F (x) includes an m-dimensional objective vector. g(x) and
h(x) represent p inequality constraints and q − p equality
constraints, respectively.

Given that multiple objectives are often in conflict with
each other, optimizing one objective may adversely affect
other objectives. Therefore, finding a solution that out-
performs all other objectives on all objectives is usually
unattainable. Thus, the goal of solving a MOP is to find a set
of solutions called the Pareto set (PS). These solutions cannot
improve one of the objectives without affecting the others.
The PS is then mapped to the objective space Pareto Front
(PF). This front represents a curve, surface, or hyperplane in
the objective space. Constrained multi-objective optimization
problems (CMOPs) present unique challenges compared to
their unconstrained counterparts. In CMOPs, the goal is to
find a set of solutions which cannot be improved in one
objective without sacrificing the others. CMOPs are notably
more difficult to solve efficiently, as shown in Fig. 1 (the
gray area denotes the feasible domain of the MOP). The
constraints in Fig. 1(a) lead to a discontinuous feasible
domain. Fig. 1(b) demonstrated that the effect of the con-
straints narrow feasible domain. the discrete feasible domain
is shown in Fig. 1(c).

To address these issues, this paper proposed a two-stage
constrained multi-objective optimization algorithm based on
a boundary value retention strategy. The key contributions of
this work are as follows:

• A two-stage CMOEA based on a boundary value preser-
vation strategy was proposed. The algorithm divided the
whole evolutionary process into two stages. In the first
stage, the TPEA was used to search for the approximate
CPF. In the second stage, the boundary value preserva-
tion based evolutionary approach was used to improve
the accuracy of the CPF.
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Fig. 1. The challenge of constrained multi-objective problems

• A local search method by modifying the genetic al-
gorithm was proposed. An adaptive boundary value
preservation strategy was designed. The strategy adap-
tively adjusts the boundary threshold of the boundary
population based on the current size of the boundary
population.

• A forward-looking environmental selection strategy was
proposed to improve the original environmental selec-
tion strategy. This method uses the nearest-neighbor
information to evaluate the crowding degree of an in-
dividual and further uses the hyper-volume information
to evaluate in the case of the same nearest-neighbor
information.

II. RELATED WORKS

The evolutionary optimization framework is recognized as
one of the popular for solving multi-objective optimization.
The evolutionary optimization framework mainly includes
the population generation method and environmental selec-
tion method.

A. Population Generation Methods

Genetic Algorithm (GA) stands as one of the classical
methods for swarm intelligent optimization. Notably, the
NSGA-II-CDP algorithm introduced by K. Deb [8]. In ad-
dition, some other algorithms are proposed, such as SPEA2
[9], PESA-II [10], C-TAEA [11], c-DPEA [12], and CMEGL
[13], all employ GA as the individual generation method.

Differential Evolution (DE) conceived by Rainer Storn
and Kenneth Price in 1995[14]. For instance, algorithms like
PPS-MOEA-D [15], the Trip algorithm [16], and the ICMA
algorithm [17] utilize DE to generate individuals. Further-
more, numerous variants of DE algorithms have emerged,
including DE/rand/1 [18], DE/best/1 [19], and DE/current-
to-best/1 [20]. Additionally, Liang et al[21] proposed the
DE/current-to-exemplar/1 variant strategy. It aims to enhance
the probability of generating high-quality individuals around
a standardized individual by leveraging individuals with
excellent quality and low density.

However, the population generation methods used by these
algorithms are almost all based on global search algorithms.
Thus, the search accuracy is limited. To solve this problem,
this paper modified the GA algorithm and proposed a local

search-based population generation strategy. The proposed
algorithm can produce more solutions located near the con-
strained boundary during the evolutionary process.

B. Environmental Selection Strategy

In environmental selection, researchers usually use the
crowding degree as the evaluation criterion for environmental
selection. Since that the distribution of the decision space has
little impact on the performance metrics of the algorithm,
researches generally pay more attention to the crowding
degree of the objective space. The perimeter of the rectangle
enclosed by the point to be evaluated and the two nearest
neighbors was first proposed in the literature [22]. The small-
er the perimeter indicates the higher the crowding degree of
the point. This method begins by performing non-dominated
sorting of the population. Next, it sorts the population based
on the objective values in a specific dimension. The density
value of the first point and the last two points is then set to
the maximum value. For the second-to-last point, the density
value is determined by the perimeter of the rectangle formed
by the nearest previous point and the next point. Finally, the
density values are sorted in descending order, and the top
NP points are selected for retention (where NP represents
the population size). However, this method only makes use
of the information related to the point to be measured and
its nearest neighbors, and does not consider the problem
from the height of the whole population. For example, when
an algorithm reaches the late stage of evolution when the
distribution of the population is relatively homogeneous,
this strategy can only simply retain the first few individuals
without considering the overall distribution of the population.

SPEA2 [9] uses the Euclidean distances between each
point in the objective space and the rest of the points as
a basis for density estimation. Then, some recently proposed
algorithms, such as the CCMO [23], c-DPEA [12], CMGEL
[13], MCCMO [24]. This method is used as a reference
by comparing the distance to the point with its third and
fourth distance. However, this information does not reflect
the crowding of the point well ensure a uniform distribu-
tion of the final population. The density estimation method
proposed in PSEAII [10] divided the entire objective space
into uniform subregions and randomly selects one point at a
time from the most congested subregion to be deleted. Due
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to the increasing performance of CMOEA, the distribution
of solutions will tend to be uniform in the later stages of
evolution.

In addition, this paper briefly reviewed the constraint
processing technology for CMOP. The more mainstream
constraint processing method is to treat constraints as ad-
ditional targets so that CMOP is converted into UMOP. A
multi-objective evolutionary optimization algorithm (MOEA)
can then be employed to solve the transformed problem.
Generally speaking, there are two different ways to handle
this. 1) Treat each constraint as an optimization objective,
as shown in Eq. (2). 2) Combine all constraints into an
optimization objective, as shown in Eq. (4). This article
adopted the method of Eq. (4).

minF (x) = (f1(x), . . . , fm(x), CV1(x), . . . , CVq(x)) (2)

where

CVi =

{
max(0, gi(x)), i = 1, 2, · · · , p
max(0, |gi(x)− ε|), i = p+ 1, 2, · · · , q (3)

minF (x) = (f1(x), f2(x), . . . , fm(x), CV (x)) (4)

where

CV =

q∑
i=1

CVi(x) (5)

Although MOEAs have been developed to enhance the
search efficiency for solving CMOPs, many of them rely
on a combination of constraint-handling techniques (CHT)
and environmental selection strategies. However, they often
struggle when confronted with complex feasible domains.
Specifically, the existing CMOEAs face several challenges:
1) The probability of producing good-quality individuals
is low. 2) The retention of good-quality individuals is not
ensured in environmental selection. 3) The methodology for
assessing population selection for individual crowding in
environmental selection is inaccurate.

