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Abstract—Rao introduced the concept of tripolar fuzzy ideals
in 2018. The concept is a generalization of fuzzy sets, bipolar
fuzzy sets, and intuitionistic fuzzy sets. In this paper, we
study and define tripolar fuzzy ideals. We can find necessary
and sufficient conditions for types of tripolar fuzzy ideals in
semigroups. Finally, we prove the relationship between types
ideals and type tripolar fuzzy ideals in semigroups.

Index Terms—Regular, Intra-regular, semisimple, Tripolar
fuzzy sets, Tripolar fuzzy ideals.

I. INTRODUCTION

THE FUNDAMETAL concept of fuzzy sets theory was
discussed and introduced by L. A. Zadeh [1] in 1965 as

the most appropriate theory for dealing with uncertainty. At
present this concept has been applied to many mathematical
branches, such as groups, functional analysis, probability
theory and topology, computer science, artificial intelligence,
control engineering, robotics, automata theory, decision the-
ory, finite state machine. The fuzzification of semigroup was
introduced by Kuroki in 1979, [2]. In 1986, K. T. Attsnsov
[3] investigated an intuitionistic fuzzy set as an exten-sion of
a fuzzy set to deal with uncertainties more efficiently in the
actualsituation. Later in 1994, w . Zhang [4] studied concepts
of bipolar fuzzy sets which is a generalization of fuzzy sets.
In 2000, K. M. Lee [5] studied bipolar valued fuzzy sets
and applied it to algebraic structure. The studies of types
bipolar fuzzy ideals, such as M. K. Kang [6], studied bipolar
fuzzy subsemigroups in semigroups, V. Chinnadurau and K.
Arulmozhi [7] discussed the bipolar fuzzy ideal in ordered
Γ-semigroups, P. Khamrot and M. Siripitukdet [8] explained
generalized bipolar fuzzy subsemigroups in semigroups. T.
Gaketem and P. Khamrot [9] studied bipolar weakly interior
ideals in semigorups. In 2018, M. M. K. Rao [10] was
introduced the concepts tripolar fuzzy set, which is a gener-
alization of fuzzy sets, bipolar fuzzy sets, and intuitionistic
fuzzy sets. In 2019, M. M. K. Rao and B. Venkateswarlu [11]
studied tripolar fuzzy ideals Γ-semirings. In 2020, M. M. K.
Rao and B. Venkateswarlu [12] studied tripolar fuzzy soft
interior ideals Γ-semirings. In 2022, N. Wattansiripong et al.
[13] present properties of tripolar fuzzy pure ideals in ordered
semigroups. In the same year N. Wattansiripong et al.[14]

Manuscript received June 21, 2024; revised December 4, 2024
This research was supported by University of Phayao and Thailand

Science Research and Innovation Fund (Fundamental Fund 2025, Grant No.
5027/2567).

P. Khamrot is a lecturer at the Department of Mathematics, Faculty of
Science and Agricultural Technology, Rajamangala University Technology
Lanna Phitsanulok, Phitsanulok, Thailand. (e-mail: pk_g@rmutl.ac.th).

A. Iampan is a lecturer at the Department of Mathematics, School of
Science, University of Phayao, Mae Ka, Mueang, Phayao 56000, Thailand.
(e-mail: aiyared.ia@up.ac.th).

T. Gaketem is a lecturer at the Department of Mathematics, School of
Science, University of Phayao, Mae Ka, Mueang, Phayao 56000, Thailand.
(corresponding author to provide email: thiti.ga@up.ac.th).

studied tripolar fuzzy interior ideals in ordered semigroups
and characterized semisimple ordered semigroups in terms of
tripolar fuzzy interior ideals. Recently, T. Promai et al. [15]
studied tripolar fuzzy ideals and proved some basic properties
of tripolar fuzzy ideals in semigroups.

In this paper, we give the definition of tripolar fuzzy
ideals in semigroups. We discuss necessary and sufficient
conditions of types of tripolar fuzzy ideals in types of
semigroups. Moreover, we prove relationship between types
ideals and type tripolar fuzzy ideals in semigroups.

II. PRELIMINARIES

In this section, we recall some basic definitions and results
that are used in the study of this paper.

Definition 2.1. A non-empty subset B of a semigroup S is
called
(1) a subsemigroup of S if B2 ⊆ B,
(2) a left (right) ideal of S if SB ⊆ B (BS ⊆ B). By an

ideal B of a semigroup S we mean a left ideal and a
right ideal of S,

(3) an interior ideal of S if B is a subsemigroup of S and
SBS ⊆ B,

(4) a generalized bi-ideal of S if BSB ⊆ B,
(5) a bi-ideal of S if B is a subsemigroup of S and BSB ⊆

B,
(6) a (1, 2)-ideal of S if B is a subsemigroup of S and

BSB2 ⊆ B,
(7) a quasi-ideal of S if BS ∩ SB ⊆ B.

A semigroup S is said to be regular if for each element
h ∈ S, there exists an element r ∈ S such that h = hrh. A
semigroup S is called intra-regular if for every h ∈ S there
exist r, t ∈ S such that h = rh2t. A semigroup S is said
to be left (right) regular if for each element h ∈ S, there
exists an element r ∈ S such that h = rh2(h = h2r). A
semigroup S is called semisimple if for every h ∈ S, there
exist r, t, u ∈ S such that h = rhthu. A semigroup S is
called weakly regular if for every h ∈ S there exist r, t ∈ S
such that h = hrht. A semigroup S is a left (right) quasi-
regular if for every h ∈ S, there exist r, t ∈ S such that
h = rhth (h = hthyt).

For any hi ∈ [0, 1], i ∈ F , define

∨
i∈F

hi := sup
i∈F

{hi} and ∧
i∈F

hi := inf
i∈F

{hi}.

We see that for any h, r ∈ [0, 1], we have

h ∨ r = max{h, r} and h ∧ r = min{h, r}.

A fuzzy set (fuzzy subset) of a non-empty set E is a function
ρ : E → [0, 1].
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For any two fuzzy sets ρ and ν of a non-empty set E ,
define the symbol as follows:
(1) ρ ⊆ ν ⇔ ρ(h) ≤ ν(h) for all h ∈ E ,
(2) ρ = ν ⇔ ρ ⊆ ν and ν ⊆ ρ,
(3) (ρ∧ ν)(h) = ρ(h)∧ ν(h) and (ρ∨ ν)(h) = ρ(h)∨ ν(h)

for all h ∈ E , For the symbol ρ ⊇ ν, we mean ν ⊆ ρ.
Let k ∈ S. Then Fk := {(m,n) ∈ S × S | k = mn}.

For any two fuzzy sets ρ and ν of a semigroup S . The
product of fuzzy subsets ρ and ν of S is defined as follow,
for all h ∈ S

(ρ ◦ ν)(h) =


∨

(m,n)∈Fk

{ρ(k) ∧ ν(r)} if h = mn,

0 otherwise.

