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Abstract—Much research has been done on predicting 

resource utilization in the cloud to avoid over- and under-

provisioning resources. Most existing systems focus on 

estimating the utilization of one or two resources at most, 

including memory, CPU, storage, network, or servers dedicated 

to cloud applications; they do not consider the correlation 

between resources. A maximum of one or two machine learning 

algorithms is employed for prediction purposes. Additionally, 

traditional prediction methods in the cloud provide a one-

dimensional output. Most current solutions predict resources, 

such as memory and CPU utilization, as a single output. 

Unfortunately, a one-dimensional output in resource provision 

and usage cannot capture the relationship between the 

application requirements of different resources, such as CPU, 

memory, CPU cores, disk, and network; this results in 

incomplete and inaccurate information and prediction results. 

Efficient resource allocation and management require 

predicting several parameters using multivariate state 

variables. This study presents a multi-resource utilization 

prediction model that uses several machine learning 

approaches, such as support vector regression, random forests, 

MLP regression, neural networks (NN) using Adam and SGD 

optimizers, and decision tree regression. The prediction model 

is based on univariate and multivariate time series. Google 

cluster trace data is used to evaluate the work. Four 

experiments are executed on the dataset, seeking to predict the 

resources for different time series interval periods. The various 

algorithms' mean absolute errors (MAE), root mean square 

error, mean absolute percentage error and R-squared are 

compared to determine which technique achieves the lowest 

error rate. The experimental results have shown that the 

prediction model yields better accuracy than previous research.  

 
Index Terms—cloud computing, resource utilization, 

prediction, machine learning  

 

I. INTRODUCTION 

FFECTIVE usage of resources in the cloud enables 

providers to deliver great performance at a minimal 

cost. Pay-as-you-go pricing is a common practice among 

cloud service providers, which allows for cost savings and 

flexibility for cloud users. The wide range of advancements 

in cloud computing technologies has led to a considerable 
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rise in cloud users and a growing number of applications that 

can be used to access various cloud computing services [1]. 

  Many scientific applications use cloud computing 

services, leading to varying levels of resource utilization [2, 

3]. As a result, effective resource management is required to 

address the changing demands of users. Effective resource 

management can help with cost reduction, performance 

enhancement, and resource utilization optimization in a 

cloud computing context. 

Prediction of resource utilization has been thoroughly 

explored, with a wealth of literature accessible at [3, 4, 5–7]. 

The accuracy of the resource utilization prediction model, its 

memory and time requirements, and its ability to handle 

various resources are all essential factors to consider. 

Making an accurate resource utilization prediction model is 

challenging because of the multiple parameters, such as 

CPU, memory consumption, disk I/O, and network 

throughput. There may be implicit correlations between 

memory utilization and CPU consumption, as well as 

between memory and disk I/O. Finding and predicting the 

relationship between each resource type is difficult. The 

predictions' outcomes will not be suitable for practical use in 

this way. To address this issue, the resource prediction's 

auto-scaler must manage the multiple indications 

simultaneously to make accurate scaling decisions. 

  The article's research contribution can be summed up as 

follows: A state-of-the-art literature review of the most 

recent research is provided, covering the analysis of several 

techniques for predicting resource utilization in cloud 

computing. A multi-resource utilization prediction model is 

presented using various machine learning techniques, 

including neural networks (NN) with Adam and SGD 

optimizers, MLP regression, random forest, decision tree 

regression, and support vector regression. The objective was 

to predict CPU, memory, disk utilization, and disk I/O time 

more accurately compared to previous traditional methods. 

The prediction model works for univariate and multivariate 

time-series input, allowing for the simultaneous prediction of 

multiple resources. Extensive experiments were conducted 

on real Google cluster trace data to evaluate and compare 

the various machine-learning techniques, demonstrating the 

proposed approach's effectiveness. The comparison of the 

mean absolute errors achieved by the different methods at 

different time intervals provided useful insights into 

selecting the best models. 

  The following sections comprise the article: Section II 

briefly summarizes the recent literature pertinent to the 

proposed work and addresses related work. The suggested 

model is presented in Section III, along with relevant 
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discussions, figures, and algorithms. The debate and results 

are provided in Section IV. The article is concluded in 

Section V.    

 

II. LITERATURE REVIEW 

Techniques for predicting cloud resource utilization are 

well-documented. The associated techniques are described 

in detail in this section. In [4], the authors have presented a 

machine learning regression integration method for 

predicting CPU resource utilization in a scientific 

application. The suggested method integrates resource 

utilization with function selection to enhance prediction 

performance. The model is evaluated on the Cybershake 

dataset, generated by simulating the application on a 

workflow management system. The outcomes demonstrate 

that the suggested model performs more accurately and 

quickly than existing machine learning regression models 

because it enhances accuracy by 2% and reduces execution 

time by 16.2%. The method improves prediction, decreases 

failures, and enables fault-tolerant scheduling. For cloud 

users, the scalability of virtualization technology means 

either excessive demand or insufficient resources over time 

[3]. The effective use of cloud services becomes much more 

challenging as a result. The resource utilization model 

depends on time and is impacted by cloud resource usage 

trends. In [3], the researchers estimate the CPU load of 

numerous virtual machines (VMs) obtained from the CoMon 

project dataset by combining a genetic algorithm with a 

learning automata (LA) theory-based cloud resource 

utilization prediction algorithm. The CoMon project [8] 

includes CPU utilization of more than a thousand VMs in 

intervals of 5 minutes for 24 hours. The algorithm uses 

prediction models to determine the weights for individual 

models. The suggested algorithm is tested by predicting the 

load on several virtual machines. The outcomes demonstrate 

that the proposed algorithm outperforms other prediction 

systems because it achieves the lowest RMSD error, which 

accounts for 8.77169.  

In [6], an adaptive method for workload prediction using 

SVM and LR is presented. This method first divides 

workloads into numerous categories. Additionally, it 

automatically assigns various prediction models based on the 

priority of the jobs, the speed of workload change, and the 

characteristics of the workload. The Google Cluster trace is 

used to evaluate the proposed method. The experimental 

results have shown that when compared to the time-series 

prediction methods (Autoregressive Integrated Moving 

Average (ARIMA), Support Vector Machines (SVM), and 

Linear Regression (LR), the proposed method reduces the 

platform's cumulative relative prediction errors by 29.06%, 

8.42%, and 40.86%, respectively. Automated resource 

provisioning adjusts available resources to match service 

needs. The more accurate the prediction model is, the greater 

the reduction in power consumption and the higher the 

assurance in SLA and QoS, especially for services with strict 

QoS requirements regarding latency or response time.  

The authors of [7] proposed an approach that employs an 

SVM regression model to forecast the average hourly load 

of a distributed server during a 24-hour test interval based 

on historical data and estimate the necessary number of 

resources. The SVM-based forecasting techniques are 

compared with other forecasting methods, namely those 

based on last-value, moving average, and linear regression. 

In addition to these basic methods, the SVM-based 

forecasting models are compared and evaluated using three 

different kernel functions (SVM with a polynomial kernel, 

SVM with an RBF kernel, and SVM with a normalized 

polynomial kernel). The suggested forecasting model 

evaluation uses real online service logs from Complutense 

University of Madrid. According to experimental results, 

prediction errors (MAE, MSE, and RMSE) are fewer in all 

cases when utilizing kernel functions in SVM-based 

forecasting models than when using the three fundamental 

methodologies (SVM based on last-value, moving average, 

and linear regression). The SVM algorithm and other 

machine learning techniques, such as Naive Bayes (NB), k-

nearest neighbor (K-NN), decision trees (DT), logistic 

regression, and random forest (RF) are proven for their 

efficiency and accuracy in other fields, such as detecting 

Deep fake videos and tracing the origin of metastatic lung 

cancer tissues [20, 25]. 

In [9], an adaptive model called Long Short Term 

Memory (LSTM) is presented to predict CPU load. It 

predicts the average load in advance at consecutive future 

intervals. The model's performance is evaluated on two real 

workloads: a workload trace on UNIX systems collected by 

Dinda and a workload trace from the Google data center. 

The artificial neural networks (ANN), the Bayes model, the 

autoregressive (AR) model, the PSR+EA-GMDH method, 

and the echo state networks (ESN) are compared with the 

proposed model. The results have demonstrated that, in 

comparison to other models, the suggested approach is more 

accurate on both datasets. The presented model and the ESN 

model both vastly outperform the PSR+EAGMDH and the 

Bayes methods, and using the LSTM model is slightly better 

than the ESN method. The ESN and LSTM models can use 

historical data to determine long-term dependencies.  