III. PROPOSED ALGORITHM

The precise boundary value search (PBS) method aims to
locate an exact boundary close to an approximate bound-
ary. However, it becomes ineffective when the approximate
boundary is unknown. Typically CMOEA searches for ap-
proximate CPF without performing an exact search. To en-
hance the accuracy of CMOEAs, integrating PBS and TPEA
into a two-phase search framework called BPCMO was
proposed. The basic BPCMO process consists of two phases:
the TPEA search phase and the PBS search phase. The
PBS search phase incorporates three key components: en-
hanced local search method (Boundary-based Local Search,
BLS), adaptive boundary value retention mechanism (BRM),
and a forward-looking environmental selection (FES). The
BPCMO framework addresses the limitations of traditional
CMOEAs by combining the strengths of PBS and TPEA.
The integration of BLS, BRM,and FES in the PBS search
phase further enhances the precision and effectiveness of the
algorithm.

A. Improved Local Search Method

In proposed algorithm, the local search method is pro-
posed. In addition, the crossover process in the genetic
algorithm was deleted to just keep the mutation process.
In Fig. 2, the process of improved local search strategy is
shown. 1) Fig. 2(a) denotes a population characterized by a
size of NP and a decision vector with D dimensions, where
NP = 5, D = 5. 2) A matrix SparseMNP×D is generated
randomly. If SparseM [i][j] = 1 indicates that the change
is made to the jth dimension of the ith individual, similarly,
SparseM [i][j] = 0 represents the jth dimension of the ith
individual is not perturbed. Fig. 2(b) shows an example of
the matrix SparseM . 3) We use UBLB and UBLP to
represent upper and lower bounds for each dimension in the
archive and individuals in the current population. Suppose
that UBLB = (0.8758, 0.2241, 0.2348, 0.1382, 0.3558) and
UBLP = (1.0000, 0.2241, 0.1941, 0.1403, 0.3552) in cur-
rent generation. 4) αpro is generated randomly in (0, 0.5 +
gen/(2maxGen)), where gen and maxGen are current
iterations and maximum iterations, respectively. αfac is
generated in (0, α), where α is a relatively small constant.
5) ULB is calculated according to Eq. (6). Then, ULB is
copied NP times to get a matrix ULBMNP×D. 6) Matrix
PertM is calculated by PertM = ULBM ⊙ SparseM .
Finally, the offspring are obtained according to OffSping =
PopDec+PerM , as shown in Fig. 2(c) and Fig. 2(d). The
framework of improved local search method BLS is shown
in Algorithm 1.

ULB =

{
αpro × ULBB , rand() ≤ αpro

αfac × ULBP , otherwise
(6)

Algorithm 1: Improved local search method
Input: parental population Population, difference

between upper and lower bounds of parental
population decisions ULBP ; Difference between
the upper and lower bounds of the boundary
population decision ULBB

Output: offspring population Offspring
1 Access to parental population decision variables
PoPDec;

2 Randomly generate a sparse matrix with only 1 and 0
SparseM ;

3 Generate a random number rand;
4 Generate a random number αpro in
(0, 0.5 + gen/(2×maxGen));

5 if rand() ≤ αpro then
6 ULB = αpro × ULBB;
7 else
8 ULB = αpro × ULBP ;
9 end

10 PertM = SparseM ⊙ ULB;
11 Offspring = PopDec+ PertM ;

B. Adaptive Boundary Value Retention Mechanism

Adaptive boundary value retention mechanism (BRM) is
a technique that utilizes constraint violations as the basis for
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Fig. 2. The schematic diagram of the BLS

evaluation. The pseudo-code for this mechanism is outlined
in Algorithm 2. The key step of this algorithm described as:

Step 1: The BRM takes as input the boundary archive BP,
the main population Population, the offspring populations
Offspring, and the boundary threshold ε.

Step 2: The boundary archive, the main population, and
the offspring populations are merged, and a de-duplication
operation is performed on the merged populations.

Step 3: Archive the individuals that are located near the
boundary of the constraint.

Step 4: If the archive size is larger than the archive size
threshold, update the boundary threshold and perform the
archive operation again with the new threshold.

Step 5: Finally, output the archive as well as the boundary
threshold.

The distribution of individuals in the archive at each stage
in BRM is shown in Fig. 3. Fig. 3(a) represents the distri-
bution of individuals in the archive at the initial stage. Fig.
3(b) represents the result of re-archiving after reaching the
archive size threshold and updating the boundary threshold.
From Fig. 3(c), it can be seen that the mechanism allows the
individuals in the archive to approach the constraint boundary
as a whole, which in turn brings the population closer to the
PF.

C. Forward-looking Environmental Selection

Forward-looking environmental selection (FES) is an envi-
ronmental selection method. As an example, three individuals
are selected from five by Proposed environmental selection
mechanism was shown in Fig. 4(a). First, the distance of
each point from all other points is calculated according to Eq.
(7), and the results are saved into a matrix as shown in Fig.
4(b). Subsequently, the point with the smallest distance to
its immediate neighbors is determined by sorting. However,
in the later stages of evolution, individuals are more evenly
distributed in the objective space. So it may happen that

Algorithm 2: Adaptive boundary value retention mech-
anism
Input: boundary population BP , main population

Population, offspring population Offspring,
boundary threshold ϵ, Archival scale factor β,
Adaptive scaling factor γ

Output: new boundary population BP ; boundary
threshold ϵ

1 Assuming that NP denotes the row number of
Population, ComPop denotes the concatenation of
Population and Offspring;

2 Perform a de-duplication operation on CmoPop;
3 Use Algorithm 3 to find the index BPIndex of the

bounded individual;
4 BP = ComPop(BPIndex)
5 Get the population size of the population BP , NBP

6 while NBP > β ×NP do
7 ϵ = ϵ/γ;
8 Use Algorithm 3 to find the index BPIndex of the

bounded individual;
9 BP = BP (BPIndex);

10 end

many points have equal distances to their nearest neighbors.
To address this situation, a method to assess the crowding of
these points by comparatively calculating their hyper-volume
relative to a reference point was proposed. The smaller the
hyper-volume is, the more the solution needs to be removed.
As in Fig. 4(c), the fourth column shows the hyper-volume
of the points enclosing the polyhedron with the reference
point. The maximum value of each dimension plus ε as the
value of each dimension at the reference point was defined,
where ε is a very small positive value. The calculation of
the hyper-volume is shown in Eq. (8). Fig. 4(e) and Fig.
4(f) show the result after the sequential selection and second
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Fig. 3. The schematic diagram of the BRM

Algorithm 3: Boundary Individual Judgment Algorithm
Input: Constraint violation matrix of the population

PopCon, boundary threshold ϵ
Output: Index of populations located near the boundary

BPIndex
1 BPIndex = ∅. Assuming that row and col denote the

row and column number of PopCon;
2 for i = 1 to row do
3 for j = 1 to col do
4 if PopConij < ϵ then
5 BPIndex = [BPIndex, i];
6 end
7 end
8 end

selection, respectively. Fig. 5 demonstrated the results after
the selection of the two environmental selection methods
under the same conditions. It can be seen that the results
selected by the method proposed in this paper are more
evenly distributed.

