
An Improved Branch-and-bound Algorithm for
Sum-of-linear-ratios Problem

Xianfeng Ding, Hanbing Mei, Pengfei Wen, Xiaolin Yi, Yiyu Qin, Qianmei Luo

Abstract—This paper presents a fresh global optimization
algorithm specifically designed for the sum-of-linear-ratios
problem. Initially, auxiliary variables are introduced to refor-
mulate the original problem into an equivalent form, and the
equivalence of the optimal solution in this new formulation
is established. Additionally, the linear relaxation technique
is applied to simplify the objective function and constraint
conditions of the equivalent problem, thereby obtaining a linear
relaxation programming problem. By resolving a progression
of linear programming instances, the upper bound of the
original problem undergoes continuous updates, while the linear
relaxation problem offers a viable and efficient lower bound for
the original problem. Subsequently, an improved branch-and-
bound algorithm for tackling the original problem is introduced,
incorporating hybrid division rules. The convergence of this
algorithm is demonstrated. Ultimately, numerical experiments
validate the feasibility and efficacy of the proposed algorithm.

Index Terms—Global Optimization, Sum-of-Linear-Ratios
problem, Linear Relaxation, Branch and Bound.

I. INTRODUCTION

FRACTIONAL programming represents a type of non-
linear optimization problem that is prevalent in the

domain of optimization. Its objective is to determine the
optimal fraction value under a set of specified constraints.
The problem of sum-of-linear-ratios represents a particular
instance, characterized by an objective function formulated
as the summation of ratios. Given its classification as an
NP-hard problem [1], multiple local optimum solutions may
exist, so it is difficult in theoretical research and algorithm
implementation. Sum-of-linear-ratios problems are widely
used in financial economy [2], [3], transportation [4], and
other problems. Due to its wide application in many fields
and the growing problem demand, this field still attracts the
interest of researchers and promotes its continuous develop-
ment.

The primary focus of this paper is on the aforementioned
sum-of-linear-ratios problem (SLR) :
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(SLR) :

min f (x) =

p∑
i=1

Pi (x)

Di (x)

s.t. Ax ≤ b, x ≥ 0.

in this context, Pi (x) and Di (x) represent linear functions
defined over the space Rn and

Pi (x) = pTi x+ αi =
n∑

j=1

pijxj + αi,

Di (x) = di
Tx+ βi =

n∑
j=1

dijxj + βi.

Let S0 = {x ∈ Rn|Ax ⩽ b, x ⩾ 0} be a nonempty
bounded set, A ∈ Rm×n, b ∈ Rm. And pi, di ∈
Rn, αi, βi, pij , dij ∈ R, i = 1, 2, · · · , p, in general p ≥ 2.

When dTi x + βi < 0, we can set pT
i x+αi

dT
i x+βi

=
−(pT

i x+αi)
−(dT

i x+βi)
,

then the denominator becomes positive, and the original
problem remains unchanged. Therefore, assuming Di (x) >
0.

For any function pTi x + αi,
pT
i x+αi+M(dT

i x+βi)
dT
i x+βi

can be
constructed, where M is a number large enough to satisfy
pTi x+ αi +M

(
dTi x+ βi

)
> 0.

So in this paper, we stipulate that for ∀i = 1, 2, · · · , p,
there are Pi (x) ≥ 0, Di (x) > 0.

Currently, a diverse range of global optimization algo-
rithms exists for tackling sum-of-linear-ratios problems, such
as parameter iteration method [5], image space method [6],
various types of branch-and-bound methodologies [7]–[10],
monotone optimization method [11], dual method [12], and
region segmentation algorithm [13], etc.