The authors of [10] presented a model for predicting 

workloads using neural networks and an adaptive differential 

evolution algorithm. This model enables administrators to 

discover the potential issues with the resource reservation 

plan and alter it as needed. The algorithm then decides if 

resources are over or under-provisioned. The knowledge 

extracted during this process is then utilized to examine 

characteristics of resource utilization. The suggested 

solution is examined on OpenStack using Wikipedia server 

traffic data. The neural network and other machine learning 

algorithms, including linear regression and RepTree, are 

compared. The RepTree method outperformed the neural 

network by 7% and learns, but the neural network model 

performs better in the long term. Scalability, a crucial cloud 

computing element, is achieved through efficient resource 

scheduling. Determining whether a resource reservation 

strategy can be developed and implemented for optimal 

resource scheduling is critical. Such a plan can distribute 

additional resources while keeping enough available. A 

neural network technique is also used in this study [22–24] 

to predict short-term power loads, wind speed, and stock 
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market prices. The fault tolerance and robustness of neural 

networks allow them to predict many complex nonlinear 

time series systems accurately. Using neural networks can 

help handle noise data and disturbances in power systems, 

leading to improved prediction stability. 

In [11], neural networks and a self-adaptive differential 

evolution technique are used to predict resource utilization. 

The technique selects the most suitable crossovers and 

mutations. HTTP traces from NASA and Saskatchewan 

servers are used to evaluate the method. Considerable 

improvements are found when comparing the model with 

other prediction models built based on the well-known 

backpropagation learning algorithm. The model achieved a 

reduction in error of up to 168 times. 

In [12], researchers introduced an LSTM network 

algorithm to predict workload in cloud datacenters. The 

experiments were performed on three datasets: HTTP traces 

of the NASA server, the Calgary server, and the 

Saskatchewan server, which were gathered and examined by 

[13]. For HTTP traces from the NASA server, Calgary 

server, and Saskatchewan server, the minimum mean 

squared errors were 4.79 × 10-3, 3.42 × 10-3, and 3.17 × 10-3, 

respectively. The results have demonstrated that the model 

achieved remarkable prediction accuracy by reducing the 

mean squared error to 3.17 × 10-3. To construct models 

based on various workload attributes, most clouds don't 

employ more than user-specified resource use thresholds to 

offer automatic scaling. Fewer jobs can estimate resource 

needs by analyzing multiple indicators at once. 

In [14], the authors utilized a Long Short-Term Memory 

(LSTM) neural network to predict resource utilization with 

multivariate time series data. The model employed is 

the Multivariate Fuzzy LSTM (MF-LSTM), a novel cloud-

active automated scaling system that integrates several 

mechanisms. To select appropriate inputs, the correlation 

between various metrics is assessed. It is recommended to 

use a fuzzification technique to reduce the fluctuation of 

monitoring data. The authors evaluated their model using 

Google Trace data. The results show that the CPU and 

memory predictions using MF-LSTM have Mean Absolute 

Error (MAE) values of 0.3221 and 0.0303, respectively. 

Time series forecasting (TSF) is a common research task 

in various domains, such as medical, transportation, 

environment, network detection, and finance [27]. 

  In [15], the authors developed a scheduling algorithm 

based on a prediction model to address the issue of peak 

loads, which can lead to scheduling errors and reduce the 

energy efficiency of the algorithm. It is challenging for any 

predictive model to accurately predict the future resource 

usage of a data center based solely on initial data. 

Therefore, the best scheduling algorithm is one that 

can accurately predict data to handle complex scheduling 

scenarios while ensuring Quality of Service (QoS) and 

avoiding Service Level Agreement (SLA) violations. The 

authors compared the accuracy of their scheduling algorithm 

with the round-robin (RR) scheduling algorithm, the 

Minimum Migration Time (MMT) scheduling algorithm, 

and the First-Fit (FF) scheduling algorithm using the Google 

trace dataset. The results of the proposed approach 

showed that the proposed algorithm utilized more CPU and 

memory compared to the other three algorithms.  

In [16], a model is presented to predict the execution time 

of Hadoop Map-Reduce applications in a private cloud 

environment using a regression-based performance model. 

Cloud computing Map-Reduce packages can optimize the 

allocation of resources and complete Map Reduce 

jobs within a specified timeframe. Users of cloud services 

need to estimate the resources required to complete tasks in 

modern systems. The proposed framework 

predicts job completion times using a scale-out strategy. The 

datasets are randomly generated using tools and 

programs such as the Random Writer Tool and the TeraGen 

program. The results demonstrated that the model achieved a 

high accuracy rate of 99%. 

In [17], an online learning approach for multivariate 

resource usage prediction models is proposed using the 

Levenberg-Marquardt and gradient descent methods. The 

predicted resources are CPU usage for seven and twenty 

days. The framework is evaluated using the PlanetLab 

workload trace and the Google cluster trace. A comparison 

between the learning abilities of the ARIMA and BLSTM 

models demonstrates that the BLSTM model performs 

significantly better. Sparse BLSTM is presented to address 

the challenge of adapting many parameters in BLSTM. A 

concept tree is created to help identify the parameters 

needing removal. Predictions of adapted sparse models are 

comparable to those of adapted dense models. When 

comparing the adaptation times for dense and sparse models, 

it can be seen that sparse real-time adaptations are faster by 

50–60% in the pruned model. 

In [18], the authors suggested a multi-objective load-

balancing approach integrated with a prediction model 

called the OP-MLB framework for elastic resource 

management at a cloud data centre. They used neural 

networks customized with an adaptive evolutionary 

algorithm to predict cloud resources. Multi-objective load 

balancing is achieved through proactive VM placement and 

migration, where VMs are allocated based on maximum 

resource utilization and minimal power and communication 

costs. The presented framework is evaluated on three real 

benchmark datasets: Google Cluster Data (GCD), PlanetLab 

VMs (PL), and the Bitsbrain (BB) dataset. The lowest 

RMSE error score of the proposed prediction approach for a 

prediction interval of 5 minutes on the three workloads is 

0.0005 for CPU resources. 

In [19], a hybrid LSTM (Convolutional Neural Network 

and Long Short-Term Memory) model for analyzing 

multivariate workloads is presented. The main goal of this 

model is to extract the complex features of the VM usage 

components and model temporal information about the 

irregular trends in the time series components. Bitbrains data 

is used to evaluate the presented model. The suggested and 

alternative prediction models, including ARIMA-LSTM, 

VAR-GRU, and VAR-MLP, are compared. The proposed 

model's accuracy rate (which was improved from 3.8% to 

10.9%) and the error rate (which decreased to 7% from 

8.5%) are better than other models, according to the results. 

The authors of [22] suggested a short-term load prediction 

approach using a Group Method of Data Handling 

(GMDH)-type neural network. Combining the GMDH-type 
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neural network could lead to accurate short-term load 

prediction in power systems. The neural network with its 

excellent fault tolerance and robustness analyzes nonlinear 

historical load data and other pertinent factors to learn 

patterns and forecast the future. Furthermore, simulation 

experiments were conducted to validate the effectiveness of 

the presented method, which fully demonstrated its ability to 

accurately predict short-term load in power systems, 

resulting in better operational planning and decision-making, 

as well as improved power system technical and economic 

performance. Overall, using GMDH-type neural networks 

for short-term load forecasting proved to be effective in 

improving the operational efficiency and reliability of 

modern power systems.  

In [23], the authors presented an accurate, stable, and 

efficient wind speed prediction method integrated with an 

error correction mechanism to address the strong 

randomness and volatility of wind speed data. They utilized 

a convolutional neural network (CNN) for prediction and 

optimized the data weights using the PSO 

algorithm. Singular spectrum and wavelet analysis were 

employed to denoise and process the wind speed data. This 

study evaluated the effectiveness of the prediction method 

using two wind speed datasets from a wind farm in Jiangsu 

Province, China. The wind speed prediction model proposed 

in this research outperforms previous models in short-term 

prediction, as demonstrated by testing results on the two 

datasets. 

A study by [24] employed artificial neural networks to 

predict stock prices during the COVID-19 pandemic, 

specifically focusing on the Indonesia Stock Exchange. They 

trained the ANN with historical stock data and various 

market indicators to get more accurate predictive results and 

capture complex patterns. The outcomes showed that the 

ANN-based model performed better than conventional 

statistical techniques, providing more accurate stock 

movement forecasts up to a maximum of 98.8%. There are 

recorded MAPE values less than or equal to 10%. This 

could be helpful for investors navigating erratic market 

conditions during the epidemic.  

The authors of [25] developed a hybrid technique for 

identifying deep fakes in videos. They used machine 

learning, deep learning, and YOLO-V3 techniques to detect 

and extract features from faces in videos. An ensemble of 

machine learning classifiers is used to detect deep fakes, 

including support vector machines (SVM), decision trees 

(DT), k-nearest neighbors (K-NN), and Naïve Bayes (NB). 

They integrated the Celeb-DF (v2) and Face Forensics++ 

(FF++) datasets to evaluate the recommended technique. 

The results show that the recommended method outperforms 

state-of-the-art techniques with an accuracy of 99.64%. 

These results imply that the model provides investors 

navigating the volatile market conditions brought on by the 

pandemic with useful insights.  

In [26], the authors used a Functional Link Neural 

Network (FLNN) with a hybrid genetic algorithm (GA) and 

particle swarm optimization (PSO) to develop a multi-

resource utilization prediction model. They only utilized one 

method to forecast CPU and memory resources; their model 

did not consider disk resource utilization or disk I/O time. 