EDi,j =


√

m∑
k=1

(fi,k − fj,k)2, i ̸= j

∞, otherwise

(7)

HVi =
m∏
j=1

(fmax
j + 0.1− fi,j), i = 1, 2, . . . , NP ; (8)

IV. EXPERIMENTAL SETUP

To evaluate the effectiveness of BPCMO, we conducted
tests using three benchmark test sets. Firstly, the CDTLZ
test set was utilized. It consists 10 test functions [20], [21].
C1 DTLZ1, DC1 DTLZ1, DC2 DTLZ1, and DC3 DTLZ1
have 7-dimensional decision variables, while the remaining
6 test functions have 12-dimensional decision variables.
Secondly, the MW benchmark test set was employed, which
includes 14 test functions with 15-dimensional decision
variables [25]. Lastly, we employed the LIRCMOP test set,

which comprises 14 test functions with 30-dimensional deci-
sion variables. For the purpose of comparison, five state-of-
the-art algorithms ware selected, namely PPS [15], CTAEA
[11], MTCMO [26], TSTI [27], and C3M [28].

A. Parameter Settings

The parameter settings for the five comparison algorithms
are taken from their respective original literature. As for the
proposed algorithms in this paper, the following parameter
values were used: FirstStageFEs = 40,000, α = 0.9, ϵ = 0.01,
and β = 0.4, γ = 10. To ensure a fair comparison, the
population size (NP) was set to 100 for all problems in this
study, and the maximum number of evaluations (maxFEs)
was set to 70,000.

To evaluate the significance of the difference between
the two methods, a Wilcoxon test with a significance level
of 0.05 was conducted. The results of the comparison are
indicated as follows: ”+” or ”-” denotes that the compar-
ative algorithm performed better or worse than BPCMO,
respectively. ”=” signifies that BPCMO and the comparative
algorithm performed similarly.

B. Performance Metrics

In this paper, three performance metrics are utilized:
Inverse Generation Distance (IGD) [29], hypervolume (HV)
[30], and IGDp [31]. IGD serves as a measure of the
convergence of the proposed PF and true PF. The value
of IGD lower is, the better performance of the algorithm
is. HV is another widely adopted metric in multi-objective
optimization. It primarily evaluates the convergence and
diversity of the proposed PF. A higher HV value signifies
better performance of the proposed PF. IGDp is used to
assess the distribution of a set of solutions in the target space,
checking that these solutions cover the entire objective space
and are evenly distributed in the objective space.

V. RESULTS AND DISCUSSION

A. Results on Benchmark

Table I to Table III show the results of the IGD, HV, and
IGDp metrics for five comparison algorithms on 38 bench-
marks, respectively. These test functions generally possess
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Fig. 4. The results of environmental selection strategies
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Fig. 5. The comparison results of two environmental selection strategies

large feasible regions but also contain numerous infeasible
obstacles. As a result, algorithms must maintain diversity in
the early stages while enhancing convergence in the later
stages. The proposed BPCMO algorithm demonstrates the
best performance on the MW test set, followed by TSTI
and MTCMO. However, when facing two 3-objective type I
problems, MW4 and MW14, the performance of BPCMO
is not optimal. This indicates that there is still potential
for improving the algorithm’s effectiveness in handling such
problem instances.

Fig 6 and 7 show the simulation experiments of the six
algorithms on test problem MW3. The results show that the
algorithms can basically search for the approximate front

when the population evolves to the 25% stage. At the 75%
stage, the algorithm proposed in this paper can obtain the
best optimization result among all the algorithms.

Upon analyzing the detailed comparison results, it be-
comes apparent that PPS and C3M are excellent in solving
the LIRCMO problem. Specifically, PPS achieves optimal
values for LIRCMO1 to LIRCMO6, while C3M obtains opti-
mal values for LIRCMO7 to LIRCMO12. On the other hand,
CTAEA, MTCMO, and TSTI demonstrate proficiency in
addressing the DTLZ test set problem. CTAEA attains opti-
mal values for C1 DTLZ3, DC2 DTLZ1, DC3 DTLZ1 and
DC3 DTLZ3. MTCMO and TSTI achieve optimal values
for DC1 DTLZ1 and DC1 DTLZ3, as well as C1 DTLZ1,
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Fig. 7. Population distribution of the six algorithms when the number of evaluations reaches 75%
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TABLE I
IGD STATISTICS FOR FIVE ALGORITHMS IN THE 38 BENCHMARK

Problem PPS CTAEA MTCMO TSTI C3M BPCMO

C1DTLZ1 2.5846e-2 (5.93e-4) − 2.3128e-2 (2.55e-4) − 1.9947e-2 (1.81e-4) + 2.0036e-2 (1.68e-4) ≈ 2.2625e-2 (2.97e-3) − 2.0142e-2 (2.73e-4)
C1DTLZ3 1.6730e+0 (3.23e+0) − 4.5460e-1 (1.50e+0) + 5.8946e+0 (3.58e+0) − 5.8918e+0 (3.58e+0) − 1.2251e+0 (2.41e+0) ≈ 6.8906e-1 (1.54e+0)
C2DTLZ2 5.5501e-2 (2.36e-3) − 5.6835e-2 (1.35e-3) − 4.2579e-2 (5.91e-4) ≈ 4.2264e-2 (4.10e-4) + 4.8569e-2 (1.11e-3) − 4.2633e-2 (5.55e-4)
C3DTLZ4 1.9385e-1 (1.10e-1) − 1.1189e-1 (2.58e-3) − 9.5259e-2 (1.41e-3) − 9.6015e-2 (1.37e-3) − 1.1309e-1 (2.68e-3) − 9.2000e-2 (1.14e-3)

DC1DTLZ1 4.4630e-2 (5.73e-2) − 1.5169e-2 (2.36e-4) − 1.1443e-2 (8.01e-5) + 1.1513e-2 (1.87e-4) + 1.5937e-1 (1.74e-1) − 1.1776e-2 (2.14e-4)
DC1DTLZ3 4.3601e-1 (6.73e-1) − 4.2689e-2 (1.37e-3) + 3.3801e-2 (3.41e-4) + 4.4833e-2 (5.86e-2) + 1.9356e+0 (2.16e+0) − 1.3186e-1 (1.14e-1)
DC2DTLZ1 5.2325e-2 (5.43e-2) − 2.3138e-2 (2.38e-4) + 1.2448e-1 (6.56e-2) − 8.3822e-2 (7.33e-2) ≈ 7.0421e-2 (6.89e-2) − 2.5105e-2 (1.93e-3)
DC2DTLZ3 4.7852e-1 (2.02e-1) ≈ 3.8811e-1 (2.32e-1) ≈ 5.6460e-1 (2.33e-3) ≈ 5.6041e-1 (0.00e+0) ≈ 3.4437e-1 (2.64e-1) ≈ 5.8206e-1 (6.75e-2)
DC3DTLZ1 9.9755e-1 (1.41e+0) − 9.2394e-3 (3.19e-4) + 1.1245e-1 (1.06e-1) ≈ 2.0074e-1 (1.27e-1) − 1.4225e+0 (1.11e+0) − 2.5167e-2 (6.95e-2)
DC3DTLZ3 3.1024e+0 (3.07e+0) − 4.3881e-2 (1.64e-2) + 1.2683e+0 (3.89e-1) − 1.8513e+0 (5.79e-1) − 3.3250e+0 (2.83e+0) − 6.1274e-1 (1.75e-1)