The characteristic function of a subset B of a nonempty set
S is a fuzzy set of S

λB(h) =

{
1 if h ∈ B,
0 if h /∈ B.

for all h ∈ S.

Definition 2.2. [2] A fuzzy set ρ of a semigroup S is said
to be

(1) a fuzzy subsemigroup of S if ρ(h) ∧ ρ(r) ≤ ρ(hr), for
all h, r ∈ S,

(2) a fuzzy left (right) ideal of S if ρ(r) ≤ ρ(hr) (ρ(h) ≤
ρ(hr)), for all h, r ∈ S.

(3) afuzzy ideal of S if it is both a fuzzy left ideal and a
fuzzy right ideal of S,

(4) a fuzzy interior ideal of S if ρ is a fuzzy subsemigroup
of S and ρ(r) ≤ ρ(hrt), for all h, r, t ∈ S,

(5) a fuzzy generalized bi-ideal of S if ρ(h)∧ρ(t) ≤ ρ(hrt),
for all h, r, t ∈ S,

(6) a fuzzy bi-ideal of S if ρ is a fuzzy subsemigroup of S
and ρ(h) ∧ ρ(t) ≤ ρ(hrt), for all h, r, t ∈ S,

(7) a fuzzy (1, 2)-ideal of S if ρ is a fuzzy subsemigroup of S
and ρ(hk(tr)) ≥ ρ(h)∧ρ(t)∧ρ(r), for all h, k, r, t ∈ S,

(8) a fuzzy quasi-ideal of S if (λS ◦ ρ)(h) ∧ (ρ ◦ λS)(h) ≤
ρ(h), for all h ∈ S.

Definition 2.3. [10] The tripolar fuzzy set T F on a non-
empty set E if

T F := {(h, ρ(h), ν(h), δ(h)) | h ∈ E},

where ρ(h) : E → [0, 1], ν(h) : E → [0, 1] and δ(h) :
E → [−1, 0], such that 0 ≤ ρ(h) + ν(h) ≤ 1 for all h ∈ E .
The membership degree ρ(h) characterizes the extent that
the element E satisfies the property corresponding to tripolar
fuzzy set T F , ν(h) characterizes the extent that the element
E satisfies the not property (irrelevant) corresponding to
tripolar fuzzy set ρ, and δ(h) characterizes the extent that the
element E satisfies the implicit counter property correspond-
ing to tripolar fuzzy set T F . For simplicity T F := (ρ, ν, δ)
has been used for T F := {(h, ρ(h), ν(h), δ(h)) | h ∈ E}
such that 0 ≤ ρ(h) + ν(h) ≤ 1.

The characteristic tripolar fuzzy set T FB = (ρB, νB, δB)
of a non-empty subset B of set S is defined as follows:

ρB(k) =

{
1 if k ∈ B,
0 if k /∈ B,

νB(k) =

{
0 if k ∈ B,
1 if k /∈ B,

δB(k) =

{
-1 if k ∈ B,
0 if k /∈ B

for all k ∈ S . In this case of B = S defined T FB =
(ρS , νS , δS) = (1, 0,−1).

For T F1 = (ρ, ν, δ) and T F2 = (λ, µ, ω) be a tripolar
fuzzy sets. Defined the product T F1 ◦ T F2 of a semigroup
S as follows:

(ρ ◦ λ)(k) =

{ ∨
(m,n)∈Fk

{ρ(m) ∧ λ(n)} if Fk ̸= ∅,

0 if Fk = ∅,

(ν ◦ µ)(k) =

{ ∧
(m,n)∈Fk

{ν(m) ∨ µ(n)} if Fk ̸= ∅,

1 if Fk = ∅,

(δ ◦ ω)(k) =

{ ∧
(m,n)∈Fk

{δ(m) ∨ ω(n)} if Fk ̸= ∅,

0 if Fk = ∅,

for all k ∈ E . It is easy to verify that the structure (T F1, ◦)
is a semigroup.

III. MAIN RESLUTS

In this section, we define the notions of tripolar fuzzy
ideals in semigroups and some properties of them are inves-
tigated.

Definition 3.1. A tripolar fuzzy set is called a T F =
(ρ, ν, δ) of a semigroup S is called

(1) a tripolar fuzzy subsemigroup (TFS) of S if ρ(hk) ≥
ρ(h) ∧ ρ(k), ν(hk) ≤ ν(h) ∨ ν(k) and δ(hk) ≤ δ(h) ∨
δ(k) for all h, k ∈ S.

(2) a tripolar fuzzy left ideal (TFLI) of S if ρ(hk) ≥ ρ(k),
ν(hk) ≤ ν(k) and δ(hk) ≤ δ(k) for all h, k ∈ S.

(3) a tripolar fuzzy right ideal (TFRI) of S if ρ(hk) ≥ ρ(h),
ν(hk) ≤ ν(h) and δ(hk) ≤ δ(h) for all h, k ∈ S.

(4) a tripolar fuzzy ideal (TFI) of S if it is both TFLI and
TFRI of S.

(5) a tripolar fuzzy generalized bi-ideal (TFGBI) of S if
ρ(hkt) ≥ ρ(h) ∧ ρ(t), ν(hkt) ≤ ν(h) ∨ ν(t) and
δ(hkt) ≤ δ(h) ∨ δ(t) for all h, k, t ∈ S.

(6) a tripolar fuzzy bi-ideal (TFBI) of S if T F = (ρ, ν, δ)
is a TFS and ρ(hkt) ≥ ρ(h)∧ρ(t), ν(hkt) ≤ ν(h)∨ν(t)
δ(hkt) ≤ δ(h) ∨ δ(t) for all h, k, t ∈ S.

(7) a tripolar fuzzy interior ideal (TFII) of S if T F =
(ρ, ν, δ) is a TFS and ρ(hkt) ≥ ρ(k), ν(hkt) ≤ ν(k)
δ(hkt) ≤ δ(k) for all h, k, t ∈ S.

(8) a tripolar fuzzy (1, 2)-ideal (TF (1, 2)-I) of S if T F =
(ρ, ν, δ) is a TFS and ρ(hk(tr)) ≥ ρ(h) ∧ ρ(t) ∧
ρ(r), ν(hk(tr)) ≤ ν(h) ∨ ν(t) ∨ ν(r) δ(hk(tr)) ≤
δ(h) ∨ δ(t) ∨ δ(r) for all h, k, t, r ∈ S.

(9) a tripolar fuzzy quasi-ideal (TFQI) of S if ρ(h) ≥ (ρS ◦
ρ)(h) ∧ (ρ ◦ ρS)(h), ν(h) ≤ (νS ◦ ν)(h) ∨ (ν ◦ νS)(h)
and δ(hkt) ≤ (δS ◦ δ)(h) ∨ (δ ◦ δS)(h) for all h ∈ S.