In 2017, Li [14] introduced a branch-and-bound algorithm
tailored for the programming problem involving the sum
of linear fractions. Initially, the original problem underwent
an equivalent transformation through the introduction of
variables, and then relaxation technology was used to con-
struct a relaxed linear programming of equivalent problems.
Through the resolution of a sequence of linear program-
ming problems, the upper and lower bounds of the optimal
values of the original problem were constantly updated.
Finally, the approximate optimal solution of the original
problem is obtained. In 2019, aiming at the linear fraction
multiproduct programming problem, Shen [15] introduced
an algorithm to attain the global optimal solution of the
original problem through Charnes-Cooper transformation to
obtain the equivalent problem. In the same year, Shen [16]
proposed a new equivalent transformation and contraction
strategy, which obtained the solution of the original problem
by tackling a series of standard geometric programming
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problems, and numerical experiments showed the trace-
ability and effectiveness of the algorithm. In 2021, Wang
[17] introduced a branch-and-bound method for solving the
global problem by integrating convex relaxation techniques,
adaptive branching rules, and acceleration strategies. This
paper proposes an improved branch-and-bound algorithm,
building upon both traditional algorithms and novel fractional
programming techniques.

This paper introduces an innovative global optimization
algorithm specifically designed for the sum-of-linear-ratios
(SLR) problem. To achieve the global optimal solution,
the first step involves transforming the (SLR) problem
into an equivalent formulation. Next, leveraging the linear
approximation properties of bilinear functions, the relaxation
of the objective function and constraints for the equivalent
problem is carried out to guarantee that it provides a lower
bound for the equivalent problem. Additionally, we introduce
a hybrid branch-and-bound algorithm that combines radiant
subdivision and dichotomy, along with a convergence proof
for the proposed method. Finally, numerical experiments
demonstrate the algorithm’s high efficiency, while two prac-
tical applications highlight its effectiveness.

The structure of the subsequent sections of this paper is
organized as follows: The second and third sections focus
on transforming the original problem into its equivalent form
using techniques of transformation and relaxation. The fourth
section presents an improved branch-and-bound algorithm,
along with a proof of its convergence. In the fifth section,
numerical experiments are conducted, and the results are
subsequently compared. The sixth section provides two real-
world examples to illustrate the efficacy of the introduced
algorithm. The seventh section is the conclusion.

II. EQUIVALENT PROBLEM

Prior to addressing the sum-of-linear-ratios problem, the
initial problem, denoted as (SLR), undergoes a transfor-
mation process, which comprises two primary stages. The
first stage involves converting the original (SLR) problem
into an equivalent problem, termed (EP ), through the appli-
cation of transformation methodologies. The second stage
entails transforming the equivalent problem (EP ) into a
linear relaxation problem, designated as (RLP ), by utilizing
relaxation techniques.

Without compromising generality, for ∀i = 1, 2, · · · p, let

l0i = minx∈S0Pi (x), u
0
i = maxx∈S0Pi (x),

L0
i =

1

maxx∈S0
Di (x)

, U0
i =

1

minx∈S0
Di (x)

.

Because Pi (x) and Di (x) are functions with finite bounds
within the set S0. By solving the linear programming prob-
lems minx∈S0

Pi (x), maxx∈S0
Pi (x), maxx∈S0

Di (x), and
minx∈S0Di (x), the values of l0i , u

0
i , L

0
i and U0

i are obtained.
Consequently, the resulting (SLR) can be formulated into

its equivalent problem, denoted as (EP ), as outlined below:

(EP ) :


min g (y, z) =

p∑
i=1

yizi

s.t. yi = Pi (x) , i = 1, 2, · · · , p,
ziDi (x) = 1, i = 1, 2, · · · , p,

x ∈ S0, (y, z) ∈ Ω0.

where Ω0 =
{
(y, z) ∈ R2p|l0i ≤ yi ≤ u0

i , L
0
i ≤ zi ≤ U0

i

}
,

i = 1, 2, · · · , p.
Theorem 1: If (x∗, y∗, z∗) represents the global optimal

solution to the problem (EP ), we define y∗i = P ∗
i (x) , z∗i =

1
D∗

i (x)
, i = 1, 2, · · · , p. Under these conditions, x∗ is the

global optimal solution to the problem (SLR). Conversely,
if x∗ is the global optimal solution to the problem (SLR),
then (x∗, y∗, z∗) is also the global optimal solution to (EP ).