MW1 3.1609e-2 (1.06e-1) − 2.2057e-3 (1.01e-3) − 6.0839e-3 (2.24e-2) ≈ 1.4582e-2 (2.64e-2) ≈ 1.2380e-1 (1.69e-1) − 1.6311e-3 (2.35e-5)
MW2 1.8990e-1 (1.16e-1) − 1.5615e-2 (9.17e-3) − 2.1391e-2 (8.52e-3) − 2.1322e-2 (9.75e-3) − 9.1838e-2 (4.36e-2) − 4.1204e-3 (1.30e-3)
MW3 6.1517e-3 (5.39e-4) − 5.3001e-3 (4.36e-4) − 5.0945e-3 (5.25e-4) − 5.4703e-3 (4.39e-4) − 6.1054e-3 (3.66e-4) − 4.4992e-3 (2.83e-4)
MW4 6.1414e-2 (2.24e-3) − 4.6558e-2 (4.98e-4) − 4.0994e-2 (4.21e-4) ≈ 4.0721e-2 (3.81e-4) ≈ 6.8394e-2 (3.51e-2) − 4.0855e-2 (3.09e-4)
MW5 3.6102e-1 (3.59e-1) − 1.4556e-2 (4.21e-3) − 5.7509e-2 (1.91e-1) − 1.2958e-1 (2.48e-1) − 3.3520e-1 (3.57e-1) − 1.3412e-3 (6.56e-4)
MW6 5.7904e-1 (3.60e-1) − 1.2720e-2 (8.46e-3) − 1.7978e-2 (1.29e-2) − 5.1505e-2 (1.14e-1) − 3.3871e-1 (2.15e-1) − 3.0547e-3 (1.34e-3)
MW7 5.5529e-3 (4.66e-4) − 7.2720e-3 (7.21e-4) − 4.6341e-3 (3.62e-4) − 6.7413e-3 (8.42e-3) − 6.2939e-3 (8.31e-4) − 4.0193e-3 (1.61e-4)
MW8 1.6057e-1 (5.50e-2) − 5.3614e-2 (2.10e-3) − 4.5428e-2 (3.05e-3) − 5.3716e-2 (2.18e-2) − 1.1103e-1 (3.63e-2) − 4.2312e-2 (5.37e-4)
MW9 2.1166e-1 (2.79e-1) − 9.0664e-3 (1.11e-3) − 1.4849e-2 (3.50e-2) − 3.7572e-2 (1.28e-1) − 4.2045e-1 (3.24e-1) − 3.9742e-3 (4.59e-5)

MW10 3.3785e-1 (2.30e-1) − 1.4474e-2 (1.07e-2) − 3.5362e-2 (3.52e-2) − 5.2767e-2 (4.68e-2) − 3.7560e-1 (1.74e-1) − 6.8599e-3 (4.93e-3)
MW11 7.3802e-3 (3.84e-4) − 1.5400e-2 (2.65e-3) − 6.0384e-3 (1.48e-4) − 6.1561e-3 (1.35e-4) − 7.5027e-3 (4.37e-4) − 5.8613e-3 (1.39e-4)
MW12 1.9281e-1 (2.90e-1) − 7.9689e-3 (6.60e-4) − 3.0353e-2 (1.40e-1) − 2.8417e-2 (9.08e-2) − 5.1904e-1 (2.96e-1) − 4.5222e-3 (8.22e-5)
MW13 4.2916e-1 (3.08e-1) − 4.7709e-2 (2.65e-2) − 7.9225e-2 (3.73e-2) − 1.5458e-1 (6.83e-2) − 2.3007e-1 (1.12e-1) − 3.0816e-2 (5.20e-2)
MW14 1.7419e-1 (5.13e-2) − 1.1125e-1 (3.77e-3) − 9.7785e-2 (2.25e-3) ≈ 9.7482e-2 (2.01e-3) ≈ 2.3852e-1 (6.99e-2) − 9.7378e-2 (2.36e-3)

LIRCMOP1 4.7749e-2 (4.21e-2) + 3.1610e-1 (9.24e-2) − 1.5473e-1 (1.98e-2) ≈ 2.2099e-1 (2.21e-2) − 2.0685e-1 (7.73e-2) − 1.3851e-1 (3.56e-2)
LIRCMOP2 4.3748e-2 (4.26e-2) + 2.4876e-1 (8.50e-2) − 1.3740e-1 (1.48e-2) + 1.9229e-1 (1.61e-2) − 1.8012e-1 (6.71e-2) ≈ 1.8094e-1 (2.93e-2)
LIRCMOP3 7.5838e-2 (4.91e-2) + 3.8825e-1 (1.27e-1) − 1.5776e-1 (2.71e-2) − 2.3091e-1 (2.68e-2) − 1.7742e-1 (8.56e-2) − 1.0507e-1 (2.29e-2)
LIRCMOP4 9.2386e-2 (6.92e-2) ≈ 3.1467e-1 (6.19e-2) − 1.6105e-1 (2.10e-2) − 2.2425e-1 (2.57e-2) − 1.5533e-1 (8.72e-2) ≈ 1.1688e-1 (2.13e-2)
LIRCMOP5 4.9255e-2 (2.17e-1) + 1.2008e+0 (1.71e-1) − 1.0738e+0 (3.28e-1) − 1.1281e+0 (2.69e-1) − 5.2444e-1 (5.58e-1) + 1.0561e+0 (3.51e-1)
LIRCMOP6 4.7612e-2 (3.88e-2) + 1.3462e+0 (7.05e-4) − 1.2371e+0 (2.81e-1) − 1.2114e+0 (3.09e-1) − 2.7722e-1 (4.52e-1) + 1.1032e+0 (3.59e-1)
LIRCMOP7 1.3864e-1 (2.41e-2) ≈ 3.9344e-1 (5.31e-1) − 1.2170e-1 (2.76e-2) ≈ 2.4108e-1 (3.93e-1) ≈ 2.7757e-2 (4.28e-2) + 1.3414e-1 (4.69e-2)
LIRCMOP8 1.9970e-1 (6.76e-2) − 8.8659e-1 (6.82e-1) − 2.0990e-1 (5.01e-2) − 5.3207e-1 (5.86e-1) − 2.8246e-2 (4.04e-2) + 1.6012e-1 (9.41e-2)
LIRCMOP9 4.1962e-1 (8.51e-2) ≈ 5.8932e-1 (7.02e-2) − 8.9272e-1 (1.35e-1) − 5.9186e-1 (9.64e-2) − 3.3649e-1 (1.05e-1) + 4.4888e-1 (1.02e-1)