In Definition 3.1 we have (4) ⇒ (1), (6) ⇒ (5), (4) ⇒
(6), (4) ⇒ (7) and (4) ⇒ (8).

Example 3.2. Let S = {w, x, y, z} be semigroup with the
following Cayley table:
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· w x y z
w w w w w
x w w w w
y w w x w
z w w x x

Define T F = (ρ, ν, δ) by ρ(w) = 0.4, ρ(x) = 0.7, ρ(y) =
0.8, ρ(z) = 0.3; ν(w) = 0.5, ρ(x) = 0.2, ρ(y) =
0.1, ρ(z) = 0.4 and δ(w) = −0.7, δ(x) = −0.5, δ(y) =
−0.3, δ(z) = −0.3. Then T F = (ρ, ν, δ) is a TFII of S.

Example 3.3. Let S = {v, w, x, y, z} be semigroup with the
following Cayley table:

· v w x y z
v v v v v v
w v v v v v
x v v x x z
y v v x y z
z v v x x e

Define T F = (ρ, ν, δ) by ρ(v) = 0.6, ρ(w) = 0.5, ρ(x) =
0.4, ρ(y) = 0.4, ρ(z) = 0.3, ν(v) = 0.3, ν(w) =
0.3, ν(x) = 0.4, ν(y) = 0.5, ν(z) = 0.6 and δ(v) =
−0.7, δ(w) = −0.5, δ(x) = −0.3, δ(y) = −0.3 δ(z) =
−0.4. Then T F = (ρ, ν, δ) is a TFBI of S.

The following lemma shows that every TFI is a TFBI of
a semigroups.

Lemma 3.4. Every TFI of a semigroup S is a TFBI of S.

Proof: Suppose that T F = (ρ, ν, δ) is a TFI of S and
let h, r ∈ S . Since T F = (ρ, ν, δ) is a TFI of S, we have
that T F = (ρ, ν, δ) is a TFRI of S. Thus,

ρ(hr) ≥ ρ(h), ν(hr) ≤ ν(h) and δ(hr) ≤ δ(h)

and so ρ(hr) ≥ ρ(h) ≥ ρ(h) ∧ ρ(r), ν(hr) ≤ ν(h) ≤
ν(h)∨ ν(r) and δ(hr) ≤ δ(h) ≤ δ(h)∨ δ(r). Hence, T F =
(ρ, ν, δ) is a TFS of S. Let h, r, t ∈ S. Since T F = (ρ, ν, δ)
is a TFI of S, we have that T F = (ρ, ν, δ) is a TFLI of S.
Thus, ρ(hrt) = ρ((hr)t) ≥ ρ(t), ν(hrt) = ν((hr)t) ≤ ν(t)
and δ(hrt) = δ((hr)t) ≤ δ(t) and so ρ(hrt) ≥ ρ(t) ≥
ρ(h) ∧ ρ(t), ν(hrt) ≤ ν(t) ≤ ν(h) ∨ ν(t) and δ(hrt) ≤
δ(t) ≤ δ(h) ∨ δ(t). Hence T F = (ρ, ν, δ) is a TFBI of S.

In order to consider the converse of Lemma 3.4, we need
to strengthen the condition of a semigroup S.

Theorem 3.5. In a regular semigroup S, the TFBIs and the
TFIs coincide.

Proof: Suppose that T F = (ρ, ν, δ) is a TFBI of S and
let h, r ∈ S. Since S is regular, we have hr ∈ (hSh)S ⊆
hS which implies that hr = hkh for some k ∈ S. Thus,
ρ(hr) = ρ(hkh) ≥ ρ(h)∧ρ(h) = ρ(h), ν(hr) = ν(hkh) ≤
ν(h) ∨ ν(h) = ν(h) and δ(hr) = δ(hkh) ≤ δ(h) ∨ δ(h) =
δ(h). Hence, T F = (ρ, ν, δ) is a TFRI of S. Similarly,
we can show that T F = (ρ, ν, δ) is a TFLI of S. Thus,
T F = (ρ, ν, δ) is a TFI of S.

In the following results, we show that CFGIBs and CF-
BIDs on types of SGs.

Lemma 3.6. In a regular semigroup of of S, the TFGBI and
the TFBI coincide.

Proof: Suppose that T F = (ρ, ν, δ) is a TFGBI of S
and let h, r ∈ S. Since S is regular, there exists k ∈ S such
that r = rkr. Thus,

ρ(hr) = ρ((h(rkr)) = ρ(h(rk)r) ≥ ρ(h) ∧ ρ(r)

ν(hr) = ν(h(rkr)) = ν(h(rk)r) ≤ ν(h) ∨ ν(r)

and

δ(hr) = δ(h(rkr)) = δ(h(rk)r) ≤ δ(h) ∨ δ(r)

Hence, T F = (ρ, ν, δ) is a TFS of S. By Definition 3.1(6)
we have T F = (ρ, ν, δ) is a TFBI of S.

Lemma 3.7. In left (right) regular semigroup of S, the
TFGBI and the TFBI coincide.

Proof: Suppose that T F = (ρ, ν, δ) is a TFGBI of S
and let h, r ∈ S. Since S is left regular, there exists k ∈ S
such that r = kr2 = krr. Thus,

ρ(hr) = ρ((h(krr)) = ρ(h(kr)r) ≥ ρ(h) ∧ ρ(r)

ν(hr) = ν((h(krr)) = ν(h(kr)r) ≤ ν(h) ∨ ν(r)

and

δ(hr) = δ((h(krr)) = δ(h(kr)r) ≤ δ(h) ∨ δ(r)

Hence, T F = (ρ, ν, δ) is a TFS of S. By Definition 3.1(6)
we have T F = (ρ, ν, δ) is a TFBI of S.

Lemma 3.8. In left (right) quasi-regular semigroup of S, the
TFGBI and the TFBI coincide.

Proof: Suppose that T F = (ρ, ν, δ) is a TFGBI of S
and let h, r ∈ S . Since S is left quasi-regular, there exists
k,w ∈ S such that r = krwr. Thus,

ρ(hr) = ρ((h(krwr)) = ρ(h(krw)r) ≥ ρ(h) ∧ ρ(r)

ν(hr) = ν((h(krwr)) = ν(h(krw)r) ≤ ν(h) ∨ ν(r)

and

δ(hr) = δ(h(krwr)) = δ(h(krw)r) ≤ δ(h) ∨ δ(r)

Hence, T F = (ρ, ν, δ) is a TFS of S. By Definition 3.1(6)
we have T F = (ρ, ν, δ) is a TFBI of S.

Lemma 3.9. In weakly regular semigroup of S, the TFGBI
and the TFBI coincide.