They conducted one experiment on the dataset, aiming to 

predict the resources for a single time series interval period 

of 5 minutes. The lowest MAE errors achieved in the 

univariate input case were 0.25 for CPU resources and 0.018 

for memory resources. The lowest MAE errors obtained in 

the multivariate input case were 0.33 for CPU resources and 

0.026 for memory resources.  

 

Limitations of Previous Work  

    Most research on cloud resource prediction focuses on 

predicting cloud resources based on univariate input 

cases where the prediction is based on a single input and 

single output. There is relatively little work exploring 

multivariate input cases, where multiple input variables 

are used simultaneously to enhance prediction accuracy. 

Addressing this gap could lead to more robust and 

comprehensive resource prediction models that better 

reflect the dynamic nature of cloud environments.   

    They focused on forecasting CPU and memory 

resources using just one or two techniques without 

taking disk utilization and disk I/O time into account. 

This strategy reduces the efficacy of their models since 

it ignores important elements that affect system 

performance as a whole. There is a need for 

incorporating disk-related metrics with CPU and RAM, 

employing advanced or hybrid modeling methodologies 

for a more holistic approach to resource management in 

cloud environments, in order to build more thorough 
and accurate resource predictions. 

    They executed one or two experiments at most to 

evaluate their work, seeking to predict the resources for 

only one or two-time series intervals. This narrow 

approach restricts the generalizability of their models, 

as it does not adequately reflect the diverse and dynamic 

nature of cloud resource demands over different 

timeframes. 

    Only one or two performance metrics are reported in 

their experiments, which offers an insufficient 

assessment of the models' efficacy. This constrained 

evaluation ignores a thorough comprehension of the 

models' behavior under diverse circumstances, 

potentially hiding important features like accuracy, 

scalability, and robustness. Future studies should 

include a wider range of performance criteria for a more 

comprehensive assessment that better captures the 

advantages and disadvantages of the models in various 

circumstances. 

Despite the number of solutions in the literature, there is 

still a need for advanced methods with higher accuracy and 

faster execution times to predict resource utilization in both 

univariate and multivariate input cases.  

Table I provides a comprehensive comparison between 

the proposed model and several relevant prior models, 

highlighting important elements such as the models' 

strengths and weakness. It addresses the drawbacks of each 

technique, such as computational complexity and scalability 

concerns, while also emphasizing its benefits, such as 

accuracy and interpretability. 
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     This paper presents a multi-resource utilization prediction 

model that uses several machine learning approaches, not 

only one. The key strengths of the paper are: 

-    A prediction model that works for both univariate and 

multivariate time-series input is proposed, allowing the 

prediction of multiple resources simultaneously. This 

approach is more practical than single-resource 

prediction. 

-    Extensive experiments were conducted on Google 

cluster trace data to evaluate and compare the various 

machine-learning techniques. This demonstrated the 

effectiveness of the proposed approach. 

-    A wider range of cloud metrics, such as disk resources 

and disk I/O, have been included in this paper for better 

generalizability.  

-    The comparison of mean absolute error, root mean 

square error, mean absolute percentage error and R-

squared achieved by different techniques for different 

time intervals provided valuable insights into selecting 

the best models.  

 

III. MODELS AND METHODS  

The proposed model aims to predict multi-resource 

utilization using machine learning techniques, including 

neural networks (NN) with Adam and SGD optimizers, MLP 

regression, random forest, decision tree, and support vector 

regression. Decreasing the number of training layers in the 

neural network leads to improved solutions, reducing the 

error produced. The prediction model is built to predict 

multi-resources for different periods, including CPU,  

 

 

memory, hard disk, and disk I/O time. The mean absolute  

error, root mean square error, mean absolute percentage 

error and R-squared of the various machine learning 

techniques are compared to determine which achieves the 

lowest error rate for the different resources. Google cluster 

trace data is used to evaluate the work. 

The primary objective is to choose and integrate several 

prediction methodologies properly to increase the accuracy 

of the final forecast. Accuracy can be improved by 

leveraging each predictive model's benefits and reducing its 

drawbacks. This section provides details on the suggested 

algorithm's various elements.  drawbacks. This section 

provides details on the suggested algorithm's various 

elements.    

 

Proposed Algorithm  

Figure 1 depicts the four key modules of the cloud 

resource forecasting system [5]: the manager, preprocessor, 

trainer, and forecaster. Furthermore, each module 

communicates with the others to produce accurate and 

timely forecasting results. timely forecasting results.  

 

1) Manager or collector module 

Through the Manager or Collector module, raw resource 

monitoring data from VMs is gathered and saved in a 

repository. Numerous monitoring services for public clouds 

are currently available, including IBM Cloud Monitoring, 

Rackspace Monitoring, and Cloud Watch from Amazon 

Web Services. Users can also configure and set up 

monitoring tools like Nagios, and Prometheus.   

 

TABLE I 

STRENGTHS AND WEAKNESS OF ALGORITHMS 

Ref  Algorithm           Strengths  

 

     Weaknesses 

[6] SVM  

LR  
 Linear regression is simple to 

implement, interpretable 

 SVM is effective in high-

dimensional spaces 

 

- linear regression has limited accuracy with non-

linear relationships 

- SVM requires careful tuning, can be slow for 

large datasets 

 

[9] LSTM  Capturing temporal 

dependencies, good for 

sequential data 

- Requires large amounts of data, complex to 

train 

- Limited generalization to diverse workloads  

- Limited scope, not scalable to multivariate data 

 

[17]  

 

 

 Gradient descent(GD) 

 Levenberg-Marquardt(LM) 

 Adaptable to new and dynamic 

data in cloud 

 

- Requires longer processing time for learning 

from new data 

[26] 

 

 

 FLGAPSONN (Functional link neural 

network) with genetic algorithm and 

particle swam optimization 

 

 Good at feature extraction, can 

handle spatial data 

 Leveraging strengths of multiple 

approaches, improved 

accuracy 

 

- Not ideal for sequential data, requires extensive 

data 

proposed 

Model  
 Neural network with Adam optimizer 

((NN(Adam)) 

 Neural network with SGD optimizer 

((NN(SGD)) 

 Support Vector regression (SVR) 

 Random Forest (RF) 

 Multi-layer Perceptron regression (MLP) 

 Decision Tree Regression (DTR) 

 

 Capture complex patterns (NN, 

MLP) 

 Robust to noise (SVR, RF) 

 Good with high-dimensional 

data (SVR)  

 Feature importance (RF) 

 Easy interpretation (Decision 

Tree) 

- Computationally intensive (NN, SVR, RF) 

- Prone to overfitting (NN, MLP, Decision Tree) 

- Sensitive to tuning (SVR, NN) 

- Lower interpretability (NN, RF). 
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                                                            Fig. 1. Architecture of the predictive system 

     2) Preprocessor module  

The function of the preprocessor module is to convert the 

collected time-series data into supervised data that can be 

used as input by neural networks and other machine learning 

techniques. Several mechanisms are implemented to process 

cloud data, including data normalization, expansion 

functions, sliding windows, averaging data over a long time, 

and grouping it into multivariate time series. The output data 

from this module's preprocessing is entered into the 

Collector module database as historical resource data, which 

is utilized to build the prediction model in the Trainer 

module. The data is also made available to the forecaster to 

predict resource consumption.  As previously mentioned, the 

goal of the preprocessor is to prepare data for the trainer and 

forecaster modules. Five mechanisms are deployed in this 

component. Firstly, the current raw data gathered over a long 

period is transformed into the corresponding time series with 

a time interval. The next phase is normalization, which 

scales a time series in the range of [0, 1]. Then, time series 

data is transformed into supervised data using the sliding 

method with a window width of k, which represents the 

number of values before time t to predict the value at time t. 

Finally, all resource metric types are grouped into a single 

multivariate dataset. 

 

 

3) Trainer module   

A learning method is proposed in the trainer module using 

neural networks and various machine learning techniques. 

Adam and SGD optimizers are also used to train the network 

to improve forecast accuracy further. After the training 

process is complete, the Forecaster module employs the 

trained model to forecast future resource use.  

4) Forecaster module   

    Values from real-time monitoring data (after the pre-

processing process) are used in the Forecaster module as 

inputs for the trained model to predict new values (i.e., 

resource consumption) in advance. The resulting outputs are 

unnormalized into real numbers before being put to use. 

Initially, raw resource monitoring data from VMs is 

gathered, and the resource data is collected from Google 

cluster trace data. After collecting the data, the pre-

processing phase begins. The datasets are converted and 

formatted appropriately at this phase. All null values are 

eliminated, and zero values are substituted to prepare the 

data for the prediction techniques. Subsequently, the output 

data is used to train and test the prediction-learning 

techniques. The training and testing portions of the dataset 

are separated to evaluate the learning models. Finally, the 

prediction output is obtained once the decision functions are 

executed, and a model evaluation is conducted. best models.  

