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Abstract—In the era of big data, traditional statistical es-
timation methods are challenged by expanding data scales.
Distributed estimation methods arise to address this, enhancing
efficiency by processing data across multiple nodes. However,
redundant data handling is crucial in distributed estimation,
as it can compromise accuracy and increase variance. The
LIC-based distributed estimation method mitigates this by
generating random point sets, improving accuracy. Distributed
estimation methods hold significant promise in managing
redundant data, gaining increasing attention and research.
This article delves into optimal subset selection for LIC-based
distributed estimation with redundant data.

Index Terms—redundant data, distributed estimation, big
data, LIC criterion.

I. INTRODUCTION

IN recent years, distributed estimation methods have made
significant progress in processing large-scale data sets,

and their applications in multiple fields have also received
widespread attention. In terms of dealing with redundant
data, distributed estimation methods have significant ad-
vantages. Firstly, by allocating data to multiple nodes for
processing, the processing speed and efficiency can be
greatly enhanced. Secondly, distributed estimation methods
are more effective in handling noise and outliers in large-
scale datasets, thereby enhancing the accuracy and reliability
of the estimation. Moreover, distributed estimation meth-
ods can effectively integrate data from different sources,
improving the quality and availability of data. In statistics,
the optimal subset method is a process of finding the best
predictive variables that can maximize the predictive ability
of the prediction model. However, traditional optimal sub-
set methods encounter computational complexity and slow
speed when dealing with high-dimensional data. To address
these issues, we propose an optimal subset method based
on LIC distributed estimation. This method combines the
advantages of LIC distributed estimation to effectively pro-
cess high-dimensional data while enhancing computational
efficiency and accuracy.

A. Current Research Status

Recently, the development of distributed statistical infer-
ence and high-dimensional statistical methods has garnered
significant attention. LIC proposed by Guo et al. [1] has
demonstrated the performance in optimal subset selection for
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distributed interval estimation. Building on this foundation,
see J. Lederer [2] for related work. See also Guo et al.
[3], Li et al. [4], Guo et al. [5] - [7], Wang et al. [8],
Song et al. [9], Guo et al. [10] - [12]. Additionally, the
partitioned quasi-likelihood method developed by Guo et al.
[13] provides a novel perspective for distributed statistical
inference, emphasizing the significance of data partitioning
in the analytical process. These studies have not only ad-
vanced the development of statistical computing but also
provided theoretical support and technical assurance for
practical applications.

B. Our Work

This article will explain the basic principles, implemen-
tation steps, and advantages of the optimal subset method
using LIC distributed estimation. The goal is to provide
readers with a deeper understanding of the method and help
them grasp its advantages and effectiveness in handling high-
dimensional data. Through the introduction and research
presented in this article, we hope to offer readers a novel
perspective and approach to solving the challenges faced by
traditional optimal subset methods when dealing with high-
dimensional data. For distributed estimation of redundant
data, we need to research and develop effective algorithms
and methods. This may involve multiple aspects, such as
data preprocessing, feature selection, model selection, and so
on, with the goal of improving the accuracy and efficiency
of estimation. At the same time, we need to explore the
advantages and disadvantages of different methods and their
application scopes, in order to make reasonable choices
and optimizations in practical applications. To ascertain the
efficacy of the proposed approach, we need to conduct a
sufficient experimental design and its implementation. This
includes selecting appropriate datasets, designing reasonable
experimental plans, controlling experimental conditions, col-
lecting, and analyzing experimental results, etc. Through
experiments, we can compare the performance of different
methods in dealing with redundant data and further optimize
and improve the method.

II. THEOREM

A. Notation

The vector uIopt represents a sub-residual vector. The
original identity matrix is denoted as InIopt×nIopt

. The
regression coefficient vector β consists of β1 through βp,
expressed as β = (β1, ..., βp)

⊤. The unknown variance is
denoted by σ2.

The optimal estimate of β based on the sub-matrix XIopt

is given by β̂Iopt = X+
Iopt

yIopt where X+
Iopt

is the pseudoin-
verse of XIopt , calculated as V D+U⊤ using singular value
decomposition.
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B. Theorem and proof

The focus is on distributed linear regression models:
YIopt = XIoptβ + uIopt , uIopt ∼ N

(
0, σ2InIopt×nIopt

)
,

k = 1, ...,Kn.
The unique least-squares estimator is given by β̂Iopt =

(X⊤
Iopt

XIopt)
−1X⊤

Iopt
YIopt is orthogonal square matrices.