Proof: Suppose that T F = (ρ, ν, δ) is a TFGBI of S
and let h, r ∈ S. Since S is weakly regular, there exists
k,w ∈ S such that h = hkhw. Thus,

ρ(hr) = ρ((hkhw)r) = ρ(h(khw)r) ≥ ρ(h) ∧ ρ(r)

ν(hr) = ν((hkhw)r) = ν(h(khw)r) ≤ ν(h) ∨ ν(r)

and

δ(hr) = δ((hkhw)r) = δ(h(khw)r) ≤ δ(h) ∨ δ(r)

Hence, T F = (ρ, ν, δ) is a TFS of F̃. By Definition 3.1(6)
we have T F = (ρ, ν, δ) is a TFBI of S.

By Lemma 3.6, 3.7, 3.8 and 3.9, we have Theorem 3.10.

Theorem 3.10. Let S be a semigorup. If S is regular, left
(right) regular, left (right) quasi-regular or weakly regular,
then the TFGBI and the TFBI coincide.
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The following lemma shows that every TFI is a TFII on
a semigroup.

Lemma 3.11. Every TFI of a semigroup S is a TFII of S.

Proof: Suppose that T F = (ρ, ν, δ) is a TFI of S and
let h, r ∈ S . Since T F = (ρ, ν, δ) is a TFI of S, we have
T F = (ρ, ν, δ) is a TFRI of S. Thus,

ρ(hr) ≥ ρ(h), ν(hr) ≤ ν(h) and δ(hr) ≤ δ(h)

and so ρ(hr) ≥ ρ(h) ≥ ρ(h) ∧ ρ(r), ν(hr) ≤ ν(h) ≤
ν(h)∨ ν(r) and δ(hr) ≤ δ(h) ≤ δ(h)∨ δ(r). Hence, T F =
(ρ, ν, δ) is a TFS of S. Let h, r, t ∈ S. Then,
ρ(hrt) = ρ(h(rt)) ≥ ρ(rt) ≥ ρ(r), ν(hrt) = ν(h(rt)) ≤
ν(rt) ≤ ν(r) and δ(hrt) = δ(h(rt)) ≤ δ(rt) ≤ δ(r) Thus,
ρ(hrt) ≥ ρ(r), ν(hrt) ≤ ν(r) and δ(hrt) ≤ δ(r). Hence,
T F = (ρ, ν, δ) is a TFII of S.

In order to consider the converse of Lemma 3.11, we need
to strengthen the condition of a semigroup S.

Lemma 3.12. In a regular semigroup S, the TFIIs and the
TFIs coincide.

Proof: Suppose that T F = (ρ, ν, δ) is a TFII of S and
let h, r ∈ S. Since S is regular, there exists k ∈ S such that
h = hkh. Thus,

ρ(hr) = ρ((hkh)r) = ρ((hk)hr) ≥ ρ(h),

ν(hr) = ν((hkh)r) = ν((hk)hr) ≤ ν(h),

and
δ(hr) = δ((hkh)r) = δ((hk)hr) ≤ δ(h).

Hence, T F = (ρ, ν, δ) is a TFRI of S. Similarly, we can
show that T F = (ρ, ν, δ) is a TFLI of S. Thus, T F =
(ρ, ν, δ) is a TFI of S.

Lemma 3.13. In a left (right) regular semigroup S, the TFIIs
and the TFIs coincide.

Proof: Suppose that T F = (ρ, ν, δ) is a TFII of S and
let h, r ∈ S. Since S is left regular, there exists k ∈ S such
that h = kh2. Thus,

ρ(hr) = ρ((kh2)r) = ρ(khhr) = ρ((kh)hr) ≥ ρ(h),

ν(hr) = ν((kh2)r) = ν(khhr) = ν((kh)hr) ≤ ρ(h)

and

δ(hr) = δ((kh2)r) = δ(khhr) = δ((kh)hr) ≤ δ(h).

Hence, T F = (ρ, ν, δ) is a TFRI of S. Similarly, we can
show that T F = (ρ, ν, δ) is a TFLI of S. Thus, T F =
(ρ, ν, δ) is a TFI of S.

Lemma 3.14. In an intra-regular semigroup S , the TFIIs
and the TFIs coincide.

Proof: Suppose that T F = (ρ, ν, δ) is a TFII of S and
let h, r ∈ S . Since S is intra-regular, there exist k, t ∈ S
such that h = kh2t. Thus,

ρ(hr) = ρ((kh2t)r) = ρ((khht)r) = ρ((kh)hr) ≥ ρ(h),

ν(hr) = ν((kh2t)r) = ν((khht)r) = ν((kh)hr) ≤ ν(h)

and

δ(hr) = δ((kh2t)r) = δ((khht)r) = δ((kh)hr) ≤ δ(h).

Hence, T F = (ρ, ν, δ) is a TFRI of S. Similarly, we can
show that T F = (ρ, ν, δ) is a TFLI of S . Thus, T F =
(ρ, ν, δ) is a TFI of S.

Lemma 3.15. In a semisiple semigroup S, the TFIIs and the
TFIs coincide.

Proof: Suppose that T F = (ρ, ν, δ) is a TFII of S and
let h, r ∈ S. Since S is semisimple, there exist k, t, p ∈ S
such that h = khthp. Thus,

ρ(hr) = ρ((khthp)r) = ρ((kht)h(pr)) ≥ ρ(h),

ν(hr) = ν((khthp)r) = ν((kht)h(pr)) ≤ ν(h)

and

δ(hr) = δ((khthp)r) = δ((kht)h(pr)) ≤ δ(h).

Hence, T F = (ρ, ν, δ) is a TFRI of S. Similarly, we can
show that T F = (ρ, ν, δ) is a TFLI of S . Thus, T F =
(ρ, ν, δ) is a TFI of S.

Lemma 3.16. In a let (right) quasi-regular semigroup S, the
TFIIs and the TFIs coincide.

Proof: Suppose that T F = (ρ, ν, δ) is a TFII of S and
let h, r ∈ S. Since S is left quasi-regular, there exist k, t ∈ S
such that r = krtr. Thus,

ρ(hr) = ρ(h(krtr)) = ρ((hk)r(tr)) ≥ ρ(r),

ν(hr) = ν(h(krtr)) = ν((hk)r(tr)) ≤ ν(r)

and

δ(hr) = δ(h(krtr)) = δ((hk)r(tr)) ≤ δ(r).

Hence, T F = (ρ, ν, δ) is a TFRI of S. Similarly, we can
show that T F = (ρ, ν, δ) is a TFLI of S . Thus, T F =
(ρ, ν, δ) is a TFI of S.

Lemma 3.17. In a weakly regular semigroup S, the TFIIs
and the TFIs coincide.

Proof: Suppose that T F = (ρ, ν, δ) is a TFII of S and
let h, r ∈ S. Since S is weakly regular, there exist k, t ∈ S
such that h = hkht. Thus,

ρ(hr) = ρ((hkht)r) = ρ((hk)h(tr)) ≥ ρ(h),

ν(hr) = ν((hkht)r) = ν((hk)h(tr)) ≤ ν(h),

and

δ(hr) = δ((hkht)r) = δ((hk)h(tr)) ≤ δ(h),

Hence, T F = (ρ, ν, δ) is a TFRI of S. Similarly, we can
show that T F = (ρ, ν, δ) is a TFLI of S. Thus, T F =
(ρ, ν, δ) is a TFI of S.