LIRCMOP10 3.1685e-1 (1.34e-1) ≈ 4.1622e-1 (6.38e-2) − 8.2989e-1 (1.58e-1) − 7.9116e-1 (1.57e-1) − 1.4427e-1 (8.35e-2) + 3.9801e-1 (1.83e-1)
LIRCMOP11 2.9391e-1 (1.16e-1) − 2.4011e-1 (9.20e-2) − 6.7627e-1 (1.85e-1) − 6.2916e-1 (1.51e-1) − 9.6605e-2 (7.86e-2) + 2.0100e-1 (1.17e-1)
LIRCMOP12 1.9212e-1 (9.53e-2) + 2.7355e-1 (1.61e-1) ≈ 5.4271e-1 (1.48e-1) − 4.1799e-1 (1.12e-1) − 1.3405e-1 (7.92e-2) + 2.2282e-1 (6.27e-2)
LIRCMOP13 1.3213e-1 (4.78e-3) − 1.0963e-1 (3.06e-3) ≈ 1.3161e+0 (1.87e-3) − 1.3151e+0 (1.31e-3) − 1.7621e-1 (4.95e-2) − 1.0899e-1 (1.62e-3)
LIRCMOP14 1.2245e-1 (7.88e-3) − 1.1103e-1 (1.25e-3) − 1.2730e+0 (1.87e-3) − 1.2328e+0 (2.15e-1) − 1.8016e-1 (1.63e-1) − 9.2895e-2 (7.70e-4)
+/ − / ≈ 6/27/5 5/30/3 4/26/8 3/28/7 8/26/4

respectively. However, when considering the overall results,
the algorithm proposed in this paper outperforms the others
on all 38 test functions.

B. Test Results on Real Problems

To assess the effectiveness of the proposed algorithm on
real-world problems, this paper employed CMOPs derived
from three real-world scenarios: the simply supported I-
beam design problem [32], front rail design [33], and the
high-speed train collision energy management problem [2].
Among these, the front rail design aims to minimize impact
forces while maximizing energy absorption. Its solution is
constrained by three constraints pertaining to cross-section
height and wall thickness.

In particular, the front rail design aims to minimize impact
forces and maximize energy absorption, and its solution is
limited by three constraints related to cross-section height
and wall thickness. The process integration problem aims to
minimize process equipment procurement costs and operat-
ing conditions, and its solution is limited by nine inequality
constraints.

The experimental results (shown in Table IV)demonstrate
that BPCMO achieves optimal solutions in all three practical
problems. Particularly, it outperforms the other five algo-
rithms significantly in the I-beam support problem and the
energy management problem, while slightly surpassing them
in the front rail design problem.

VI. CONCLUSION

This paper introduced a novel BPCMO algorithm aimed
at enhancing the performance of CMOEA by refining the
population generation method with an environmental selec-
tion approach. In BPCMO, the existing CMOEA is initially
employed to approximate the CPF. In essence, BPCMO
focuses on generating, retaining, and selecting high-quality
and well-distributed PS. Experiments results demonstrated
that the proposed algorithm outperforms others. However,
BPCMO has some limitations:

1) The constraint Pareto front might not precisely align
with the boundary of the feasible region, as the CPF is
typically a subset of the concatenation of the UPF and the
boundary of the feasible region. Hence, the current algorithm
may not effectively handle problems with overlap between
the UPF and the CPF.

2) Although the proposed offspring generation algorithm
shortens the search step, the step size remains fixed. For
instance, in the MW5 test problem, the ϵ value remained
constant throughout the evolution, indicating a lack of gen-
eration of more accurate elite individuals. Consequently, the
algorithm’s applicability might be limited. These limitations
were identified during testing, but the exact test problem
remains unspecified.
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TABLE II
HV STATISTICS FOR FIVE ALGORITHMS IN THE 38 BENCHMARK

Problem PPS CTAEA MTCMO TSTI C3M BPCMO

C1DTLZ1 8.1665e-1 (4.49e-3) − 8.3596e-1 (2.46e-3) ≈ 8.3868e-1 (4.52e-3) + 8.4194e-1 (6.03e-4) + 8.1699e-1 (1.41e-2) − 8.3244e-1 (8.01e-3)
C1DTLZ3 3.9320e-1 (2.05e-1) + 4.2866e-1 (1.78e-1) + 1.4863e-1 (2.51e-1) − 1.4848e-1 (2.50e-1) − 2.5573e-1 (2.16e-1) ≈ 2.5904e-1 (1.92e-1)
C2DTLZ2 4.9727e-1 (3.17e-3) − 5.0660e-1 (1.72e-3) − 5.1629e-1 (1.20e-3) − 5.1651e-1 (1.77e-3) − 4.9261e-1 (3.00e-3) − 5.1882e-1 (1.16e-3)
C3DTLZ4 7.5400e-1 (3.22e-2) − 7.8483e-1 (1.19e-3) − 7.8968e-1 (1.04e-3) − 7.8942e-1 (8.65e-4) − 7.7805e-1 (1.64e-3) − 7.9406e-1 (7.99e-4)

DC1DTLZ1 5.5408e-1 (7.13e-2) − 6.2695e-1 (9.93e-4) − 6.3204e-1 (1.03e-3) + 6.3104e-1 (1.65e-3) + 3.5125e-1 (2.69e-1) − 6.3013e-1 (1.82e-3)
DC1DTLZ3 2.8527e-1 (1.42e-1) ≈ 4.6064e-1 (2.68e-3) + 4.7351e-1 (1.21e-3) + 4.6592e-1 (2.23e-2) + 6.6153e-2 (1.22e-1) − 3.1717e-1 (1.34e-1)
DC2DTLZ1 7.4183e-1 (1.44e-1) − 8.3812e-1 (4.80e-4) + 5.7888e-1 (1.64e-1) − 6.8109e-1 (1.84e-1) ≈ 7.0902e-1 (1.75e-1) − 8.2632e-1 (5.80e-3)
DC2DTLZ3 1.0544e-1 (1.98e-1) ≈ 1.8984e-1 (2.38e-1) ≈ 1.3124e-2 (1.25e-3) ≈ 1.3523e-2 (0.00e+0) ≈ 2.4640e-1 (2.62e-1) ≈ 1.1067e-2 (5.51e-3)
DC3DTLZ1 1.5519e-1 (2.05e-1) − 5.2243e-1 (3.15e-3) + 2.8200e-1 (2.25e-1) ≈ 1.5121e-1 (1.72e-1) − 5.2055e-2 (1.58e-1) − 4.9528e-1 (1.11e-1)
DC3DTLZ3 2.3010e-2 (7.31e-2) ≈ 3.3306e-1 (2.32e-2) + 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 4.6243e-2 (9.95e-2) + 0.0000e+0 (0.00e+0)