Proof: Let (x∗, y∗, z∗) be the global optimal solution to
the problem (EP ), then we will prove x∗ to be the global
optimal solution to the problem (SLR).

Utilizing a proof by contradiction, if x∗ fails to be the
globally optimal solution for the problem (SLR), then there
necessarily exists a feasible solution x to (SLR) that fulfills
the condition f (x) < f (x∗), whereby

yi = P (x) , zi =
1

Di (x)
, i = 1, 2, · · · , p.

Then (x, y, z) constitutes a feasible solution to the problem
denoted as (EP ). Because f (x) < f (x∗), we can get

p∑
i=1

yizi =

p∑
i=1

Pi (x)

Di (x)
<

p∑
i=1

Pi (x
∗)

Di (x∗)
.

Furthermore, given that (x∗, y∗, z∗) satisfies the require-
ments for the problem designated as (EP ), there are

y∗i = Pi (x
∗) , z∗i =

1

Di (x∗)
, i = 1, 2, · · · , p.

So
p∑

i=1

yizi =

p∑
i=1

Pi (x)

Di (x)
<

p∑
i=1

Pi (x
∗)

Di (x∗)
=

p∑
i=1

y∗i z
∗
i .

This is inconsistent with the notion that (x∗, y∗, z∗) rep-
resents the global optimal solution to the problem (EP ).
Consequently, x∗ stands as the globally optimal solution for
the problem designated as (SLR).

Conversely, consider the scenario where x∗ serves as the
global optimal solution to the problem (SLR), and let

y∗i = Pi (x
∗) , z∗i =

1

Di (x∗)
, i = 1, 2, · · · , p.

that is, (x∗, y∗, z∗) forms a feasible solution for the problem
(EP ). Suppose there exists another feasible solution (x, y, z)
for (EP ) that satisfies

p∑
i=1

yizi <

p∑
i=1

y∗i z
∗
i .

Furthermore, let x be a feasible solution for the problem
(SLR). It then follows that f (x) < f (x∗). This contradicts
our initial assumption that x∗ is the global optimal solution
to problem (SLR). Proof complete.

III. LINEAR RELAXATION TECHNIQUE

By leveraging the unique characteristics of the objective
and constraint functions in the equivalent problem (EP ),
we develop a linear relaxation program for (EP ). This
transformation results in the relaxation problem (RLP ),
where the optimal solution of (RLP ) serves as a feasible
solution for the problem (SLR).
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Let Ω represent Ω0 or a subrectangle of Ω0 gener-
ated during a branch and bound search, in other words,
Ω ⊆ Ω0 and Ω = Ω1 × Ω2 × · · · × Ωp, where
Ωi =

{
(yi, zi) ∈ R2|li ≤ yi ≤ ui, Li ≤ zi ≤ Ui

}
,
[
li, ui

]
⊆[

l0i , u
0
i

]
,
[
Li, Ui

]
⊆

[
L0
i , U

0
i

]
, i = 1, 2, · · · , p.

First of all, in Ωi, there is yi − li ≥ 0, zi − Ui ≤ 0,
then we can get (yi − li) (zi − Ui) ≤ 0, expansion gives:
yizi − yiUi − lizi + liUi ≤ 0, that is

yizi ≤ yiUi + lizi − liUi, i = 1, 2, · · · , p. (1)

Similarly, we can get yi−ui ≤ 0, zi−Li ≥ 0 in Ωi, then
(yi − ui) (zi − Li) ≤ 0 is true, and expand to get yizi ≤
yiLi + uizi − uiLi, i = 1, 2, · · · , p.

Let e1i = yiUi+ lizi− liUi, e2i = yiLi+uizi−uiLi, then

eui (yi, zi) = min
{
e1i (yi, zi) , e

2
i (yi, zi)

}
. (2)

On account of yizi ≤ e1i (yi, zi), yizi ≤ e2i (yi, zi), then
we can get yizi ≤ eui (yi, zi).

In the same way, it can be established that
(yi − li) (zi − Li) ≥ 0 is in Ωi, and it can be expanded
separately to get:

yizi ≥ yiLi + lizi − liLi,

yizi ≥ yiUi + uizi − uiUi.