 

 

IV. RESULTS AND DISCUSSION  

   This section describes how the proposed model was 

evaluated. The evaluation uses the publicly available Google 

cluster workload trace dataset [5, 21]. The dataset comprises 

multiple concurrent activity traces for a month in a single 

12K machine cluster. It includes traces of all requests and 

actions made by the cluster scheduler, resource utilization 

for each task over time, and traces of machine availability. 

Each trace describes several user-submitted jobs, and every 

job has one to ten tasks, which are programs to be run on an 

available machine. These tasks are typically carried out 

simultaneously rather than being gang-scheduled. Each task 

is given several specifications, such as priority, resource 
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request (estimated maximum RAM and CPU needed), and 

occasionally restrictions (such as not operating on a machine 

without an external IP address). The range of these 

parameters is broader than that of conventional cluster 

workloads. 

The trace also records every time a task is submitted, 

assigned to a machine, or rescheduled; this information 

enables users to look at the tasks, jobs, and scheduler 

behaviors. The trace also includes each machine's per-task 

resource utilization data. The trace lacks accurate 

information regarding the machine configuration and the 

purpose of the jobs. Although the trace does contain IDs for 

jobs, usernames, machine platforms, and configurations, 

these identifiers have been obscured by the trace providers, 

so users can only distinguish distributions of jobs, 

usernames, and machine characteristics throughout the trace. 

The trace contains six separate tables: task usage, task 

constraints, job events, machine events, task events, and 

machine attributes. 

Each job in the dataset consists of multiple concurrent 

tasks that run on different machines. The parameters in the 

dataset include CPU utilization, memory usage, disk 

utilization, and so on. According to earlier research [5], less 

than 2% of jobs take more than one day. For evaluation, a 

long-running job (ID 1617658948) consisting of 60,171 

tasks was selected. The job spans 20 days, with the first 15 

days used for training and the remaining data for testing. The 

assessment includes univariate input where CPU, memory, 

disk, or disk I/O time is considered, and multivariate input 

where CPU, memory, disk, and disk I/O time inputs are 

considered.  

Relevant data is collected, a predictive model is built, and 

the expected error is estimated. Various machine-learning 

algorithms are employed to determine the 

best model for predicting future resource usage, such 

as CPU, memory, disk utilization, and disk I/O time. A 

neural network with Adam and SGD optimizers, along 

with other machine learning techniques, is utilized to 

compare their Mean Absolute Error (MAE). compare their 

Mean Absolute Error (MAE), R-squared, root mean square 

error, and mean absolute percentage error.  

 

Experimental Setup and Result Analysis 

Python, which includes many libraries, simulates network 

traffic patterns. For the benefit of experimentation, the 

dataset is split into two sections. The first portion of the data 

was used to train the system, and the second portion was 

 

 

 

 

 

 

 

 

 

 

 

 

used to evaluate how accurate the forecast was. The Jupiter 

Notebook IDE has also been utilized. The add () function is 

used to add LSTM and dense layers to apply the LSTM 

model. Adam and SGD optimizers are employed to adjust 

the learning rate. The loss function employed with these 

optimizers are calculated using MSE. Other machine 

learning algorithms, such as MLP Regression, Random 

Forest, Decision Tree Regression, and Support Vector 

Regression, are employed on the dataset.  

Four experiments are executed to predict CPU, memory, 

disk resources, and disk I/O time for different time series 

interval periods: the first one is for 3 minutes, the second is 

for 5 minutes, the third is for 8 minutes, and the last one is 

for the 10-minute time series period. models.  

 

 

1) Three minutes_based on Google cluster workload 

experiment  

   Tables II and III display the comparative results among 

different machine learning techniques for predicting CPU, 

memory, disk and disk I/O time based on a 3-minute time 

series in terms of MAE, RMSE, R-squared score and MAPE 

for the univariate input case.  

A. For the univariate input case 

1) CPU:  

The strongest model overall is the Neural network with 

SGD optimizer (NN (SGD)), with the lowest RMSE 

(0.0226), the highest R-squared score (0.9993), and a 

competitive MAPE (0.0109). 

2) Memory:  

Decision tree regression (DTR) is the best-performing 

model for predicting memory resources with the lowest 

RMSE (0.0059), highest R-squared (0.999), and 

competitive MAPE (0.0296). 

3) Disk:  

Neural network with Adam optimizer (NN (Adam)) is 

the best-performing model with the lowest RMSE 

(0.0032), the highest R-squared (0.99999), and 

competitive MAPE (0.0026). 

4) Disk I/O time: 

Neural network with Adam optimizer is the best- 

performing model with the lowest RMSE (0.0258), the 

lowest MAPE (0.006445), and competitive R-squared 

(0.9997).  

Fig. 2-5 show graph plots of resource prediction based on 

the multivariate input case using different models.   

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE  II 

THE ERRORS RATES ACHIEVED BY ALL THE TECHNIQUES FOR PREDICTING CPU AND MEMORY FOR UNIVARIATE INPUT CASE (3 MINUTES) 

Resource                                 CPU                   Memory  

Algorithm MAE  RMSE     R MAPE  MAE RMSE     R MAPE 

SVR 0.4988 0.1560 0.9691 0.0968 0.308305 0.2351 0.9480 0.0042 

MLP  0.5078 0.1731 0.9620 0.6792 0.307782 0.1666 0.9739 0.0428 

NN : Adam 0.5140 0.0342 0.9985 0.0105 0.32489 0.2391 0.9462 0.0094 

NN (SGD ) 0.5197 0.0226 0.9993 0.0109 0.305653 0.2396 0.9460 0.0011 

RF 0.6952 0.0761 0.9926 1.0572 0.402572 0.4086 0.8430 1.6080 

DTR 0.7135 0.0259 0.9991 0.2403 0.403575 0.0059 0.9999 0.0296 

Proposed 

Model  
0.4988 

(SVR) 

0.0226 (NN 

(SGD ) 

0.9993 

(NN SGD) 

0.0105 

(NN : Adam) 

0.305653 

NN (SGD ) 

0.0059 

DTR 

0.9999 

DTR 

0.0011 

NN (SGD ) 
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Fig. 2.  Error rates of CPU prediction based on univariate input case (3 minutes) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Error rates of memory prediction based on univariate input case (3 minutes) 

 

  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  Error rates of disk prediction based on univariate input case (3 minutes) 

TABLE  III 

THE ERRORS RATES ACHIEVED BY ALL THE TECHNIQUES FOR PREDICTING DISK AND DISK I/O TIME FOR UNIVARIATE INPUT CASE 

 (3 MINUTES) 

Resource                                 Disk                   Disk I/O Time 

Algorithm MAE  RMSE     R MAPE  MAE RMSE     R MAPE 

SVR 0.086 0.0095 0.999909 0.0080 0.41497 0.1758 0.9666 0.095272 

MLP  0.0479 0.0125 0.999846 0.0130 0.45117 0.0636 0.9963 0.44703 

NN : Adam 0.0447 0.0032 0.99999 0.0026 0.44729 0.0258 0.9967 0.006445 

NN (SGD ) 0.0766 0.0093 0.999914 0.0005 0.45117 0.0301 0.9904 0.008548 

RF 0.0241 0.1074 0.988607 0.5479 0.55625 0.1542 0.9789 0.481701 

DTR 0.025 0.0100 0.9999 0.0214 0.55276 0.0317 0.9997 0.201661 

Proposed  

Model  

0.0241 

(RF) 

0.0032 

NN : Adam 

0.99999 

NN : Adam 

0.0005 

NN SGD  

0.41497 

SVR 

 

0.0258 

NN: Adam 

 

0.9997 

DTR 

 

0.006445 

NN: Adam 

 

 

MAPE R 

RMSE 

MAE  

MAPE 
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MAE 
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MAPE RMSE MAE R 
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Fig. 5.  Error rates of disk I/O time prediction based on univariate input case (3 minutes) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. For the multivariate input case  

Tables IV and V display the comparative results among 

different machine learning techniques for predicting CPU, 

memory, disk and disk I/O time based on a 3-minute time 

series in terms of MAE, RMSE, R-squared score and MAPE 

for the multivariate input case.  

 

1) CPU: 

The strongest model overall is support vector regression 

(SVR), which has the lowest RMSE (0.217427), the 

greatest R-squared (0.071), and the lowest MAPE 

(0.42488).  

2) Memory:  

Random forest(RF) is the best-performing model for  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

predicting memory resources with the lowest RMSE 

(0.02443), the highest R-squared (0.999143), and the lowest 

MAPE (0.017358). 

3) Disk:  

Decision tree regression (DTR) is the best-performing 

model with the lowest MAE (0.0275), competitive R-

Score (0.9323079), and the lowest MAPE (0.015963). 

4)  Disk I/O time: 

Decision tree regression (DTR) is the strongest model 

with the lowest RMSE (0.00235), the lowest MAPE 

(0.000869), and the highest R-squared (0.999994). 

    Fig. 6-9 show graph plots of resource prediction based on 

the univariate input case using different models.  