MW1 4.6132e-1 (8.17e-2) − 4.8842e-1 (2.09e-3) − 4.8544e-1 (2.08e-2) − 4.7492e-1 (2.60e-2) ≈ 3.8167e-1 (1.35e-1) − 4.8965e-1 (1.61e-4)
MW2 3.5250e-1 (1.23e-1) − 5.6204e-1 (1.55e-2) − 5.5225e-1 (1.31e-2) − 5.5235e-1 (1.48e-2) − 4.5659e-1 (5.36e-2) − 5.8178e-1 (2.18e-3)
MW3 5.4290e-1 (8.61e-4) − 5.4435e-1 (5.65e-4) ≈ 5.4389e-1 (9.54e-4) − 5.4447e-1 (5.09e-4) ≈ 5.4161e-1 (7.73e-4) − 5.4452e-1 (6.56e-4)
MW4 8.0256e-1 (6.81e-3) − 8.3817e-1 (3.55e-4) − 8.4168e-1 (4.51e-4) + 8.4176e-1 (4.39e-4) + 8.0114e-1 (3.67e-2) − 8.4070e-1 (4.68e-4)
MW5 2.0362e-1 (1.07e-1) − 3.1550e-1 (2.78e-3) − 3.0584e-1 (6.07e-2) − 2.7628e-1 (7.89e-2) − 2.0230e-1 (1.06e-1) − 3.2390e-1 (3.11e-4)
MW6 9.7351e-2 (9.36e-2) − 3.1008e-1 (1.18e-2) − 3.0595e-1 (1.66e-2) − 2.9076e-1 (4.11e-2) − 1.6787e-1 (6.53e-2) − 3.2787e-1 (2.42e-3)
MW7 4.1155e-1 (3.63e-4) − 4.0891e-1 (7.63e-4) − 4.1156e-1 (8.06e-4) − 4.1140e-1 (1.52e-3) − 4.1094e-1 (5.16e-4) − 4.1268e-1 (3.83e-4)
MW8 3.0683e-1 (9.13e-2) − 5.2606e-1 (9.54e-3) − 5.3465e-1 (1.24e-2) − 5.1206e-1 (4.35e-2) − 3.9807e-1 (6.19e-2) − 5.5378e-1 (5.78e-4)
MW9 2.4817e-1 (1.62e-1) − 3.9033e-1 (2.35e-3) − 3.8803e-1 (2.79e-2) − 3.7265e-1 (7.79e-2) − 1.4611e-1 (1.79e-1) − 4.0200e-1 (6.26e-4)

MW10 2.5623e-1 (1.07e-1) − 4.3890e-1 (1.18e-2) − 4.2094e-1 (2.47e-2) − 4.0798e-1 (3.10e-2) − 2.3540e-1 (7.93e-2) − 4.4890e-1 (7.72e-3)
MW11 4.4736e-1 (1.45e-4) − 4.4161e-1 (1.39e-3) − 4.4767e-1 (2.10e-4) − 4.4738e-1 (2.74e-4) − 4.4622e-1 (3.80e-4) − 4.4814e-1 (2.35e-4)
MW12 4.4013e-1 (2.43e-1) − 6.0069e-1 (6.56e-4) − 5.8476e-1 (1.10e-1) − 5.8699e-1 (6.76e-2) − 1.7246e-1 (2.42e-1) − 6.0578e-1 (2.61e-4)
MW13 2.6687e-1 (9.68e-2) − 4.5630e-1 (1.13e-2) − 4.4123e-1 (1.98e-2) − 4.0566e-1 (3.28e-2) − 3.4972e-1 (3.78e-2) − 4.6405e-1 (3.09e-2)
MW14 4.3294e-1 (1.46e-2) − 4.6595e-1 (2.95e-3) − 4.7294e-1 (2.47e-3) + 4.7338e-1 (1.63e-3) + 4.1908e-1 (2.11e-2) − 4.6873e-1 (2.41e-3)

LIRCMOP1 2.1491e-1 (2.44e-2) + 1.1212e-1 (2.59e-2) − 1.5851e-1 (7.49e-3) − 1.3771e-1 (9.74e-3) − 1.3996e-1 (2.78e-2) − 1.6544e-1 (1.56e-2)
LIRCMOP2 3.3969e-1 (2.42e-2) + 2.4274e-1 (3.79e-2) ≈ 2.8513e-1 (1.10e-2) + 2.6252e-1 (1.01e-2) ≈ 2.5627e-1 (3.72e-2) ≈ 2.5975e-1 (1.30e-2)
LIRCMOP3 1.7761e-1 (1.97e-2) + 9.2154e-2 (1.79e-2) − 1.4526e-1 (1.06e-2) − 1.2081e-1 (9.30e-3) − 1.4200e-1 (2.58e-2) − 1.6367e-1 (1.02e-2)
LIRCMOP4 2.7528e-1 (3.06e-2) ≈ 1.8508e-1 (2.27e-2) − 2.4674e-1 (9.47e-3) − 2.2094e-1 (1.31e-2) − 2.5022e-1 (3.51e-2) ≈ 2.6542e-1 (1.06e-2)
LIRCMOP5 2.7941e-1 (5.28e-2) + 5.2607e-3 (2.88e-2) ≈ 2.2698e-2 (5.21e-2) ≈ 1.5070e-2 (4.65e-2) ≈ 1.5776e-1 (1.34e-1) + 2.6805e-2 (6.21e-2)
LIRCMOP6 1.8375e-1 (1.18e-2) + 0.0000e+0 (0.00e+0) − 1.1440e-2 (2.98e-2) ≈ 1.3776e-2 (3.15e-2) ≈ 1.4036e-1 (7.14e-2) + 2.1627e-2 (3.45e-2)
LIRCMOP7 2.4181e-1 (6.92e-3) ≈ 1.9809e-1 (8.55e-2) − 2.4801e-1 (8.26e-3) ≈ 2.2683e-1 (6.23e-2) ≈ 2.8514e-1 (1.75e-2) + 2.4622e-1 (1.36e-2)
LIRCMOP8 2.3173e-1 (1.57e-2) − 1.1826e-1 (1.04e-1) − 2.3027e-1 (8.86e-3) − 1.7747e-1 (9.04e-2) − 2.8479e-1 (1.65e-2) + 2.4312e-1 (1.93e-2)
LIRCMOP9 4.0670e-1 (5.07e-2) ≈ 2.9155e-1 (3.87e-2) − 1.7128e-1 (7.70e-2) − 3.0577e-1 (7.25e-2) − 4.1223e-1 (3.56e-2) ≈ 3.9837e-1 (5.69e-2)