U ∈ RnIopt×nIopt and V ∈ Rp×p are orthogonal square
matrices. The diagonal matrix D ∈ RnIopt×p is (with
Dij = 0 for i ̸= j) such that XIopt = UDV ⊤. The matrix
XIopt is a nIopt × p sub-matrix of X with nIopt ≥ p.

(X⊤X)−1X⊤ = ((UDV ⊤)⊤(UDV ⊤))−1(UDV ⊤)⊤

= (V DU⊤)(UDV ⊤))−1(V DU⊤)

= (V (D+)2V ⊤)−1(V DU⊤)

= ((V ⊤)−1(D+)2V −1)(V DU⊤)

= V D+U⊤.

Theorem 1. For any least-squares solution β̂Iopt , it is
fundamental to note that the squared Euclidean norm of the
residual vector resulting from the prediction, XIoptβIopt −
XIopt β̂Iopt , is equivalent to the squared norm of a trans-
formed noise vector. Specifically,

∥XIoptβIopt −XIopt β̂Iopt∥22 = ∥UDD+U⊤uIopt∥22,

where the equality stems from the mathematical properties
of the least-squares estimator and the singular value decom-
position (SVD) of the relevant design matrix XIopt . Here,
U , D, and D+ represent the unitary matrix, diagonal matrix
of singular values, and pseudoinverse of the diagonal matrix,
respectively, from the SVD of XIopt , and uIopt is the relevant
subset of the noise vector u.

Assuming that the noise vector u ∼ N (0, σ2In×n) where
σ ∈ (0,∞) denotes the standard deviation, we can derive
a risk bound for the average squared prediction error. This
risk bound quantifies the expected deviation of the prediction
error, normalized by the sample size n, and is given by

E

[
∥XIoptβIopt −XIopt β̂Iopt∥22

n

]
=

σ2rank
[
XIopt

]
n

.

This equation elegantly relates the expected prediction
error to the standard deviation of the noise, the rank
of matrix XIopt and the sample size n. The higher the
noise level or model complexity, the greater the expected
prediction error, while a larger sample size typically helps
reduce the prediction error.

Proof.
∥XIoptβIopt −XIopt β̂Iopt∥22

= ∥XIoptβIopt −XIoptX
+
Iopt

yIopt∥22 our choice of β̂Iopt

= ∥XIoptβIopt −XIoptX
+
Iopt

(
XIoptβIopt + uIopt

)
∥22

model assumptions: yIopt = XIoptβ + uIopt

= ∥XIoptX
+
Iopt

uIopt∥22 X+
Iopt

XIopt = InIopt×nIopt

= ∥UDV ⊤V D+U⊤uIopt∥22 SV D

= ∥UDD+U⊤uIopt∥22 V ⊤V = E

=
(
UDD+U⊤uIopt

)⊤
UDD+U⊤uIopt

=
(
U⊤uIopt

)⊤
(DD+)⊤U⊤UDD+U⊤uIopt

=
(
U⊤uIopt

)⊤
(DD+)⊤DD+U⊤uIopt Uorthogonal

=
(
U⊤uIopt

)⊤
DD+DD+U⊤uIopt

=
(
U⊤uIopt

)⊤
DD+U⊤uIopt .

Setting γ =
U⊤uIopt

σ ,

γ⊤DD+γ ∼ χ2rank[XIopt ],

∥XIoptβIopt −XIopt β̂Iopt∥22 ∼ σ2γ⊤DD+γ,

∥XIoptβIopt−XIopt β̂Iopt∥
2
2

n ∼ σ2γ⊤DD+γ
n ,

E

[
∥XIoptβIopt−XIopt β̂Iopt∥

2
2

n

]
=

σ2rank[XIopt ]
n .

Since U is orthogonal, γ∼N
(
0, σ2InIopt×nIopt

)
. Addi-

tionally, DD+ features rank(X) entries of one along its
main diagonal, with all other entries being zero. These
insights lead to the conclusion that the quadratic form
γ⊤DD+γ ∼ χ2

rank(X). The result follows from the property
that the mean of a Chi-Squared distribution is equal to its
degrees of freedom.

III. SIMULATION

A. Simulation preparation

The (X,Y ) is from the model Yi = Xiβ + εi, εi ∼
N

(
0, σ2

i In×n

)
for i = 1, 2. It is known that X is composed

of (X1, X2) and Y is composed of (Y1, Y2).