TABLE  IV 

THE ERRORS RATES ACHIEVED BY ALL THE TECHNIQUES FOR PREDICTING CPU AND MEMORY FOR MULTIVARIATE INPUT CASE 

(3 MINUTES) 

                                 CPU                   Memory  

Algorithm MAE  RMSE     R MAPE  MAE RMSE     R MAPE 

NN (Adam)  0.360444 0.221994 0.045 0.44421 0.221994 0.15090 0.967297 0.315929 

NN ( SGD ) 0.361448 0.224403 0.046 0.44738 0.224403 0.08877 0.988682 0.217975 

DTR 0.463975 0.283033 0.028 0.59682 0.283033 0.02923 0.998773 0.076925 

RF 0.429661 0.256123 0.043 0.52869 0.256123 0.02443 0.999143 0.017358 

SVR 0.360675 0.217427 0.071 0.42488 0.217427 0.13726 0.972939 0.214915 

MLP  0.358721 0.255768 0.056 0.45901 0.255768 0.08046 0.990701 0.171582 

Proposed 

Model  

0.358721 

(MLP) 
0.217427 

(SVR) 

0.071 

(SVR) 

0.42488 

(SVR) 

0.217427 

(SVR) 

0.02443 

(RF) 

0.999143 

(RF) 

0.017358 

(RF) 

 

TABLE V 

THE ERRORS RATES ACHIEVED BY ALL THE TECHNIQUES FOR PREDICTING DISK RESOURCE AND DISK I/O TIME FOR MULTIVARIATE 

INPUT CASE (3 MINUTES) 

Resource                                 Disk                   Disk I/O 

Algorithms  MAE  RMSE R MAPE  MAE RMSE     R MAPE 

NN (Adam)  0.0451 0.37622 0.827482 0.1976 0.44421 0.044426 0.997855 0.050749 

NN ( SGD ) 0.0463 0.0808133 0.9920399 0.4524643 0.44738 0.078326 0.993333 0.152738 

DTR 0.0275 0.2356643 0.9323079 0.0159632 0.59682 0.00235 0.999994 0.000869 

RF 0.0425 0.2214388 0.9402335 0.0380015 0.52869 0.003246 0.999989 0.002503 

SVR 0.071 0.5193225 0.671281 0.496123 0.42488 0.205646 0.954042 0.152219 

MLP  0.0556 0.0779708 0.99259 0.4233347 0.45901 0.074005 0.994048 0.083783 

Proposed  

Model  

0.0275 

(DTR) 

0.080813 

NN ( SGD ) 

0.99259 

(MLP) 

0.015963 

(DTR) 

0.42488 

(SVR) 

0.00235 

(DTR) 

0.999994 

(DTR) 

0.000869 

(DTR) 
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Fig. 6.  Error rates of CPU prediction based on multivariate input case (3 minutes) 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 7.  Error rates of memory prediction based on multivariate input case (3 minutes) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                          
 

 

Fig. 8.  Error rates of disk prediction based on multivariate input case (3 minutes) 
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Fig. 9.  Error rates of disk I/O time prediction based on multivariate input case (3 minutes) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) Five minutes_based on Google cluster workload 

experiment  

   Tables VI and VII show the comparative results 

between the different machine learning techniques for 

predicting CPU, memory, disk resources and disk I/O time 

based on a 5-minute time series in terms of MAE, RMSE, R-

squared and MAPE for univariate input case. Based on the 

overall performance, the prediction algorithm is selected.  

 

A. For the univariate input case 

1)  CPU:  

The strongest model overall is MLP, with the lowest 

RMSE (0.00235), the highest R-squared (0.999994), 

and the lowest MAPE (0.999994). 

2)  Memory:  

Neural network with Adam optimizer is the best model 

for predicting memory resources with the lowest RMSE 

(0.007008), the highest R-squared (0.99994), and a 

competitive MAPE. 

3)  Disk:  

The random forest is the best model with the lowest 

MAE (0.0081), the lowest RMSE (0.007977), and the 

highest R-squared (0.999937). 

4)  Disk I/O: 

 Lowest MAE: SVR (0.39977) 

 Lowest RMSE: NN (Adam) 0.015403 

 Highest R-squared: NN (Adam) 0.999768 

 Lowest MAPE: NN (SGD) 0.002339 

The neural network with Adam optimizer is the best 

performing model with the lowest RMSE (0.015403), 

the highest R-squared (0.999768), and a competitive 

MAPE.  

Fig. 10-13 show graph plots of CPU, memory, disk 

utilization and disk I/O time prediction based on univariate 

input case using different models. 

TABLE  VI 

THE ERRORS RATES ACHIEVED BY ALL THE TECHNIQUES FOR PREDICTING CPU AND MEMORY FOR UNIVARIATE INPUT CASE (5 MINUTES) 

Resource                                 CPU                   Memory  

Algorithm MAE  RMSE     R MAPE  MAE RMSE     R MAPE 

RF 0.00309 0.122055 0.982564 0.466721 0.00535 0.049245 0.99733 0.867344 

DTR 0.00451 0.078326 0.993333 0.152738 0.00825 0.037996 0.99841 0.218668 

MLP 0.017509 0.00235 0.999994 0.000869 0.01868 0.016381 0.99970 0.008346 

NN (SGD ) 0.026268 0.003246 0.999989 0.002503 0.08413 0.009521 0.9999 0.021058 

SVR 0.069424 0.205646 0.954042 0.152219 0.08007 0.211517 0.95077 4.093326 

NN( Adam ) 0.109813 0.074005 0.994048 0.083783 0.05313 0.007008 0.99994 0.478344 

Proposed 

Model  

0.00309 

(RF) 

0.00235 

(MLP) 

0.999994 

(MLP) 

0.000869 

(MLP) 

0.00535 

(RF) 

0.007008 

NN(Adam) 

0.99994 

NN(Adam) 

0.008346 

(MLP) 

 

TABLE  VII 

THE ERRORS RATES ACHIEVED BY ALL THE TECHNIQUES FOR PREDICTING DISK AND DISK I/O FOR MULTIVARIATE INPUT CASE  

(5 MINUTES) 

Resource                                 Disk                            Disk I/O   

Algorithm MAE  RMSE     R MAPE  MAE RMSE     R MAPE 

RF 0.0081 0.007977 0.999937 0.003232 0.50269 0.123255 0.985174 0.032406 

DTR 0.0086 0.013074 0.99983 0.009102 0.49772 0.035593 0.998764 0.032714 

MLP 0.0245 0.013838 0.99981 0.001915 0.45689 0.044135 0.998099 0.004965 

NN (SGD ) 0.0673 0.013838 0.99981 0.00093 0.46779 0.054158 0.997138 0.002339 

SVR 0.0445 0.078509 0.993884 0.229484 0.39977 0.301603 0.911226 0.519734 

NN( Adam ) 0.1305 0.018364 0.999665 0.030589 0.45841 0.015403 0.999768 0.116477 

Proposed 

Model  

0.0081 

(RF) 

0.007977 

(RF) 

0.999937 

(RF) 

0.00093 

NN(SGD) 

0.39977 

(SVR) 

0.015403 

NN( Adam ) 

0.999768 

NN( Adam ) 

0.002339 

NN (SGD ) 

 

MAPE 

R RMSE  
MAPE 
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Fig. 10.  Error rates of CPU prediction based on univariate input case (5 minutes) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 11.  Error rates of memory prediction based on univariate input case (5 minutes) 
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Fig. 12.  Error rates of disk prediction based on univariate input case (5 minutes) 

 

MAPE RMSE 

MAE 

 

 

 

 

R 

MAPE 

MAPE 

RMSE 
R 

  MAE 

R 

RMSE 

MAE 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 2, February 2025, Pages 307-331

 
______________________________________________________________________________________ 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 13.  Error rates of disk I/O time prediction based on univariate input case (5 minutes) 

 

B. For the multivariate input case (5 minutes) 

Tables VIII and IX show the comparative results between 

the different machine learning techniques for predicting 

CPU, memory, disk resources and disk I/O time based on a 

5-minute time series in terms of MAE, RMSE, R-squared 

and MAPE for univariate input case.  

Based on the overall performance, the prediction 

algorithm is selected.  

1)    CPU:  

The strongest model overall is random forest (RF), with 

the lowest RMSE (0.024709), the highest R-squared 

(0.999211), and the lowest MAPE (0.008131). 

2)  Memory:  

The strongest model overall is random forest (RF), with 

the lowest MAE (0.00762), the highest R-squared 

(0.998586), and the lowest RMSE (0.998586). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3)  Disk:  

The random forest is the best model with the lowest 

MAE (0.0081), the lowest RMSE (0.007977), and the 

highest R-squared (0.999937). 

4)  Disk I/O: 

- Lowest MAE: NN(Adam) (0.3039) 

- Lowest RMSE: DTR (0.007253) 

- Highest R-squared: DTR (0.99952) 

- Lowest MAPE: RF (0.005852) 

The decision tree regression(DTR) is the best 

performing model with the lowest RMSE (0.015403), 

the highest R-squared (0.999768), and a competitive 

MAPE.  