LIRCMOP10 5.4308e-1 (7.33e-2) + 4.7426e-1 (3.92e-2) ≈ 1.2819e-1 (1.11e-1) − 1.5510e-1 (9.45e-2) − 6.4084e-1 (4.10e-2) + 4.4739e-1 (1.43e-1)
LIRCMOP11 5.0439e-1 (8.17e-2) − 5.9013e-1 (4.45e-2) ≈ 2.7961e-1 (1.07e-1) − 2.9664e-1 (8.30e-2) − 6.3707e-1 (5.22e-2) + 5.7026e-1 (8.18e-2)
LIRCMOP12 5.2333e-1 (4.98e-2) + 4.8828e-1 (5.59e-2) ≈ 4.0435e-1 (5.87e-2) − 4.1223e-1 (5.09e-2) − 5.5345e-1 (4.31e-2) + 5.0607e-1 (3.49e-2)
LIRCMOP13 5.0038e-1 (8.89e-3) − 5.4597e-1 (1.77e-3) + 1.2854e-4 (1.23e-4) − 1.0793e-4 (1.23e-4) − 4.4701e-1 (5.20e-2) − 5.2526e-1 (2.04e-3)
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TABLE III
IGDP STATISTICS FOR FIVE ALGORITHMS IN THE 38 BENCHMARK

Problem PPS CTAEA MTCMO TSTI C3M BPCMO

C1DTLZ1 1.9175e-2 (4.91e-4) − 1.6305e-2 (1.90e-4) − 1.4169e-2 (1.70e-4) + 1.4065e-2 (1.24e-4) + 1.8453e-2 (2.39e-3) − 1.5300e-2 (5.39e-4)
C1DTLZ3 1.6498e+0 (3.24e+0) − 4.2505e-1 (1.51e+0) + 5.8867e+0 (3.60e+0) − 5.8840e+0 (3.59e+0) − 1.2081e+0 (2.42e+0) ≈ 6.7194e-1 (1.54e+0)
C2DTLZ2 2.5091e-2 (7.63e-4) − 2.3631e-2 (7.49e-4) − 1.8963e-2 (6.12e-4) ≈ 1.8685e-2 (4.59e-4) ≈ 3.0212e-2 (1.09e-3) − 1.8849e-2 (5.53e-4)
C3DTLZ4 1.0069e-1 (3.86e-2) − 6.1262e-2 (1.87e-3) − 5.5940e-2 (1.80e-3) − 5.6354e-2 (1.39e-3) − 7.4351e-2 (2.54e-3) − 4.8831e-2 (1.24e-3)

DC1DTLZ1 3.1221e-2 (4.53e-2) − 1.0687e-2 (2.47e-4) − 8.2489e-3 (2.34e-4) + 8.5360e-3 (5.26e-4) + 1.5417e-1 (1.76e-1) − 9.0822e-3 (5.05e-4)
DC1DTLZ3 3.6734e-1 (6.77e-1) − 1.6339e-2 (9.15e-4) + 1.3262e-2 (6.21e-4) + 2.1394e-2 (3.46e-2) + 1.9239e+0 (2.16e+0) − 1.1780e-1 (1.19e-1)
DC2DTLZ1 4.7522e-2 (5.65e-2) − 1.6332e-2 (2.23e-4) + 1.2314e-1 (6.78e-2) − 8.0857e-2 (7.59e-2) ≈ 6.8135e-2 (7.03e-2) − 2.1123e-2 (2.56e-3)
DC2DTLZ3 4.7249e-1 (2.13e-1) ≈ 3.7159e-1 (2.50e-1) ≈ 5.6395e-1 (2.25e-3) ≈ 5.5996e-1 (0.00e+0) ≈ 3.3434e-1 (2.73e-1) ≈ 5.7897e-1 (5.90e-2)
DC3DTLZ1 9.8209e-1 (1.42e+0) − 6.4476e-3 (2.48e-4) ≈ 1.1178e-1 (1.07e-1) ≈ 1.9175e-1 (1.23e-1) − 1.4212e+0 (1.11e+0) − 2.3742e-2 (6.94e-2)
DC3DTLZ3 3.0720e+0 (3.09e+0) − 1.9655e-2 (8.49e-3) + 1.2682e+0 (3.89e-1) − 1.8513e+0 (5.79e-1) − 3.2996e+0 (2.85e+0) − 6.1042e-1 (1.73e-1)

MW1 2.2562e-2 (7.03e-2) − 1.5683e-3 (6.53e-4) − 4.0760e-3 (1.45e-2) − 9.5558e-3 (1.71e-2) ≈ 8.7191e-2 (1.15e-1) − 1.2539e-3 (6.02e-5)
MW2 1.8979e-1 (1.16e-1) − 1.4602e-2 (9.41e-3) − 2.0669e-2 (8.81e-3) − 2.0577e-2 (1.01e-2) − 9.1796e-2 (4.36e-2) − 3.0251e-3 (1.31e-3)
MW3 3.6924e-3 (4.43e-4) − 2.8328e-3 (2.99e-4) ≈ 3.2189e-3 (5.88e-4) − 2.8888e-3 (3.40e-4) ≈ 4.5643e-3 (4.49e-4) − 2.7943e-3 (3.78e-4)
MW4 5.0741e-2 (2.60e-3) − 3.2571e-2 (3.41e-4) − 2.9188e-2 (3.76e-4) + 2.8963e-2 (3.42e-4) + 6.0388e-2 (2.28e-2) − 3.0097e-2 (4.45e-4)
MW5 1.7054e-1 (1.54e-1) − 1.3925e-2 (4.01e-3) − 2.6019e-2 (8.53e-2) − 6.6679e-2 (1.11e-1) − 1.6426e-1 (1.55e-1) − 1.2950e-3 (5.59e-4)
MW6 5.4907e-1 (3.26e-1) − 1.2264e-2 (8.86e-3) − 1.7770e-2 (1.31e-2) − 4.9155e-2 (1.06e-1) − 3.2262e-1 (2.03e-1) − 1.5949e-3 (1.70e-3)
MW7 2.7594e-3 (1.80e-4) − 3.9326e-3 (3.18e-4) − 2.3217e-3 (3.83e-4) − 2.5173e-3 (9.98e-4) − 2.8187e-3 (2.34e-4) − 1.6947e-3 (1.74e-4)
MW8 1.5586e-1 (5.69e-2) − 2.8360e-2 (5.32e-3) − 2.8294e-2 (6.81e-3) − 4.1325e-2 (2.50e-2) − 1.0651e-1 (3.77e-2) − 1.8159e-2 (5.26e-4)
MW9 1.9768e-1 (2.58e-1) − 7.1040e-3 (1.07e-3) − 1.2739e-2 (3.29e-2) − 3.3273e-2 (1.18e-1) − 3.8863e-1 (2.99e-1) − 2.1406e-3 (4.03e-5)