By Lemma 3.12, 3.13, 3.14, 3.15, 3.16 and 3.17, we have
Theorem 3.18.

Theorem 3.18. Let S be a semigroup. If S is regular, left
(right) regular, intra-regular, semisimple, left (right) quasi-
regular or weakly regular, then TFIIs and TFIs coincide.

The following theorem shows that every TFI is a TFQI of
a semigroup.
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Theorem 3.19. Every TFLI (TFRL) of a semigroup S is a
TFQI of S.

Proof: Suppose that T F = (ρ, ν, δ) is a TFLI of S and
let h ∈ S.

If Fh = ∅, then it is easy to verify that ρ(h) ≥ (ρS ◦
ρ)(h) ∧ (ρ ◦ ρS)(h), ν(h) ≤ (νS ◦ ν)(h) ∨ (ρ ◦ νS)(h) and
δ(h) ≤ (δS ◦ δ)(h) ∨ (δ ◦ δS)(h).

If Fh ̸= ∅, then

(ρS ◦ ρ)(h) =
∨

(i,j)∈Fh

{ρS(i) ∧ ρ(j)}

=
∨

(i,j)∈Fh

{1 ∧ ρ(j)}

≤
∨

(i,j)∈Fh

{ρ(j)}

≤
∨

(i,j)∈Fh

{ρ(ij)}

≤ ρ(h),

(νS ◦ ν)(h) =
∧

(i,j)∈Fh

{νS(i) ∨ ν(j)}

=
∧

(i,j)∈Fh

{0 ∨ ν(j)}

≥
∧

(i,j)∈Fh

{ν(j)}

≥
∧

(i,j)∈Fh

{ν(ij)}

≥ ν(h),

and

(δS ◦ δ)(h) =
∧

(i,j)∈Fh

{δS(i) ∨ δ(j)}

=
∧

(i,j)∈Fh

{−1 ∨ δ(j)}

≥
∧

(i,j)∈Fh

{δ(j)}

≥
∧

(i,j)∈Fh

{δ(ij)}

≥ δ(h).

Thus, ρ(h) ≥ (ρS ◦ ρ)(h), ν(h) ≤ (νS ◦ ν)(h) and δ(h) ≤
(δS ◦ δ)(h) and so ρ(h) ≥ (ρS ◦ρ)(h)∧ (ρ◦ρS)(h), ν(h) ≤
(νS ◦ν)(h)∨(ρ◦νS)(h) and δ(h) ≤ (δS ◦δ)(h)∨(δ◦δS)(h).
Hence, T F = (ρ, ν, δ) is a TFQI of S. Similarly, if T F =
(ρ, ν, δ) is a TFRI, then T F = (ρ, ν, δ) is a TFQI of S.

The following theorem shows that every TFQI is a TFS
on a semigroup.

Theorem 3.20. Every TFQI of a semigroup S is a TFS of
S.

Proof: Suppose that T F = (ρ, ν, δ) is a TFQI of S
and let h, r ∈ S.

ρ(hr) ≥ (ρ ◦ ρS)(hr) ∧ (ρS ◦ ρ)(hr)
=

∨
(p,q)∈Fhr

{ρ(p) ∧ ρS(q)}∧∨
(a,b)∈Fhr

{ρS(a) ∧ ρ(b)}

≥ (ρ(h) ∧ ρS(r)) ∧ (ρS(h)) ∧ ρ(r)
= (ρ(h) ∧ 1) ∧ (1 ∧ ρ(r))
≥ ρ(h) ∧ ρ(r),

ν(hr) ≤ (ν ◦ νS)(hr) ∨ (νS ◦ ν)(hr)
=

∧
(p,q)∈Fhr

{ν(p) ∨ νS(q)}∨∧
(a,b)∈Fhr

{νS(a) ∨ ν(b)}

≤ (ν(h) ∨ νS(r)) ∨ (νS(h)) ∨ ν(r)
= (ν(h) ∨ 0) ∨ (0 ∨ ν(r))
≤ ν(h) ∨ ν(r),

and

δ(hr) ≤ (δ ◦ δS)(hr) ∨ (δS ◦ δ)(hr)
=

∧
(p,q)∈Fhr

{δ(p) ∨ δS(q)}∨∧
(a,b)∈Fhr

{δS(a) ∨ δ(b)}

≤ (δ(h) ∨ δS(r)) ∨ (δS(h)) ∨ δ(r)
= (δ(h) ∨ −1) ∨ (−1 ∨ δ(r))
≤ δ(h) ∨ δ(r)

Thus, ρ(hr) ≥ ρ(h)∧ρ(r), ν(hr) ≤ ν(h)∨ν(r) and δ(hr) ≤
δ(h) ∨ δ(r). Hence, T F = (ρ, ν, δ) is a TFS of S.

The following theorem shows that every TFQI is a TFBI
on a semigroup.

Theorem 3.21. Every TFQI of a semigroup S is a TFBI of
S.

Proof: Assume that T F = (ρ, ν, δ) is a TFQI of S and
let h, r ∈ S . Then by Theorem 3.20, T F = (ρ, ν, δ) is a
TFS of S.
Let h, r, t ∈ S. Then

ρ(hrt) ≥ (ρ ◦ ρS)(hrt) ∧ (ρS ◦ ρ)(hrt)
=

∨
(p,q)∈Fhrt

{ρ(p) ∧ ρS(q)}∧∨
(a,b)∈Fhrt

{ρS(a) ∧ ρ(b)}

≥ (ρ(h) ∧ ρS(rt)) ∧ (ρS(hr)) ∧ ρ(t)
= (ρ(h) ∧ 1) ∧ (1 ∧ ρ(t))
≥ ρ(h) ∧ ρ(t),

ν(hrt) ≤ (ν ◦ νS)(hrt) ∨ (νS ◦ ν)(hrt)
=

∧
(p,q)∈Fhrt

{ν(p) ∨ νS(q)}∨∧
(a,b)∈Fhrt

{νS(a) ∨ ν(b)}

≤ (ν(h) ∨ νS(rt)) ∨ (νS(hr)) ∨ ν(t)
= (ν(h) ∨ 0) ∨ (0 ∨ ν(t))
≤ ν(h) ∨ ν(t),

and

δ(hrt) ≤ (δ ◦ δS)(hrt) ∨ (δS ◦ δ)(hrt)
=

∧
(p,q)∈Fhrt

{δ(p) ∨ δS(q)}∨∧
(a,b)∈Fhrt

{δS(a) ∨ δ(b)}

≤ (δ(h) ∨ δS(rt)) ∨ (δS(hr)) ∨ δ(t)
= (δ(h) ∨ −1) ∨ (−1 ∨ δ(t))
≤ δ(h) ∨ δ(t)

Thus, ρ(hrt) ≥ ρ(h) ∧ ρ(t), ν(hrt) ≤ ν(h) ∨ ν(t) and
δ(hrt) ≤ δ(h) ∨ δ(t). Hence, T F = (ρ, ν, δ) is a TFB of
S.