Fig. 14-17 show graph plots of CPU, memory, disk 

utilization and disk I/O time prediction based on the 

multivariate input case using different models. 

TABLE  VIII 

THE ERRORS RATES ACHIEVED BY ALL THE TECHNIQUES FOR PREDICTING CPU AND MEMORY FOR MULTIVARIATE INPUT CASE (5 MINUTES) 

Resource                                 CPU                   Memory  

Algorithm MAE  RMSE     R MAPE  MAE RMSE     R MAPE 

NN (Adam) 0.235311 0.097665 0.98767 0.106782 0.04321 0.199551 0.957439 0.086806 

NN (SGD ) 0.22859 0.041905 0.99773 0.172948 0.06609 0.046944 0.997645 0.449672 

DTR 0.263386 0.027375 0.999031 0.010729 0.01029 0.057711 0.99644 0.018602 

RF 0.243911 0.024709 0.999211 0.008131 0.00762 0.036377 0.998586 0.030925 

SVR 0.231665 0.173 0.961313 0.213262 0.09189 0.394028 0.834057 0.831601 

MLP 0.231642 0.04797 0.997026 0.181839 0.02297 0.045803 0.997758 0.474013 

Proposed 

Model  

0.22859 

NN (SGD ) 

0.024709 

(RF) 

0.999211 

(RF) 

0.008131 

(RF) 

0.00762 

(RF) 

0.036377 

(RF) 

0.998586 

(RF) 

0.018602 

(DTR) 

 

TABLE  IX 

THE ERRORS RATES ACHIEVED BY ALL THE TECHNIQUES FOR PREDICTING CPU AND MEMORY FOR MULTIVARIATE INPUT CASE (5 MINUTES) 

Resource                                Disk                        Disk I/O   

Algorithm MAE  RMSE     R MAPE  MAE RMSE     R MAPE 

NN (Adam) 0.0299 0.173321 0.967892 0.265554 0.3039 0.043332 0.99828 0.042969 

NN (SGD ) 0.0321 0.130379 0.981832 0.458753 0.32166 0.039729 0.998554 0.062237 

DTR 0.0089 0.057711 0.99644 0.018602 0.31994 0.007253 0.999952 0.008817 

RF 0.0079 0.036377 0.998586 0.030925 0.31422 0.008169 0.999939 0.005852 

SVR 0.0625 0.394028 0.834057 0.831601 0.30475 0.147615 0.980037 0.179233 

MLP 0.0484 0.045803 0.997758 0.474013 0.31261 0.029243 0.999217 0.059648 

Proposed 

Model  

0.0079 

(RF) 

0.036377 

(RF) 

0.998586 

(RF) 

0.018602 

(DTR) 

0.3039 

NN (Adam) 

0.007253 

(DTR) 

0.999952 

(DTR) 

0.005852 

(RF) 

 

MAPE RMSE 

MAE 
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Fig. 14.  Error rates of CPU prediction based on multivariate input case (5 minutes) 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15.  Error rates of memory prediction based on multivariate input case (5 minutes) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 16.  Error rates of disk prediction based on multivariate input case (5 minutes) 
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Fig. 17.  Error rates of disk I/O time prediction based on multivariate input case (5 minutes) 

 

 

 

3) Eight minutes_based on Google cluster workload 

experiment  

   Tables X and XI show the comparative results between 

the different machine learning techniques for predicting 

CPU, memory, disk and disk I/O time based on a 3-minute 

time series in terms of MAE, RMSE, R-squared and MAPE 

for univariate and multivariate input cases. According to the 

overall performance, the prediction algorithm is selected.  

A.   For the univariate input case 

1) CPU:  

- Lowest MAE: SVR (0.535622) 

- Lowest RMSE: DTR (0.010312 

- Highest R-Score: DTR (0.999887) 

The strongest model overall is decision tree 

regression(DTR), with the lowest RMSE, the greatest 

R- squared, and a competitive MAPE.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) Memory:  

The strongest model overall is decision tree 

regression(DTR), with the lowest RMSE, the greatest 

R-squared score, and a competitive MAPE. 

3) Disk:  

The strongest model overall is decision tree 

regression(DTR), with the lowest RMSE, the greatest 

R-squared score, and a competitive MAPE. 

4) Disk I/O: 

MLP is the best performing model due to the lowest 

RMSE, the highest R-squared score, and a competitive 

MAPE. 

Fig. 18-21 show graph plots of CPU, memory, disk 

utilization and disk I/O time prediction based on univariate 

input cases using different models. 

 

 

TABLE  X 

THE ERRORS RATES ACHIEVED BY ALL THE TECHNIQUES FOR PREDICTING CPU AND MEMORY FOR UNIVARIATE INPUT CASE (8 MINUTES) 

Resource                                 CPU                   Memory  

Algorithm MAE  RMSE     R MAPE  MAE RMSE     R MAPE 

SVR  0.535622 0.238342 0.939439 0.096071 0.35614 0.238342 0.939439 0.096071 

MLP  0.542574 0.046193 0.997725 0.116116 0.37243 0.046193 0.997725 0.116116 

NN (SGD ) 0.549128 0.044148 0.997922 0.011884 0.38057 0.044148 0.997922 0.011884 

NN (Adam) 0.554021 0.029066 0.999099 0.002089 0.40037 0.029066 0.999099 0.002089 

RF 0.67532 0.465439 0.769051 0.932511 0.42949 0.465439 0.769051 0.932511 

DTR 0.69774 0.010312 0.999887 0.129982 0.4323 0.010312 0.999887 0.129982 

Proposed 

Model  

0.535622 

(SVR) 

0.010312 

(DTR) 

0.999887 

(DTR) 

0.002089 

NN(Adam) 

0.35614 

(SVR) 

0.010312 

(DTR) 

0.999887 

(DTR) 

0.002089 

NN (Adam) 

 

TABLE  XI 

THE ERRORS RATES ACHIEVED BY ALL THE TECHNIQUES FOR PREDICTING CPU AND MEMORY FOR UNIVARIATE INPUT CASE 

(8 MINUTES) 

Resource                                 Disk                   Memory  

Algorithm MAE  RMSE     R MAPE  MAE RMSE     R MAPE 

NN (Adam) 0.0317 0.046439 0.997963 0.081657 0.44136 0.067981 0.992395 0.007013 

NN (SGD ) 0.0262 0.034314 0.998888 0.052533 0.50452 0.254914 0.893072 0.315054 

DTR 0.0522 0.010191 0.999902 0.008867 0.51831 0.018276 0.99945 0.003415 

RF 0.0474 0.011405 0.999877 0.004914 0.52695 0.027631 0.998744 0.001405 

SVR 0.02346 0.164429 0.974467 0.518256 0.56166 0.185314 0.943491 0.707608 

MLP 0.02119 0.022723 0.999512 0.078253 0.56175 0.010178 0.99983 0.083034 

Proposed 

Model  

0.02119 

(MLP) 

0.010191 

(DTR) 

0.999902 

(DTR) 

0.004914 

(RF) 

0.44136 

NN (Adam) 

0.010178 

(MLP) 

0.99983 

(MLP) 

0.001405 

(RF) 
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Fig. 18.  Error rates of CPU prediction based on univariate input case (8 minutes) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 19.  Error rates of memory prediction based on univariate input case (8 minutes) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 20.  Error rates of disk prediction based on univariate input case (8 minutes) 
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Fig. 21.  Error rates of disk I/O time prediction based on univariate input case (8 minutes) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.   For the multivariate input case 

     Tables XII and XIII show the comparative results 

between the different machine learning techniques for 

predicting CPU, memory, disk and disk I/O time based on a 

3-minute time series in terms of MAE, RMSE, R-squared 

and MAPE for univariate and multivariate input cases.  

Based on the overall performance, the prediction 

algorithm is selected.  

1) CPU 

The strongest model overall is support vector regression 

(SVR), which has the lowest RMSE (0.217427), 

greatest R-SCORE (0.071), and lowest MAPE 

(0.42488). 

2) Memory 

Random forest(RF) is the best performing models for 

predicting memory resources due to the lowest RMSE 

(0.02443), highest R-SCORE (0.999143), and lowest 

MAPE (0.017358). 

 

 

 

 

 

 

 

 

3) Disk 

- Lowest MAE: SVR (0.535622) 

- Lowest RMSE: DTR (0.010312 

- Highest R-Score: DTR (0.999887) 

- Lowest MAPE:  

Decision tree regression (DTR) is the best performing 

model due to the lowest MAE (0.0275), competitive R-

Score (0.9323079), and lowest MAPE (0.015963). 

4) Disk I/O time 

- Lowest MAE: SVR (0.535622) 

- Lowest RMSE: DTR (0.010312 

- Highest R-Score: DTR (0.999887) 

Decision tree regression (DTR) is the best performing 

model due to the lowest RMSE (0.00235), lowest 

MAPE (0.000869), and highest R-Score (0.999994). 