MW10 2.9331e-1 (1.86e-1) − 1.2759e-2 (1.04e-2) − 3.3449e-2 (3.27e-2) − 4.9644e-2 (4.33e-2) − 3.2897e-1 (1.39e-1) − 5.8713e-3 (5.19e-3)
MW11 3.6996e-3 (2.48e-4) − 8.3401e-3 (1.20e-3) − 2.6984e-3 (1.40e-4) − 2.7448e-3 (1.33e-4) − 4.5399e-3 (3.19e-4) − 2.0646e-3 (8.75e-5)
MW12 1.7720e-1 (2.76e-1) − 5.7950e-3 (5.05e-4) − 2.7437e-2 (1.34e-1) − 1.8781e-2 (6.02e-2) − 4.8794e-1 (2.87e-1) − 2.3699e-3 (5.41e-5)
MW13 4.1618e-1 (3.11e-1) − 2.5666e-2 (1.44e-2) − 4.7788e-2 (2.70e-2) − 1.0871e-1 (5.87e-2) − 2.2057e-1 (1.16e-1) − 2.2372e-2 (5.08e-2)
MW14 1.0384e-1 (2.61e-2) − 6.2679e-2 (3.66e-3) + 6.5268e-2 (3.72e-3) ≈ 6.4443e-2 (2.19e-3) + 1.4797e-1 (4.11e-2) − 6.6595e-2 (2.54e-3)

LIRCMOP1 3.7539e-2 (3.83e-2) + 2.5177e-1 (6.86e-2) − 1.3430e-1 (1.62e-2) − 1.8741e-1 (1.59e-2) − 1.7348e-1 (6.28e-2) − 1.2398e-1 (1.80e-2)
LIRCMOP2 2.6799e-2 (2.27e-2) + 1.5853e-1 (5.81e-2) − 7.9418e-2 (1.15e-2) + 1.1319e-1 (1.10e-2) ≈ 1.1899e-1 (4.92e-2) ≈ 1.1303e-1 (1.87e-2)
LIRCMOP3 5.6497e-2 (4.57e-2) + 2.9593e-1 (7.40e-2) − 1.3750e-1 (2.17e-2) − 1.9568e-1 (2.02e-2) − 1.4753e-1 (6.92e-2) − 9.3223e-2 (1.93e-2)
LIRCMOP4 5.5467e-2 (4.12e-2) ≈ 2.0554e-1 (4.31e-2) − 9.4360e-2 (1.39e-2) − 1.3718e-1 (2.03e-2) − 9.5190e-2 (5.70e-2) ≈ 6.5689e-2 (1.38e-2)
LIRCMOP5 4.7897e-2 (2.16e-1) + 1.1983e+0 (1.84e-1) − 1.0595e+0 (3.60e-1) − 1.1179e+0 (2.98e-1) − 5.1151e-1 (5.64e-1) + 1.0436e+0 (3.76e-1)
LIRCMOP6 4.5365e-2 (3.77e-2) + 1.3462e+0 (7.05e-4) − 1.2161e+0 (3.35e-1) − 1.1844e+0 (3.67e-1) − 2.5862e-1 (4.50e-1) + 1.0448e+0 (4.35e-1)
LIRCMOP7 1.1699e-1 (1.73e-2) ≈ 3.6347e-1 (5.36e-1) − 1.0209e-1 (2.06e-2) ≈ 2.1939e-1 (3.98e-1) ≈ 2.4447e-2 (3.70e-2) + 1.0733e-1 (3.51e-2)
LIRCMOP8 1.7107e-1 (5.67e-2) − 8.4481e-1 (7.08e-1) − 1.7552e-1 (4.06e-2) − 4.9717e-1 (6.03e-1) − 2.4295e-2 (3.40e-2) + 1.2940e-1 (7.26e-2)
LIRCMOP9 2.5496e-1 (8.97e-2) ≈ 4.1887e-1 (9.31e-2) − 8.1103e-1 (1.86e-1) − 4.0247e-1 (1.57e-1) − 2.1350e-1 (4.90e-2) + 2.7667e-1 (1.03e-1)

LIRCMOP10 2.4264e-1 (1.01e-1) + 3.4933e-1 (4.92e-2) − 7.8374e-1 (1.77e-1) − 7.4171e-1 (1.80e-1) − 1.1153e-1 (6.50e-2) + 3.4734e-1 (1.73e-1)
LIRCMOP11 2.3544e-1 (1.03e-1) − 2.0361e-1 (7.76e-2) − 6.4640e-1 (2.18e-1) − 5.9679e-1 (1.76e-1) − 7.5301e-2 (6.32e-2) + 1.6048e-1 (9.43e-2)
LIRCMOP12 1.5325e-1 (7.14e-2) + 2.5299e-1 (1.39e-1) ≈ 4.8218e-1 (1.44e-1) − 3.3328e-1 (1.25e-1) − 1.1074e-1 (6.33e-2) + 1.8303e-1 (4.95e-2)
LIRCMOP13 8.7868e-2 (8.67e-3) − 4.7408e-2 (1.28e-3) + 1.3145e+0 (1.70e-3) − 1.3137e+0 (1.20e-3) − 1.5719e-1 (5.40e-2) − 7.3111e-2 (2.48e-3)
LIRCMOP14 6.8648e-2 (1.18e-2) − 4.9044e-2 (9.00e-4) − 1.2713e+0 (1.81e-3) − 1.2295e+0 (2.24e-1) − 1.4967e-1 (1.58e-1) − 4.1517e-2 (1.27e-3)
+/ − / ≈ 7/27/4 6/28/4 5/28/5 5/26/7 8/26/4

TABLE IV
HV STATISTICS FOR FIVE ALGORITHMS IN THREE REAL PROBLEMS

Problem PPS CTAEA MTCMO TSTI C3M BPCMO

Supported I-beam Design 5.4676e-1 (7.66e-3) − 5.5002e-1 (5.83e-3) − 5.5425e-1 (3.85e-3) − 5.5335e-1 (5.25e-3) − 5.5627e-1 (2.03e-3) − 6.1015e-1 (1.20e-1)
Front Rail Design 4.0481e-2 (1.15e-5) − 4.0344e-2 (8.41e-5) − 4.0518e-2 (2.74e-6) − 4.0518e-2 (2.87e-6) − 4.0513e-2 (2.50e-6) − 4.0523e-2 (9.20e-7)
Energy Manage 3.1623e-2 (2.32e-5) − 3.1647e-2 (4.26e-5) − 3.1757e-2 (9.81e-7) − 3.1757e-2 (9.90e-7) − 3.1760e-2 (7.55e-7) − 3.8005e-2 (7.10e-4)
+/ − / ≈ 0/3/0 0/3/0 0/3/0 0/3/0 0/3/0
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