Let e3i = yiLi + lizi − liLi, e4i = yiUi + uizi − uiUi,

eli (yi, zi) = max
{
e3i (yi, zi) , e

4
i (yi, zi)

}
, (3)

because of yizi ≥ e3i (yi, zi), yizi ≥ e4i (yi, zi), then we can
get yizi ≥ eli (yi, zi).

In summary can be obtained

eli (yi, zi) ≤ yizi ≤ eui (yi, zi) . (4)

For ∀zi ∈
[
Li, Ui

]
, because of zi =

1
Di(x)

, there is 1
Ui

≤
Di (x) ≤ 1

Li
. For ∀Di (x) ∈

[
1
Ui
, 1
Li

]
, let

Φi (x, zi) = ziDi (x) = 1.

A structure similar to formula (1) can be obtained

Φu
i (x, zi) = min

{
UiDi (x) +

zi
Ui

− 1, LiDi (x) +
zi
Li

− 1
}
,

Φl
i (x, zi) = max

{
LiDi (x) +

zi
Ui

− Li

Ui
, UiDi (x) +

zi
Li

− Ui

Li

}
.

Same thing as formula (4), for ∀Di (x) ∈
[

1
Ui
, 1
Li

]
, zi ∈[

Li, Ui

]
, there is

Φl
i (x, zi) ≤ Φi (x, zi) ≤ Φu

i (x, zi) . (5)

From equations (4) and (5), for ∀Ω ⊆ Ω0, the linear
relaxation programming problem (RLP ) is established on
the region Ω as follows:

(RLP ) :



min G (y, z) =

p∑
i=1

ri

s.t. ri ≥ yiLi + lizi − liLi, i = 1, 2, · · · , p,
ri ≥ yiUi + uizi − uiUi, i = 1, 2, · · · , p,

yi = Pi (x) , i = 1, 2, · · · , p,
LiDi (x) +

zi
Ui

− Li

Ui
≤ 1, i = 1, 2, · · · , p,

UiDi (x) +
zi
Li

− Ui

Li
≤ 1, i = 1, 2, · · · , p,

UiDi (x) +
zi
Ui

− 1 ≥ 1, i = 1, 2, · · · , p,
LiDi (x) +

zi
Li

− 1 ≥ 1, i = 1, 2, · · · , p,
x ∈ S0,

(y, z) ∈ Ω.

Based on the aforementioned methodology for construct-
ing the linear relaxation programming problem, it is straight-
forward to deduce that for ∀Ω ⊆ Ω0, every feasible solution
of the problem (EP ) is also a feasible solution of the
problem (RLP ). Furthermore, the optimal value of the
problem (RLP ) offers a valid lower bound on the region
of the problem (EP ).

IV. ALGORITHM AND ITS CONVERGENCE

A. Hybrid division rules

Radiant subdivision is an important subdivision technique
of simplex subdivision [18]. Multiple subsimplexes will be
produced in one subdivision, and radial subdivision will
make full use of the optimal information obtained from the
current calculation, which may converge to the optimal point
more quickly.

Definition 1: Given a n-simplex (S), the vertex set is
v (S) =

{
v0, v1, · · · , vn

}
. If we choose a point ω ∈ S and

ω /∈ v (S), it can be uniquely represented as

ω =
n∑

i=0

λivi, λi ≥ 0, (i = 0, 1, · · · , n) ,
n∑

i=0

λi = 1.

For every i that makes λi > 0, replace the vertex vi with
ω and construct the simplex S (i, ω), that is

S (i, ω) = co
{
v0, · · · , vi−1, ω, vi+1, · · · , vn

}
.

This subdivision is called radial subdivision, also known
as ω subdivision.

Definition 2: A n-simplex

S =
[
v0, · · · , vi, · · · , vj , · · · , vn

]
is defined by dividing it into two simplex S1, S2 based on
the midpoint v of the longest side

[
vi, vj

]
of S. Use point v

to replace point vi and point vj , respectively. Among

S1 =
[
v0, · · · , v, · · · , vj , · · · , vn

]
,

S2 =
[
v0, · · · , vi, · · · , v, · · · , vn

]
,

v =
1

2
(vi + vj) .

we call this subdivision dichotomy.
Sk is subdivided radially by point ω (Sk). For each sim-

plex after division, check whether it meets the convergence
condition of division.