The following theorem shows that every TFI is a TF (1, 2)-
I on a semigroup

Theorem 3.22. Every TFI of a semigroup of S is a TF (1, 2)-
I of S.
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Proof: Suppose that T F = (ρ, ν, δ) is a TFI of S and
let h, r ∈ S . Since T F = (ρ, ν, δ) is a TFI of S, we have
that T F = (ρ, ν, δ) is a TFRI of S. Thus, ρ(hr) ≥ ρ(h)
ν(hr) ≤ ν(h) and δ(hr) ≤ δ(h) and so, ρ(hr) ≥ ρ(h) ≥
ρ(h) ∧ ρ(r) ν(hr) ≤ ν(h) ≤ ν(h) ∨ ν(r) and δ(hr) ≤
δ(h) ≤ δ(h) ∨ δ(r). Hence, T F = (ρ, ν, δ) is a TFS of S.
Let h, r, k, w ∈ S. Since T F = (ρ, ν, δ) is a TFI of S , we
have that T F = (ρ, ν, δ) is a TFLI of S. Thus, ρ(hrkw) =
ρ((hrk)w) ≥ ρ(w) ν(hrkw) = ν((hrk)w) ≤ ν(w) and
δ(hrkw) = δ((hrk)w) ≤ δ(w). and so,

ρ(hr(kw)) ≥ ρ(w) ≥ ρ(h) ∧ ρ(k) ∧ ρ(w),

ν(hr(kw)) ≤ ν(w) ≤ ν(h) ∨ ν(k) ∨ ν(w)

and
δ(hr(kw)) ≤ δ(w) ≤ δ(h) ∨ δ(k) ∨ δ(w)

Hence, T F = (ρ, ν, δ) is a TF (1, 2)-I of S.

IV. RELATION BETWEEN IDEAL AND TRIPOLAR IDEAL IN
SEMIGROUPS

Theorem 4.1. Let B be a non-empty subset of a semigroup
S. Then B is a subsemigroup of S if and only if T FB =
(ρB, νB, δB) is a TFS of S.

Suppose that B is a semigruop of S and let h, k ∈ S. Then
B2 ⊆ B.

If h, k ∈ B, then hk ∈ B. Thus, ρB(h) = ρB(k) =
ρB(hk) = 1, νB(h) = νB(k) = νB(hk) = 0 and δB(h) =
δB(k) = δB(hk) = −1. Hence, ρB(hk) ≥ ρB(h) ∧ ρB(k),
νB(hk) ≤ νB(h) ∨ νB(k) and δB(hk) ≤ δB(h) ∨ δB(k).

If h /∈ B or k /∈ B, then ρB(hk) ≥ ρB(h) ∧ ρB(k),
νB(hk) ≤ νB(h) ∨ νB(k) and δB(hk) ≤ δB(h) ∨ δB(k).

Therefore, T FB = (ρB, νB, δB) is a TFSG of S.
For the converse, assume that T FB = (ρB, νB, δB) is a

TFSG of S, let h, k ∈ S with h, k ∈ B. Then ρB(h) =
ρB(k) = 1, νB(h) = νB(k) = 0 and δB(h) = δB(k) = −1.
By assumption, ρB(hk) ≥ ρB(h)∧ρB(k), νB(hk) ≤ νB(h)∨
νB(k) and δB(hk) ≤ δB(h)∨δB(k). Thus, hk ∈ B. Therefore
B is a SG of S.

Theorem 4.2. Let B be a non-empty subset of a semigroup
S. Then B is a left (right) ideal of S if and only if T FB =
(ρB, νB, δB) is a TFLI (TFRI) of S.

Proof: Assume that B is a left ideal of S and h, k ∈ S. If
k ∈ B, then hk ∈ B Thus, ρB(k) = 1, νB(k) = 0, δB(k) =
−1 and ρB(hk) = 1, νB(hk) = 0, δB(hk) = −1. Hence,
ρB(hk) ≥ ρB(k), νB(hk) ≤ νB(k) and δB(hk) ≤ δB(k).

If k /∈ B, then hk ∈ B Thus, ρB(k) = 0, νB(k) = 1,
δB(k) = 0 and ρB(hk) = 1, νB(hk) = 0, δB(hk) = −1.
Hence, ρB(hk) ≥ ρB(k), νB(hk) ≤ νB(k) and δB(hk) ≤
δB(k).

Therefore T FB = (ρB, νB, δB) is a TFLI of S.
Conversely, assume that T FB = (ρB, νB, δB) is a TFLI

of S and h, k ∈ S such that k ∈ B. Then then ρB(k) = 1,
νB(k) = 0, δB(k) = −1. If hk /∈ B, then ρB(hk) = 0,
νB(hk) = 1, δB(hk) = 0. Thus, 0 = ρB(hk) < 1 = ρB(k),
1 = νB(hk) > 0 = νB(k) and 0 = δB(hk) > −1δB(k).
By assumption, ρB(hk) ≥ ρB(k), νB(hk) ≤ νB(k) and
δB(hk) ≤ δB(k). It is a contradiction so, hk ∈ B. Hence, B
is a left ideal of S.

Theorem 4.3. Let B be a non-empty subset of a semigroup S.
Then B is a generalized bi-ideal of S if and only if T FB =
(ρB, νB, δB) is a TFGBI of S.

Proof: Assume that B is a generalized bi-ideal of S
and h, k, t ∈ S. If h, t ∈ B, then hkt ∈ B Thus, ρB(h) =
1 = ρB(t), νB(h) = 0 = νB(t), δB(h) = −1 = δB(t)
and ρB(hkt) = 1, νB(hkt) = 0, δB(hkt) = −1. Hence,
ρB(hkt) ≥ ρB(h) ∧ ρB(t), ν(hkt) ≤ νB(h) ∨ νB(t) and
δB(hkt) ≤ δB(h) ∨ δB(t).

If h /∈ B or t /∈ B, then ρB(hkt) ≥ ρB(h) ∧ ρB(t),
νB(hkt) ≤ νB(h) ∨ νB(t) and δB(hkt) ≤ δB(h) ∨ δB(t).