Fig. 22-25 show graph plots of CPU, memory, disk 

utilization and disk I/O time prediction based on univariate 

input cases using different models. 

TABLE  XII 

THE ERRORS RATES ACHIEVED BY ALL THE TECHNIQUES FOR PREDICTING CPU AND MEMORY FOR UNIVARIATE INPUT CASE 

Resource                                 CPU                   Memory  

Algorithm MAE  RMSE     R MAPE  MAE RMSE     R MAPE 

NN (Adam)  0.521996 0.157255 0.945982 0.493233 0.36781 0.219875 0.916878 0.6089532 

NN (SGD ) 0.515038 0.110803 0.973181 0.40997 0.36598 0.142356 0.965157 0.78696414 

DTR 0.627464 0.073786 0.988107 0.047354 0.45923 0.089605 0.986195 0.08595654 

RF 0.557288 0.04578 0.995422 0.044496 0.41064 0.025485 0.998883 0.0422 

SVR 0.507577 0.086698 0.983581 0.189912 0.36321 0.11188 0.978479 0.47506743 

MLP 0.528993 0.075258 0.987628 0.227723 0.36425 0.083553 0.987997 0.5966089 

Proposed 

Model  

0.507577 

(SVR) 

0.04578 

(RF) 

0.995422 

(RF) 

0.044496 

(RF) 

0.36321 

(SVR) 

0.025485 

(RF) 

0.998883 

(RF) 

0.0422 

(RF) 

 
TABLE  XIII 

THE ERRORS RATES ACHIEVED BY ALL THE TECHNIQUES FOR PREDICTING CPU AND MEMORY FOR UNIVARIATE INPUT CASE 

Resource                                 Disk                    Disk I/O  

Algorithm MAE  RMSE     R MAPE  MAE RMSE     R MAPE 

NN 

(Adam)  
0.03836 

0.153322 0.897509 0.654282 
0.41763 

0.063856 0.99587602 0.06749 

NN (SGD ) 0.03896 0.108978 0.94822 0.9864893 0.4205 0.045306 0.997924 0.046412 

DTR 0.02562 0.058454 0.985102 0.095833 0.52616 0.002901 0.9999914 0.002126 

RF 0.02938 0.074308 0.975926 0.04858 0.45289 0.002968 0.99999109 0.002243 

SVR 0.06274 0.08581 0.967896 0.42146 0.34021 0.073859 0.99448276 0.069671 

MLP 0.05149 0.069764 0.97878 0.38023 0.4166 0.073579 0.9945244 0.05711 

Proposed 

Model  

0.02562 

(DTR) 

0.058454 

(DTR) 

0.985102 

(DTR) 

0.04858 

(RF) 

0.34021 

(SVR) 

0.002901 

(DTR) 

0.9999914 

(DTR) 

0.002126 

(DTR) 
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Fig. 22.  Error rates of CPU prediction based on univariate input case (8 minutes) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Fig. 23.  Error rates of memory prediction based on univariate input case (8 minutes) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 24.  Error rates of disk prediction based on univariate input case (8 minutes) 
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Fig. 25.  Error rates of disk I/O time prediction based on univariate input case (8 minutes) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

    

4) ten minutes_based on Google cluster workload 

experiment  

   Tables XIV and XV show the comparative results 

between the different techniques for predicting CPU, 

memory, disk and disk I/O time based on a 3-minute time 

series in terms of MAE, RMSE, R-squared and MAPE for 

univariate and multivariate input cases. According to the 

overall performance, the prediction algorithm is selected.  

A.   For the univariate input case 

1) CPU:  

- Lowest MAE: SVR (0.474025) 

- Lowest RMSE: RF (0.143439( 

- Highest R-Score: RF (0.98803) 

The strongest model overall is random forest(RF), with 

the lowest RMSE and the highest R-squared.   

 

 

 

 

 

 

 

 

 

 

2) Memory:  

The strongest model overall is random forest (RF), with 

the lowest RMSE, the highest R-squared, and a 

competitive MAPE. 

3) Disk:  

The strongest model overall is random forest, with the 

lowest RMSE, the highest R-squared, and the lowest 

MAPE. 

4) Disk I/O: 

MLP is the best performing model due to the lowest 

RMSE (0.03318), the highest R-squared (0.998992), 

and a competitive MAPE. 

Fig. 26-29 show graph plots of CPU, memory, disk 

utilization and disk I/O time prediction based on univariate 

input cases using different models. 

 

TABLE  XIV 

THE ERRORS RATES ACHIEVED BY ALL THE TECHNIQUES FOR PREDICTING CPU AND MEMORY FOR UNIVARIATE INPUT CASE 

(10 MINUTES) 

Resource                                 CPU                   Memory  

Algorithm MAE  RMSE     R MAPE  MAE RMSE     R MAPE 

SVR 0.474025 0.663891 0.74368 0.227878 0.41594 0.487619 0.813886 1.094633 

NN (Adam) 0.516387 0.313786 0.94273 0.479215 0.42253 0.207093 0.96643 0.366268 

MLP 0.529278 0.389173 0.91192 0.06905 0.41628 0.190544 0.971581 0.089674 

NN (SGD)  0.547228 0.365375 0.92236 0.047003 0.45695 0.197291 0.969532 0.098654 

DTR 0.612037 0.909082 0.51939 0.341817 0.4814 0.630585 0.688753 0.908327 

RF 0.613433 0.143439 0.98803 0.197735 0.47225 0.087924 0.993948 0.473227 

Proposed 

Model  

0.474025 

(SVR) 

0.143439 

(RF)  

0.98803 

(RF) 

0.047003 

NN (SGD) 

0.41594 

(SVR) 

0.087924 

(RF) 

0.993948 

(RF) 

0.089674 

(MLP) 

 

TABLE  XV 

THE ERRORS RATES ACHIEVED BY ALL THE TECHNIQUES FOR PREDICTING DISK AND DISK I/O TIME FOR UNIVARIATE INPUT CASE 

(10 MINUTES)  

Resource                                DISK                    Disk I/O time 

Algorithm MAE  RMSE     R MAPE  MAE RMSE     R MAPE 

SVR 0.02964 0.670013 0.663764 6.083757 0.38072 0.09423 0.991877 0.090429 

NN (Adam) 0.05175 0.250217 0.953106 3.895048 0.45544 0.08901 0.992753 0.097126 

MLP 0.02811 0.313985 0.926159 7.276436 0.44887 0.03318 0.998992 0.017226 

NN (SGD)  0.11032 0.314305 0.926009 6.430044 0.4629 0.03502 0.998877 0.016795 

DTR 0.0395 0.87389 0.428007 28.52868 0.52798 0.273451 0.931604 0.125950 

RF 0.0364 0.065983 0.996739 0.20902 0.54809 0.104694 0.989974 0.070609 

Proposed 

Model  

0.02811 

(MLP) 

0.065983 

(RF) 

0.996739 

(RF) 

0.20902 

(RF) 

0.38072 

(SVR) 

0.03318 

(MLP) 

0.998992 

(MLP) 

0.016795 

NN(SGD) 
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Fig. 26.  Error rates of CPU prediction based on univariate input case (10 minutes) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 27.  Error rates of memory prediction based on univariate input case (10 minutes) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 28.  Error rates of disk prediction based on univariate input case (10 minutes) 
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Fig. 29.  Error rates of disk I/O time prediction based on univariate input case (10 minutes) 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.   For the multivariate input case 

     Tables XVI and XVII show the comparative results 

between the different machine learning techniques for 

predicting CPU, memory, disk and disk I/O time based on a 

3-minute time series in terms of MAE, RMSE, R-squared 

and MAPE for the multivariate input cases.  

Based on the overall performance, the prediction 

algorithm is selected.  

1) CPU 

The strongest model overall is MLP, which has the 

lowest RMSE (0.143439), the highest R-squared 

(0.988035), and a competitive MAPE. 

2) Memory 

MLP is the best performing models for predicting 

memory resources with the lowest RMSE (0.087924), 

highest R-squared (0.993949), and a competitive 

MAPE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3) Disk 

- Lowest MAE: RF (0.04145) 

- Lowest RMSE: MLP (0.065983) 

- Highest R-Score: MLP (0.996739) 

- Lowest MAPE: DTR (0.20902026) 

MLP is the best performing model with the lowest 

RMSE (0.065983), the highest R-squared (0.998993), 

and a competitive MAPE. 

4) Disk I/O time 

Decision tree regression (DTR) is the best performing 

model due to the lowest RMSE (0.00235), lowest 

MAPE (0.000869), and highest R-Score (0.999994). 

 

Fig. 30-33 show graph plots of CPU, memory, disk 

utilization and disk I/O time prediction based on univariate 

input cases using different models. 