For a simplex Si
k that does not satisfy the convergence

condition of division, it is divided on the basis of the
midpoint of the longest edge of Si

k until the convergence
condition is satisfied.

By the above division rules, the simplex S completes the
division.

Define Qk as the collection of simplices potentially con-
taining global optimal solutions during the kth iteration. For
each simplex S ∈ Qk, the optimal value of the relaxation
problem (RLP ) establishes a lower bound Gk (y, z) for the
optimal value of the problem (SLR). A simplex with a
lesser optimal value is chosen and then divided using either
ω subdivision or dichotomy. The corresponding solution for
the problem is determined on each newly formed subsimplex,
and this process is iterated until the convergence condition
is satisfied.
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B. Improved branch-and-bound algorithm

Presented below is the branch-and-bound algorithm em-
ploying a hybrid division approach:

Step0 (Initialization): Given the error tolerance ϵ ≥ 0, the
optimal solution for solving the relaxation problem (RLP )
on the feasible domain S0 is

(
x0, y0, z0

)
, and the optimal

value is G
(
y0, z0

)
, where

y0i = pTi x
0 + αi, z

0
i =

1

dTi x
0 + βi

(i = 1, 2, · · · , p) ,

let µ0 = G
(
y0, z0

)
, γ0 = f

(
x0

)
;

Step1 (Termination): If γ0 − µ0 < ϵ, then the algorithm
terminates and x0 is the global optimal solution to the prob-
lem (SLR); Otherwise, let Q0 =

{
S0

}
, choose Sk ∈ Q0

so that µ (Sk) = µk, and the corresponding optimal point
ω (Sk), let γ = γk.
Step2: Initial iteration number k = 1, turn to step k;
Stepk: k ≥ 1;
Stepk1 (Branch): According to the division rules, the

simplex Sk with a smaller optimal value is selected for
dividing, and the Sk is subdivided radially according to the
point ω (Sk), where

ω (Sk) = λk0vk0 + · · ·+ λkjvkj + · · ·+ λknvkn.

Divide Sk into t (the number of positive λkj) simplexes,
where

Skj =
[
vk0, · · · , vk(j−1), ω (Sk) , vk(j+1), · · · , vkn

]
∈ Γ,

if and only if λkj > 0. For each simplex in Γ, solve for
µ (Skj) and the corresponding point ω (Skj) , j = 1, · · · , t,
while updating the value of γ. Check whether each simplex
in Γ satisfies the division convergence condition

γ − µ (Skj) < (1− ϵ) (γk − µk) .

For a simplex Skj in Γ that does not satisfy the conver-
gence condition, it is divided on the basis of the midpoint of
the longest side of Skj until γ−µ (Skj) < (1− ϵ) (γk − µk)
is satisfied, Γ and γ are updated simultaneously. The set of
new simplexes potentially containing global optimal solu-
tions is denoted by Qk = Qk \ Sk.

Stepk2 (Delimiting and cutting branches): For a subsim-
plex Skj in Γ, if Skj ̸= ∅, then let

ykji = pTi x
kj + αi, z

kj
i =

1

dTi x
kj + βi

, i = 1, 2, · · · , p.

Determine the optimal solution
(
xkj , ykj , zkj

)
and the

optimal value µk = G
(
ykj , zkj

)
of the problem (RLP )

on Skj , and if γk < µk, then Γ = Γ \
{
Skj

}
, there are two

cases:
Case1: If Γ = ∅, go to step k;
Case2: If Γ ̸= ∅, update Qk by setting Qk = Qk ∪Γ, and

revise the upper bound γk = min
{
γk−1, f

(
xkj

)}
. Choose

xk such that γk = f
(
xk

)
, go to step k3;

Stepk3 (Judgment rule): Let

Qk+1 = Qk \
{
S : γk

(
S
)
− µk ≤ ϵ, S ∈ Qk

}
if Qk+1 = ∅, then the algorithm terminates, with xk being a
global optimal solution to the problem (SLR) and γk being
the global optimal value. Otherwise, if Qk+1 ̸= ∅, let k =
k + 1, select Sk to satisfy Sk = argminS∈Qk

µk

(
S
)
, and

return to step k.