X1 = (X1ij) ∈ Rn1×p, X1ij ∼ N(0, 4);

X2 = (X2ij) ∈ Rn2×p, X2ij ∼ F (X);

Y1 = X1β + ε1, n1 = [1, . . . , (n− nr)];

Y2 = X2β + ε2, n2 = [1, . . . , nr].

Additionally, it is known that β ∼ Unif(0.5, 2), and ε ∼
(ε1, ε2), where ε1∼N(0, 8) and ε2∼N(0, 20).

The purpose of this section is to evaluate the predictive
accuracy of three different models (LIC, Lopt, Iopt) with
varying (n, p,K, nr). To assess the predictive accuracy of
the models in a data simulation environment, we use metrics
such as the MSE and MAE to quantify the deviation between
the true values and the predicted values.The MSE and MAE,
which are used to assess prediction error, are defined as
follows:

MSE = E(Y0 − Ŷ )2, MAE = E|Y0 − Ŷ |.

Among them, n is sample sizes, K is the number of
subsets that data is divided into, p is feature dimensions, α
is the significance level, σ1 and σ2 are the standard deviation
of noise, and nr is a partitioning point of the data set, used
to distinguish between two different subsets of data.
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Fig. 1. The values of MAE and MSE with p = 8.

B. Case 1

X2 = (Xij) ∈ Rn2×p, X2ij ∼ F (n, 1).

Scenario 1: Setting (K,α, nr, p) = (10, 0.05, 50, 8); n =
(1000, 2000, 3000, 4000, 5000).

As depicted in the Fig. 1, with fixed (p,K, nr), the impact
of varying n on the results is studied. The trends of the
curves are roughly the same, with the LIC being lower
compared to Iopt and Lopt. As the value of the variable
increases, both MAE and MSE values first rise and then
fall. It can also be seen that, compared to Iopt and Lopt,
LIC has lower MAE and MSE values. As the variable value
reaches 4000, the model fitting is optimal, with MAE and
MSE values of 0.1286 and 0.02019. Therefore, the optimal
value for n is 4000, which is the best value for model fitting.

Scenario 2: Setting (K,α, nr, n) = (10, 0.05, 50, 1000);
p = (8, 9, 10, 11, 12).

Fig. 2. The values of MAE and MSE with n = 1000.

As shown in Fig. 2, with fixed (n,K, nr), the MAE and
MSE change as the value of p varies and the trends of the
curves are roughly the same. As p increases from 8 to 9,
MAE decreases from 0.2629 to 0.2046, and MSE decreases
from 0.0895 to 0.0577. Conversely, as p increases from 9
to 10, MAE increases from 0.2046 to 0.2479, and MSE
increases from 0.0577 to 0.0794. It can be concluded that
the model fitting is optimal as p is set to 9.

Scenario 3: Setting (α, nr, n, p) = (0.05, 50, 3000, 8);
K = (4, 5, 6, 8, 10).

As depicted in the Fig. 3, with fixed (n, p, nr), the
MAE and MSE curves exhibit trends that closely follow the
changes in K. Initially, as K increases, both MAE and MSE

Fig. 3. The values of MAE and MSE with nr = 50.

decrease. However, once K reaches a value of 6, both error
metrics start to increase. At this point, with K set to 6, the
MAE and MSE achieve their lowest values of 0.1591 and
0.0291, respectively, indicating the optimal fitting state for
the model.

Scenario 4: Setting (K,α, n, p) = (10, 0.05, 3000, 8);
nr = (30, 40, 50, 60, 70).

Fig. 4. The values of MAE and MSE with K = 10.

As shown in Fig. 4, with fixed (n, p,K), the trends of the
MAE and MSE curves are found to be consistent with the
variation of nr. As nr increases, both MAE and MSE values
gradually decrease. Specifically, as nr is between 50 and 60,
MAE range from 0.0768 to 0.0906, and MSE range from
0.0079 to 0.0107. Based on this observation, it is concluded
that the optimal fitting effect is achieved as nr is set to 50.