Therefore T FB = (ρB, νB, δB) is a TFGBI of S.
Conversely, assume that T FB = (ρB, νB, δB) is a TFGBI

of S and h, k, t ∈ S such that h, t ∈ B. Then then ρB(h) =
1 = ρB(t), νB(h) = 0 = ρB(t), δB(h) = −1 = ρB(t). If
hkt /∈ B, then ρB(hkt) = 0, νB(hkt) = 1, δB(hkt) = 0.
Thus, 0 = ρ(hkt) < 1ρ(h) ∧ ρB(t), 1 = ν(hkt) > 0 =
∨νB(t) and 0 = δ(hkt) > −1δB(h)∨ δB(t). By assumption,
ρ(hkt) ≥ ρ(h) ∧ ρB(t), νB(hkt) ≤ νB(h) ∨ νB(t) and
δB(hkt) ≤ δB(h) ∨ δB(t). It is a contradiction so, hkt ∈ B.
Hence, B is a generalized bi-ideal of S.

Theorem 4.4. Let B be a non-empty subset of a semigroup S.
Then B is a bi-ideal of S if and only if T FB = (ρB, νB, δB)
is a TFBI of S.

Proof: By Theorem 4.1 and Theorem 4.3.

Theorem 4.5. Let B be a non-empty subset of a semigroup
S. Then B is an interior ideal of S if and only if T FB =
(ρB, νB, δB) is a TFII of S.

Proof: Assume that B is an interior ideal of S. Then
B is a subsemigroup of S. Thus, by Theorem 4.1, T FB =
(ρB, νB, δB) is a TFS of S. Let h, k, t ∈ S . If k ∈ B,
then hkt ∈ B Thus, ρB(k) = 1, νB(k) = 0, δB(k) = −1
and ρB(hkt) = 1, νB(hkt) = 0, δB(hkt) = −1. Hence,
ρB(hkt) ≥ ρB(k), νB(hkt) ≤ νB(k) and δB(hkt) ≤ δB(k).

If k /∈ B, then hkt ∈ B Thus, ρB(k) = 0, νB(k) = 1,
δB(k) = 0 and ρB(hkt) = 1, νB(hkt) = 0, δB(hkt) = −1.
Hence, ρB(hkt) ≥ ρB(k), νB(hkt) ≤ νB(k) and δB(hkt) ≤
δB(k).

Therefore, T FB = (ρB, νB, δB) is a TFLI of S.
Conversely, assume that T FB = (ρB, νB, δB) is a TFII

of S. Then T FB = (ρB, νB, δB) is a TFS of S. Thus, by
Theorem 4.1, B is a subsemigorup of S. Let h, k, t ∈ S such
that k ∈ B. Then then ρB(k) = 1, νB(k) = 0, δB(k) = −1.
If hkt /∈ B, then ρB(hkt) = 0, νB(hkt) = 1, δB(hkt) = 0.
Thus, 0 = ρB(hkt) < 1 = ρB(k), 1 = νB(hkt) >
0 = νB(k) and 0 = δB(hkt) > −1δB(k). By assumption,
ρB(hkt) ≥ ρB(k), νB(hkt) ≤ νB(k) and δB(hkt) ≤ δB(k).
It is a contradiction so, hkt ∈ B. Hence, B is an interior
ideal of S.

Theorem 4.6. Let B be a non-empty subset of a semigroup
S. Then B is a (1, 2)-ideal of S if and only if T FB =
(ρB, νB, δB) is a TF (1, 2)-I of S.

Proof: Assume that B is a (1, 2)-ideal of S Then B
is a subsemigroup of S. Thus, by Theorem 4.1, T FB =
(ρB, νB, δB) is a TFS of S . Let h, k, t, r ∈ S. If h, t, r ∈
B, then hktr ∈ B Thus, ρB(h) = 1 = ρB(t) = ρB(r),
νB(h) = 0 = νB(t) = νB(r) δB(h) = −1 = δB(t) = δB(r)
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and ρB(hk(tr)) = 1, νB(hk(tr)) = 0, δB(hk(tr)) = −1.
Hence, ρB(hk(tr)) ≥ ρB(h) ∧ ρB(t) ∧ ρB(r), ν(hk(tr)) ≤
νB(h)∨νB(t)∨νB(r) and δB(hk(tr)) ≤ δB(h)∨ δB(t)∨ δB.

If h /∈ B or t /∈ B or r /∈ B, then ρB(hk(tr)) ≥
ρB(h) ∧ ρB(t) ∧ ρB(r), ν(hk(tr)) ≤ νB(h) ∨ νB(t) ∨ νB(r)
and δB(hk(tr)) ≤ δB(h) ∨ δB(t) ∨ δB.

Therefore, T FB = (ρB, νB, δB) is a TF (1, 2)-I of S.
Conversely, assume that T FB = (ρB, νB, δB) is a TF

(1, 2)-I of S. Then T FB = (ρB, νB, δB) is a TFS. Thus, by
Theorem 4.1, B is a subsemigroup of S. Let h, k, t, r ∈ S
such that h, t, r ∈ B. Then ρB(h) = 1 = ρB(t) = ρB(r),
νB(h) = 0 = ρB(t) = νB(r), δB(h) = −1 = ρB(t) = δB(r).
If hktr /∈ B, then ρB(hk(tr)) = 0, νB(hk(tr)) = 1,
δB(hk(tr)) = 0. Thus, 0 = ρ(hk(tr)) < 1ρ(h) ∧ ρB(t)ρB,
1 = ν(hk(tr)) > 0 = ∨νB(t) ∨ νB and 0 = δ(hk(tr)) >
−1δB(h) ∨ δB(t) veeδB. By assumption, ρB(hk(tr)) ≥
ρB(h) ∧ ρB(t) ∧ ρB(r), ν(hk(tr)) ≤ νB(h) ∨ νB(t) ∨ νB(r)
and δB(hk(tr)) ≤ δB(h) ∨ δB(t) ∨ δB. It is a contradiction
so, hktr ∈ B. Hence, B is a (1, 2)-ideal of S.

V. MINIMAL AND MAXIMAL TRIPOLAR FUZZY TYPES
IDEALS

Definition 5.1. An interior ideal B of a semigroup S is called
(1) a minimal if for every interior ideal of J of S such that

J ⊆ B, we have J = B,
(2) a maximal if for every interior ideal of J of S such that

B ⊆ J , we have B = I,

Definition 5.2. A TRFI T F = (ρ, ν, δ) of a semigroup S
is called
(1) a minimal if for every TRFII of T F1 = (λ, µ, ω)

of S such that T F1 ⊆ T F , we have supp(T F1) =
supp(T F),

(2) a maximal if for every TRFII of T F1 = (λ, µ, ω)
of S such that T F ⊆ T F1, we have supp(T F1) =
supp(T F).

Theorem 5.3. Let B be a non-empty subset of a semigroup
S. Then the following statement holds.
(1) B is a minimal interior ideal of S if and only if T FB =

(λB, µB ωB) is a minimal IRFI of S ,
(2) B is a maximal interior ideal of S if and only if T FB

is a maximal TRFII of S.