C. Algorithm and its convergence

Theorem 2: If the iteration process concludes within a
finite number of steps, the global optimal solution to the
problem (SLR) is attained at the iteration’s termination.
Conversely, if the algorithm produces an infinite sequence{
xk

}
during the iterative process, every accumulation point

arising from the sequence
{
xk

}
represents the global optimal

solution to the problem (SLR), Furthermore, it holds that
limk→∞ µk = limk→∞ f

(
xk

)
= limk→∞ γk.

Proof: If the algorithm’s iteration concludes at a fi-
nite step, suppose this occurs at step k (k ≥ 1). Consider
(x∗, y∗, z∗) as the optimal solution to the relaxation problem
(RLP ). Additionally, let

T 0 =
{
y ∈ Rp|li ≤ yi ≤ ui, i = 1, 2, · · · , p

}
,

H0 =
{
z ∈ Rp|Li ≤ zi ≤ Ui, i = 1, 2, · · · , p

}
.

Given T ⊆ T 0 and H ⊆ H0, consider the optimal solution
expressed as:

x∗, y∗i =
n∑

j=1

pijx
∗
j+αi, z

∗
i =

1
n∑

j=1

dijx
∗
j + βi

, i = 1, 2, · · · , p,

it is evident that the optimal solution x∗ for the problem
(RLP ) constitutes a feasible solution of the problem (SLR).
Moreover, if v represents an optimal value of the problem
(SLR), then it necessarily follows that f (x∗) ≥ v.

Upon satisfying the condition γk − µk ≤ ϵ, the algorithm
halts its execution. The upper limit of the problem (SLR)
is revised by updating the functional value associated with
a feasible solution of (SLR). Subsequently, the algorithm is
employed to derive:

f (x∗)− µk ≤ ϵ, µk ≤ v.

So in sum, we derive the inequality v ≤ f (x∗) ≤ µk + ϵ,
which further implies µk + ϵ ≤ v + ϵ. Combining these, we
obtain:

v ≤ f (x∗) ≤ v + ϵ.

If the algorithm’s iteration proceeds indefinitely, we
assume it generates an infinite sequence of branch-and-
bound trees denoted by

{(
xk, yk, zk

)}
. For each k ≥ 1,(

xk, yk, zk
)

can be obtained by solving the relaxation prob-
lem (RLP ), for T k ⊆ T 0, Hk ⊆ H0. Specifically, the

optimal solution xk belongs to S0, with yki =
n∑

j=1

pijx
k
j +αi

and zki = 1
n∑

j=1

dijx
k
j + βi

, i = 1, 2, · · · , p. It is obvious that

sequences
{
xk

}
constitute feasible solutions to the problem

(SLR). Assuming x is the accumulation point of
{
xk

}
such

that limk→∞ xk = x. Clearly, x is also a feasible solution
to the problem (SLR). Consequently, f (x) ≥ v. Given that
S0 is a compact set, it necessarily follows that x ∈ S0.

For every k of the sequence
{
xk

}
, there exists a relation-

ship such that T k+1 ⊆ T k ⊆ T 0 and Hk+1 ⊆ Hk ⊆ H0,
where T k and Hk are defined as follows:

T k =
{
y ∈ Rp|lki ≤ yi ≤ uk

i , i = 1, 2, · · · , p
}
,

Hk =
{
z ∈ Rp|Lk

i ≤ zi ≤ Uk
i , i = 1, 2, · · · , p

}
.
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Then for some point y ∈ Rp, z ∈ Rp, the expression
limk→∞ T k =

⋂
k

T k =
{
y
}

, limk→∞ Hk =
⋂
k

Hk =
{
z
}

is true.
For each k,

{
µk

}
obtained through the algorithmic step

is finite and limk→∞ µk ≤ v. For T k ⊆ T 0, Hk ⊆ H0, xk

is the optimal solution to the problem RLP
(
T k, Hk

)
, with

µk being its optimal value. Consequently, as k approaches
infinity, the limits of the lower and upper bounds converge:

lim
k→∞

lk = lim
k→∞

uk =
{
y
}
,

lim
k→∞

Lk = lim
k→∞

Uk =
{
z
}
.