This study investigates the data simulation and model
fitting process using the F-distribution and the LIC criterion.
Comparing Scenario 1 and Scenario 2 shows that the trends
of MAE and MSE are similar, and compared to the Lopt and
Iopt , the LIC criterion performs better, with smaller MAE
and MSE values, indicating its superior stability. The detailed
numerical analysis is provided in Scenario 1 and Scenario
2. Scenario 3 and Scenario 4 shows that as the number of
blocks K, and the parameter nr change, the MAE and MSE
values first decrease and then increase. This indicates that the
performance of the LIC criterion improves initially and then
starts to deteriorate. Therefore, the overall best performance
is achieved as K = 6 and nr = 50. The detailed numerical
analysis is provided in Scenario 3 and Scenario 4.
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C. Case 2

X2 = (Xij) ∈ Rn2×p, X2ij ∼ T (n).

Scenario 1: Setting (K,α, nr, p) = (10, 0.05, 50, 8); n =
(1000, 2000, 3000, 4000, 5000).

Fig. 5. The values of MAE and MSE with p = 8.

As depicted in the Fig. 5, with fixed (p,K, nr), the impact
of varying n on the results is studied. The trends of the
curves are roughly the same, with the LIC being lower
compared to Iopt and Lopt. As n increases, both MAE and
MSE values initially rise before subsequently declining. The
model achieves its best fit as n is 2000, at which point the
MAE and MSE values are 0.1954 and 0.0647. Consequently,
the optimal value for n in terms of model fitting is 2000.

Scenario 2: Setting (K,α, nr, n) = (5, 0.05, 50, 1000);
p = (8, 9, 10, 11, 12).

Fig. 6. The values of MAE and MSE with n = 1000.

As shown in Fig. 6, with fixed (n,K, nr), changes in p
affect both the MAE and MSE, with the trends of the curves
being roughly the same and the LIC being lower compared to
Iopt and Lopt. As p increases from 9 to 10, MAE decreases
from 0.2386 to 0.1549, and MSE decreases from 0.1509 to
0.0401. However, as p further increases from 10 to 11, MAE
increases to 0.2036, and MSE increases to 0.0644. Based on
these observations, it is concluded that the optimal fitting
effect is achieved as p is set to 9.

Scenario 3: Setting (α, nr, n, p) = (0.05, 50, 3000, 8);
K = (4, 5, 6, 8, 10).

As depicted in the Fig. 7, with fixed (n, p, nr), the
MAE and MSE curves exhibit trends that closely follow the
changes in K, and the LIC being lower compared to Iopt
and Lopt. Initially, as K increases, both MAE and MSE

Fig. 7. The values of MAE and MSE with nr = 50.

decrease. However, they begin to increase once K reaches
a value of 6. At this point, with K set to 6, the MAE and
MSE values are 0.2073 and 0.0065, indicating the model has
achieved its best fit.

Scenario 4: Setting (K,α, n, p) = (10, 0.05, 3000, 8);
nr = (30, 40, 50, 60, 70).

Fig. 8. The values of MAE and MSE with K = 10.

As shown in Fig. 8, with fixed (n, p,K), the trends of the
MAE and MSE curves closely mirror the changes in nr. As
nr increases, both MAE and MSE values gradually decrease.
Specifically, as nr is between 30 and 40, MAE range from
0.1013 to 0.0896, and MSE range from 0.0181 to 0.0125.
Therefore, it is concluded that the optimal fitting effect is
achieved as nr is 40.

The study observed changes in the trends of MAE and
MSE, which are crucial metrics for assessing the quality
of model fit. By systematically modifying the model pa-
rameters, the research revealed distinct patterns of model
fitting performance under different conditions. Secondly, the
simulation results indicate that the LIC criterion generally
outperforms both Iopt and Lopt in terms of achieving lower
MAE and MSE values. This demonstrates the excellent
stability of the LIC criterion, leading to a better fit and more
accurate predictions. This advantage of LIC is particularly
notable in the presence of redundant data, where other
methods may struggle to differentiate between relevant and
irrelevant information. The robustness of LIC in handling
redundant data can be attributed to its ability to incorporate
additional constraints or regularization techniques that help
in selecting the most informative variables while minimizing
overfitting. This is crucial in statistical modeling, as redun-
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dant data can lead to increased complexity and decreased
interpretability of the model.

D. Case 3

X2 = (Xij) ∈ Rn2×p, X2ij ∼ weibull(3, 1).

Scenario 1: Setting (K,α, nr, p) = (10, 0.05, 50, 8); n =
(1000, 2000, 3000, 4000, 5000).

Fig. 9. The values of MAE and MSE with p = 8.