Proof:
(1) Suppose that B is a minimal interior ideal of S. Then

B is an interior ideal of S. By Theorem 4.5, T FB =
(λB, µB, ωB) is a TRFII of S. Let T F = (λ, µ, ω) be a
TRFII of S such that T F ⊆ T FB. Then supp(T F) ⊆
supp(T FB). Thus, supp(T F) ⊆ supp(T FB) = B.
Hence, supp(T F) ⊆ B. Since T F = (λ, µ, ω) is a
TRFII of S we have supp(T F) is an IID of S. By
assumption, supp(T F) ⊆ B = supp(T FB). Hence,
T FB is a minimal TRFII of S.
Conversely, T FB is a minimal TRFII of S. Then
T FB = (λB, µB, ωB) is a TRFII of S. By Theorem 4.5,
B is an interior ideal of S. Let J be an interior ideal
of S such that J ⊆ B. Then by Theorem 4.5, T FJ =
(λJ , µJ , ωJ ) is a TRFII of S such that T FJ ⊆ T FB.
Hence, J = supp(T FJ ) ⊆ supp(T FB) = B. By as-
sumption, B = supp(T FB) = J = supp(T FJ ) = J .
So, B = χI . Hence, B is a minimal interior ideal of S.

(2) Suppose that B is a maximal interior ideal of S. Then
B is an interior ideal of S. By Theorem 4.5, T FB =
(λB, µB ωB) is a TRFII of S. Let T F = (λ, µ, ω) be a
TRFII of S such that T FB ⊆ T F . Then supp(T FB) ⊆
supp(T F). Thus, B = supp(T FB) ⊆ supp(T F).
Hence, B ⊆ supp(T F). Since T F = (λ, µ, ω) is a
TRFII of S we have supp(T F) is an IID of S. By
assumption, supp(T F) ⊆ B = supp(T FB). Hence,
T FB is a maximal TRFII of S.
Conversely, T FB is a maximal TRFII of S. Then
T FB = (λB, µB ωB) is a TRFII of S. By Theorem 4.5,
B is an interior ideal of S. Let J be an interior ideal
of S such that B ⊆ J . Then by Theorem 4.5, T FJ =
(λJ , µJ ωJ ) is a TRFII of S such that T FJ ⊆ T FB.
Hence, B = supp(T FB) ⊆ supp(T FJ ) = J . By as-
sumption, B = supp(T FB) = J = supp(T FJ ) = J .
So, B = χI . Hence, B is a minimal interior ideal of S.

Definition 5.4. An (1, 2)-ideal B of a semigroup S is called
(1) a minimal if for every (1, 2)-ideal of J of S such that

J ⊆ B, we have J = B,
(2) a maximal if for every (1, 2)-ideal of J of S such that

B ⊆ J , we have B = I,

Definition 5.5. A TRFI T F = (ρ, ν, δ) of a semigroup S
is called
(1) a minimal if for every TF (1, 2)-I of T F1 = (λ, µ, ω)

of S such that T F1 ⊆ T F , we have supp(T F1) =
supp(T F),

(2) a maximal if for every TF (1, 2)-I of T F1 = (λ, µ, ω)
of S such that T F ⊆ T F1, we have supp(T F1) =
supp(T F).

Theorem 5.6. Let B be a non-empty subset of a semigroup
S. Then the following statement holds.
(1) B is a minimal (1, 2)-ideal of S if and only if T FB =

(λB, µB ωB) is a minimal TF (1, 2)-I of S,
(2) B is a maximal (1, 2)-ideal of S if and only if T FB is

a maximal TF (1, 2)-I of S.

Proof:
(1) Suppose that B is a minimal (1, 2)-ideal of S. Then

B is a (1, 2)-ideal of S. By Theorem 4.6, T FB =
(λB, µB, ωB) is a TF (1, 2)-I of S. Let T F = (λ, µ, ω)
be a TF (1, 2)-I of S such that T F ⊆ T FB.
Then supp(T F) ⊆ supp(T FB). Thus, supp(T F) ⊆
supp(T FB) = B. Hence, supp(T F) ⊆ B. Since
T F = (λ, µ, ω) is a (1, 2)-I of S we have supp(T F)
is a (1, 2)-ideal of S. By assumption, supp(T F) ⊆ B =
supp(T FB). Hence, T FB is a minimal TF (1, 2)-I of
S.
Conversely, T FB is a minimal TF (1, 2)-I of S. Then
T FB = (λB, µB, ωB) is a TRFII of S. By Theorem
4.5, B is a (1, 2)-ideal of S. Let J be a (1, 2)-
ideal of S such that J ⊆ B. Then by Theorem 4.6,
T FJ = (λJ , µJ , ωJ ) is a TRF (1, 2)-I of S such
that T FJ ⊆ T FB. Hence, J = supp(T FJ ) ⊆
supp(T FB) = B. By assumption, B = supp(T FB) =
J = supp(T FJ ) = J . So, B = χI . Hence, B is a
minimal (1, 2)-ideal of S.

(2) Suppose that B is a maximal (1, 2)-ideal of S. Then
B is a (1, 2)-ideal of S. By Theorem 4.6, T FB =
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(λB, µB, ωB) is a TF (1, 2)-I of S. Let T F = (λ, µ, ω)
be a TF (1, 2)-I of S such that T FB ⊆ T F . Then
supp(T FB) ⊆ supp(T F). Thus, B = supp(T FB) ⊆
supp(T F). Hence, B ⊆ supp(T F). Since T F =
(λ, µ, ω) is a TRF (1, 2)-I of S we have supp(T F) is
a (1, 2)-ideal of S. By assumption, supp(T F) ⊆ B =
supp(T FB). Hence, T FB is a maximal TRF (1, 2)-I of
S.
Conversely, T FB is a maximal TF (1, 2)-I of S. Then
T FB = (λB, µB, ωB) is a TRF (1, 2)-I of S. By
Theorem 4.5, B is a (1, 2)-ideal of S. Let J be a
(1, 2)-ideal of S such that B ⊆ J . Then by Theorem
4.5, T FJ = (λJ , µJ , ωJ ) is a TRF (1, 2)-I of S
such that T FJ ⊆ T FB. Hence, B = supp(T FB) ⊆
supp(T FJ ) = J . By assumption, B = supp(T FB) =
J = supp(T FJ ) = J . So, B = χI . Hence, B is a
minimal (1, 2)-ideal of S.

VI. CONCLUSION

In paper, we study define tripolar fuzzy ideals in semi-
group which is a generalization of fuzzy set, bipolar fuzzy
sets, and intuitionistic fuzzy sets. In the important results,
we found necessary and sufficient conditions of coincidences
of types of tripolar fuzzy ideals in types of semigroups
which we explained in Theorem 3.5 and 3.18, respectively.
Finally, we study connection between of types ideals and
types tripolar fuzzy ideals in semigroups.

In future work, we can study the characterization of
some properties of the semigroup in terms of tripolar fuzzy
subsemigroups.
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