 

TABLE  XVI 

THE ERRORS RATES ACHIEVED BY ALL THE TECHNIQUES FOR PREDICTING CPU AND MEMORY FOR MULTIVARIATE INPUT CASE 

Resource                                 CPU                   Memory  

Algorithm MAE  RMSE     R MAPE  MAE RMSE     R MAPE 

NN (Adam) 0.58783 0.68781 0.724881 0.495091 0.41494 0.468779 0.82799 0.327559 

NN (SGD ) 0.58665 0.322915 0.93936 0.405493 0.41448 0.198958 0.969016 0.690024 

DTR 0.927125 0.389173 0.911922 0.069059 0.55296 0.190544 0.971581 0.089674 

RF 0.722019 0.000421 0.922364 0.017004 0.48984 0.197291 0.969533 0.098655 

SVR 0.544754 0.909082 0.519392 0.341818 0.38989 0.630585 0.688753 0.908327 

MLP  0.590027 0.365375 0.988035 0.197735 0.40387 0.087924 0.993949 0.473227 

Proposed 

Model  

0.544754 

(SVR) 

0.000421 

(RF) 

0.988035 

(MLP) 

0.017004 

(RF) 

0.38989 

(SVR) 

0.087924 

(MLP) 

0.993949 

(MLP) 

0.089674 

(DTR) 

 

 TABLE XVII 

THE ERRORS RATES ACHIEVED BY ALL THE TECHNIQUES FOR PREDICTING DISK AND DISK I/O TIME FOR MULTIVARIATE INPUT CASE 

(10 MINUTES) 

Resource                                 Disk                    Disk I/O Time 

Algorithm MAE  RMSE     R MAPE  MAE RMSE     R MAPE 

NN (Adam) 0.05958 0.715604 0.616450 5.10479054 0.44105 0.094505 0.991831 0.086884 

NN (SGD ) 0.06416 0.255068 0.951270 4.03063223 0.45475 0.075028 0.994851 0.091918 

DTR 0.04681 0.313985 0.926159 0.20902026 0.4695 0.033188 0.998993 0.017226 

RF 0.04145 0.314305 0.926009 6.4300449 0.45868 0.035027 0.998878 0.016796 

SVR 0.0935 0.87389 0.428007 28.5286821 0.36888 0.273451 0.931604 0.125951 

MLP  0.07062 0.065983 0.996739 7.27643695 0.44935 0.104694 0.989974 0.070609 

Proposed 

Model  

0.04145 

(RF) 

0.065983 

(MLP) 

0.996739 

(MLP) 

0.20902026 

(DTR) 

0.36888 

(SVR) 

0.033188 

(DTR) 

0.998993 

(RF) 

0.016796 

(RF) 
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Fig. 30.  Error rates of CPU prediction based on multivariate input case (10 minutes) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                            

Fig. 31.  Error rates of memory prediction based on multivariate input case (10 minutes) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 32.  Error rates of disk prediction based on multivariate input case (10 minutes) 
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Fig. 33.  Error rates of disk I/O time prediction based on multivariate input case (10 minutes) 

 

V. RESULTS COMPARISON AND DISCUSSION  

Table XVIII demonstrates the ways in which different 

datasets and algorithms have been applied to forecast 

different types of cloud resources. 

 

 

In [6], their research focus on classification of the task 

priority based on the resources specifications of each task. 

Then based on the task category, the suitable prediction 

algorithm is assigned which is support vector machine or 

linear regression. Their model focuses on task classification  

 

                                                                                                                          TABLE XVIII 

EVALUATION OF PREDICTION MODELS  

Ref Resources  

predicted 

 

Dataset  Performa

nce 

metric   

time 

series  

 Data  

input case 

Final results  

 

  Algorithm/Resource  Error Rates  

[6] Task 

priority  

 

 

Google 

Cluster 

trace 

 

MRPE Not 

specified  

SVM Univariate SVM (MRPE) 0.5107 

LR LR (MRPE)  0.7908 

 Classified prediction  (MRPE)  0.4677 

  

[9] CPU  

 

Google 

Cluster 

trace 

and Unix 

systems 

data 

 

MSE  5 

Minutes 

LSTM 

 

Univariate  LSTM 

  

MSE (0.00045) 

[17] CPU  Google 

cluster 

trace and  

Planet 

Lab 

workload 

trace 

RMSE  

MAPE 

10 

minutes 

  

GD  

 LM 

Multivariate GD 

 

RMSE (0.0088) 

MAPE (0.0331) 

 LM RMSE (0.0085) 

 MAPE (0.0321) 

  

[26] CPU  

Memory  

 

 

Google 

cluster  

Trace 

MAE  5 minutes  FLGAPSO 

 

Univariate/ 

Multivariate 

CPU (univariate)  

Memory (univariate) 

CPU (multivariate)  

Memory 

(multivariate) 

 

MAE (0.25) 

MAE (0.018) 

MAE (0.33) 

MAE (0.026) 

 

 

   

   

   

Proposed 

Model  

CPU 

Memory  

Disk 

usage  

Disk I/O 

time 

Google 

cluster  

data 

MAE  

RMSE 

R-

squared  

MAPE  

3 minutes 

5 minutes 

8 minutes 

10 

minutes  

RF  

DTR 

MLP 

SVR 

NN: SGD 

NN:Adam 

Univariate/ 

Multivariate 

5 (minutes)  

CPU (univariate)  

Memory (univariate) 

CPU (multivariate)  

Memory 

(multivariate) 

 

MAE (0.00309) (RF) 

MAE (0.00535) (RF) 

MAE (0.22859) (RF)  

MAE (0.00762) (RF) 

 10 minutes 

CPU (multivariate) 

 

RMSE (0.000421) (RF) 

MAPE (0.017004) (RF)  
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   MAE  
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In [9] and [17], the authors focused on predicting a single 

resource, specifically CPU utilization, without including 

other resources such as memory and disk utilization in their 

model. They also worked on a single type of prediction input 

case, either univariate or multivariate, but not both: in [9], 

the authors focused on the univariate input case, while in 

[17], they focused on the multivariate input case.  

In [26], the authors focused on predicting a wider range of 

resources, including CPU and memory resources. They 

worked on two types of input cases: univariate and 

multivariate input cases. However, their work was only 

evaluated using one performance metric, which is the MAE 

error, and they focused on a single time series interval (five 

minutes). 

This paper utilizes various prediction algorithms to 

forecast a broader range of resources such as disk usage and 

disk I/O time. The predictions are made based on both 

univariate and multivariate input cases. The prediction is 

conducted over different time series intervals ranging from 

three to ten minutes. The work is evaluated by different 

performance metrics including MAE, MAPE, RMSE, and R-

squared score.  

Comparison of error rates  

1) For CPU resources (5 Minutes):  

   In [9], the lowest MSE error achieved by LSTM for 

predicting CPU resources is 0.00045, with an 

equivalent RMSE of 0.0212. However, in the 

proposed model, using MLP performs better with a 

lower RMSE of 0.00235. 

   In [26], the lowest MAE error achieved by using 

the neural network with genetic algorithm and 

particle swarm optimization is 0.25, but in the 

proposed model, using random forest lowers the 

error to 0.00309.  

2) For CPU resources (10 minutes):  

 In [17], the lowest errors of GD (Gradient Descent)  

 RMSE: 0.0088  

 MAPE: 0.0331 

 Levenberg-Marquardt (LM)   

 RMSE: 0.0085  

 MAPE: 0.0321 

 In the proposed model, using Random Forest (RF) 

 RMSE 0.000421 

 MAPE 0.017004 

Using Random Forest (RF) significantly outperforms both 

GD and LM, achieving the lowest RMSE and MAPE. 

3) For memory resources 

 In [26], the lowest error rates achieved by using 

FLGAPSO are:  

 Univariate input case:  

                     MAE (0.018) 

 Multivariate input case: 

                     MAE (0.026) 

 The proposed model, using random forest achieves 

lower error rates:  

 Univariate input case:  

      MAE (0.00535) 

 Multivariate 

 MAE (0.00762) 

Using random forest outperforms the other models for 

predicting memory resources with lower MAE error.  

 

VI. CONCLUSION  

The associate One of the most important challenges in 

managing uncertainty in cloud computing settings is 

predicting the utilization of cloud resources. Resources are 

allocated to user apps in cloud computing, which can be 

accessed via the Internet from any location. The resources 

need to be dynamically scaled to handle many users to 

optimize utilization, reduce energy consumption, and 

maintain cost-effectiveness while improving quality of 

service (QoS). This paper utilizes various prediction 

algorithms to forecast a broader range of resources such as 

CPU, memory, disk usage and disk I/O time. the algorithms 

used are neural networks (NN) with Adam and SGD 

optimizers, MLP regression, random forest, decision tree 

regression, and support vector regression. The predictions 

are made based on both univariate and multivariate input 

cases. The prediction is conducted over different time series 

intervals ranging from three to ten minutes. The work is 

evaluated by different performance metrics including MAE, 

MAPE, RMSE, and R-squared score.  

The findings demonstrate that when compared to 

conventional methods, the proposed model produces 

outcomes with higher accuracy. It may also be inferred that 

the prediction of univariate and multivariate resource 

utilization is difficult due to the potential for abrupt and 

excessive changes in resource utilization. in resource 

utilization. 
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