As depicted in the Fig. 9, with fixed (p,K, nr), the impact
of varying n on the results is studied. The trends of the
curves are roughly the same, with the LIC being lower
compared to Iopt and Lopt. With an increase in n, both MAE
and MSE values initially rise before they start to decline.
The result is optimal as n is at 4000, at which point the
MAE and MSE values are recorded as 0.1554 and 0.0963,
respectively. Consequently, the optimal value for n in terms
of model fitting is determined to be 4000.

Scenario 2: Setting (K,α, nr, n) = (5, 0.05, 50, 1000);
p = (8, 9, 10, 11, 12).

Fig. 10. The values of MAE and MSE with n = 1000.

As shown in Fig. 10, with (n,K, nr) fixed and p varied,
the performance of the model fitting is analyzed based on
the MAE and MSE. As p increases from 9 to 10, MAE
decreases from 0.0179 to 0.0106, and MSE increases from
0.0734 to 0.0359. Conversely, as p increases from 10 to 11,
MAE increases to 0.0257, and MSE increases to 0.0793.
Based on these observations, it is concluded that the model
achieves its best fit as p is at 10.

Scenario 3: Setting (α, nr, n, p) = (0.05, 50, 3000, 8);
K = (4, 5, 6, 8, 10).

Fig. 11. The values of MAE and MSE with nr = 50.

As depicted in the Fig. 11, with fixed (n, p, nr), the
MAE and MSE curves exhibit trends that closely follow the
changes in K. Initially, as K increases, both MAE and MSE
values decrease. However, they begin to increase once K
reaches the value of 6. At this specific value of K = 6,
the MAE and MSE values are recorded as 0.0523 and
0.0049, respectively, indicating that the model has achieved
its optimal fitting state.

Scenario 4: Setting (K,α, n, p) = (10, 0.05, 3000, 8);
nr = (30, 40, 50, 60, 70).

Fig. 12. The values of MAE and MSE with K = 10.

As shown in Fig. 12, with fixed (n, p,K), the trends of the
MAE and MSE curves are basically the same as changing nr.
As nr increases, MAE and MSE gradually decrease. As the
value of nr ranges from 40 to 50, MAE and MSE range from
0.0408 to 0.0296 and from 0.0063 to 0.0013, respectively.
Therefore, it is concluded that the optimal fitting effect is
achieved as nr is set to 50.

In this study, it can be observed that as n and p change,
the model’s fitting performance also changes significantly.
Increasing the sample size usually helps improve the stability
and prediction accuracy of the model, while increasing the
number of features may introduce more redundant infor-
mation, which may affect the interpretability and gener-
alization ability of the model. The presence of redundant
data can significantly reduce the predictive accuracy and
interpretability of models. This is because redundant data
increases the complexity of the model, making it more
susceptible to noise during the fitting process, resulting in
unstable prediction results. The LIC criterion balances the
fitting effect and generalization ability of the model by
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considering the complexity of the model and the amount of
information in the data, thus helping to avoid overfitting and
underfitting problems. The experimental results show that
the LIC criterion performs well in model selection, and can
select models that have both good fitting effects and good
generalization capabilities.

IV. CONCLUSION

The current study has delved into the realm of distributed
estimation for redundant data, offering insights into the chal-
lenges and opportunities presented by this domain. Through
the exploration of block strategies, we have gained a deeper
understanding of how flexibility and optimization can play a
crucial role in handling large-scale datasets with redundant
information.

The paper emphasizes the necessity of devising adaptive
block strategies that are not merely sensitive to the scale
of the data, but also cognizant of the specific attributes
of redundant data. The efficacy of such strategies cru-
cially depends on the capacity to dynamically adjust block
length and quantity according to actual requirements, thereby
maximizing both the efficiency and accuracy of distributed
estimation. Furthermore, the study underscores the potential
to broaden our scope to encompass redundant data exhibiting
diverse distributional properties.

In particular, the application of time series models to
distributed estimation emerges as a promising avenue. The
inherent redundancies within time series data present un-
paralleled opportunities for enhancing estimation accuracy
and efficiency, particularly when synergized with suitable
block strategies. Consequently, we advocate for intensified
research in this domain to capitalize fully on the benefits
that time series characteristics can offer within the context
of distributed estimation.

In conclusion, the study underscores the significance of
distributed estimation in handling redundant data and high-
lights the need for continued innovation in block strategies,
adaptability to different data distributions, and exploration
of time series models.

V. FURTHER WORK

In future research, for the problem of redundant data, we
can further explore the flexibility and optimization of block
strategies. In large-scale datasets, the length and quantity of
blocks may need to be adjusted according to actual needs.
Future research can explore how to design more flexible
block strategies to better adapt to different types of data and
problems.

Regarding different forms of distributed redundant data,
current research primarily focuses on those with specific
distributions, like the Gaussian distribution. Future stud-
ies can delve into managing redundant data adhering to
other distributions, such as the Poisson and exponential
distributions, among others. This endeavor will broaden the
application spectrum of distributed estimation techniques. As
it comes to applying time series models, a notable quantity of
redundant information is frequently observed in time series
data. Exploring the utilization of time series models for
distributed estimation represents a promising avenue. By
leveraging the inherent characteristics of time series, we

may enhance both the accuracy and efficiency of distributed
estimation.

DATA AVAILABILITY

We utilized the LIC criterion to fit the data matrices of
three distributions: F-distribution, T-distribution, and Weibull
distribution, thereby simulating redundant data. This sim-
ulation method is used to study the application of the
LIC criterion in redundant data distributed estimation. The
implemented LIC criterion has been integrated into an R
package. URL: https://CRAN.Rproject.org/package=LIC.

REFERENCES

[1] G. Guo, Y. Sun, G. Qian, and Q. Wang, ”LIC criterion for optimal
subset selection in distributed interval estimation,” Journal of Applied
Statistics, vol. 50, no. 9, pp. 1900-1920, 2022.

[2] J. Lederer. “Fundamentals of High-Dimension Statistics,” Switzerland.
Springer Nature Switzerland, AG. 2020. 1.

[3] G. Guo, W. You, G. Qian, and W. Shao, ”Parallel maximum likelihood
estimator for multiple linear regression models,” Journal of Compu-
tational and Applied Mathematics, vol. 273, pp. 251-263, 2015.

[4] Y. Li, G. Guo, “Distributed Monotonic Overrelaxed Method for
Random Effects Model with Missing Response,” IAENG International
Journal of Applied Mathematics, vol. 54, no. 2, pp. 205-211, 2024.

[5] G. Guo, ”Parallel statistical computing for statistical inference,” Jour-
nal of Statistical Theory and Practice, vol. 6, no. 3, pp. 536-565,
2012.

[6] G. Guo, C. Wei, and G. Q. Qian, “Sparse online principal component
analysis for parameter estimation in factor model,” Computational
Statistics, vol. 38, no. 2, pp. 1095-1116. 2022.

[7] G. Guo, W. You, L. Lin, and G. Qian, “Covariance Matrix and
Transfer Function of Dynamic Generalized Linear Models,” Journal
of Computational and Applied Mathematics, vol. 296, pp. 613–624,
2016.

[8] Q. Wang, G. B. Guo, G. Q. Qian, and X. J. Jiang, ”Distributed on-
line expectation-maximization algorithm for Poisson mixture model,”
Applied Mathematical Modelling, vol. 124, pp. 734-748, 2023.

[9] L. Song, G. Guo, “Full Information Multiple Imputation for Linear
Regression Model with Missing Response Variable,” IAENG Inter-
national Journal of Applied Mathematics, vol. 54, no. 1, pp. 77-81.
2024.

[10] G. Guo, R. Niu, G. Qian, and T. Lu, ”Trimmed scores regression for
k-means clustering data with high-missing ratio,” Communications in
Statistics - Simulation and Computation, vol. 53, pp. 2805-2821, 2024.

[11] G. Guo, M. Yu, and G. Qian, ”ORKM: Online regularized K-means
clustering for online multi-view data,” Information Sciences, vol. 680,
Article ID 121133, 2023.

[12] G. Guo, H. Song, and L. Zhu, ”The COR criterion for optimal subset
selection in distributed estimation,” Statistics and Computing, vol. 34,
pp. 163-176, 2023.

[13] G. Guo, Y. Sun, and X. Jiang, ”A partitioned quasi-likelihood for
distributed statistical inference,” Computational Statistics, vol. 35, pp.
1577-1596, 2020.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 2, February 2025, Pages 332-337

 
______________________________________________________________________________________ 

https://CRAN.Rproject.org/package=LIC

	Introduction
	Current Research Status
	Our Work

	Theorem
	Notation
	Theorem and proof

	Simulation
	Simulation preparation
	Case 1
	Case 2
	Case 3

	Conclusion
	Further Work
	References