To sum up:

lim
k→∞

µk ≤ v ≤ f (x) .

Through the application of the division rule during branch-
ing, we derive:

lim
k→∞

µk = v = f (x) .

Thus, x is identified as a global optimal solution of
the problem (SLR). During the iterative process of the
algorithm, γk = f

(
xk

)
when iterating at step k. And

f (x) is a continuous function, so xk → x when k →
∞, then limk→∞ f

(
xk

)
= f (x). So limk→∞ γk =

limk→∞ f
(
xk

)
= f (x) = v, that is limk→∞ γk = v.

To sum up, the theorem is proved.

V. NUMERICAL EXPERIMENTS AND RESULTS

To assess the viability of the aforementioned algorithm,
some examples are presented to evaluate its efficacy and
performance. The above algorithm is compiled and the code
is run on Matlab (2018b). All calculations are performed on
a Ryzen 7 7840HS w/Raden 780M Graphics 3.80 GHz
processor with 32GB RAM and a Win11 operating system
PC.

Example 1: (See [19])

max
−0.9x1 + 1.8x2 + 1.8

3x1 − 4x2 + 5
+

−0.4x1 + 0.3x2 − 0.4

−2x1 + x2 + 3

s.t. x1 + x2 ≤ 1.50,
x1 − x2 ≤ 0,

0 ≤ x1, x2 ≤ 1.

Example 2: (See [14], [20])

max
4x1 + 3x2 + 3x3 + 50

3x2 + 3x3 + 50
+

3x1 + 4x3 + 50

4x1 + 4x2 + 5x3 + 50

+
x1 + 2x2 + 4x3 + 50

x1 + 5x2 + 5x3 + 50
+

x1 + 2x2 + 4x3 + 50

5x2 + 4x3 + 50

s.t. 2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 2x3 ≤ 10,
9x1 + 7x2 + 3x3 ≥ 10,

x1, x2, x3 ≥ 0.

Example 3: (See [14], [20])

min− 3x1 + 5x2 + 3x3 + 50

3x1 + 4x2 + 5x3 + 50
− 3x1 + 4x2 + 50

4x1 + 3x2 + 2x3 + 50

−4x1 + 2x2 + 4x3 + 50

5x1 + 4x2 + 3x3 + 50

s.t. 2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 2x3 ≤ 10,
9x1 + 7x2 + 3x3 ≥ 10,

x1, x2, x3 ≥ 0.

Example 4: (See [8], [13], [19], [21])

max
3x1 + x2 − 2x3 + 0.8

2x1 − x2 + x3
+

4x1 − 2x2 + x3

7x1 + 3x2 − x3

s.t. x1 + x2 − x3 ≤ 1,
−x1 + x2 − x3 ≤ −1,

12x1 + 5x2 + 12x3 ≤ 34.8,
12x1 + 12x2 + 7x3 ≤ 29.1,
−6x1 + x2 + x3 ≤ −4.1,

x1, x2, x3 ≥ 0.

Example 5: (See [7], [10], [13], [22])

min− 4x1 + 3x2 + 3x3 + 50

3x2 + 3x3 + 50
− 3x1 + 4x3 + 50

4x1 + 4x2 + 5x3 + 50
−

−x1 + 2x2 + 5x3 + 50

x1 + 5x2 + 5x3 + 50
− x1 + 2x2 + 4x3 + 50

5x2 + 4x3 + 50

s.t. 2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 3x3 ≤ 10,
5x1 + 9x2 + 2x3 ≤ 10,
9x1 + 7x2 + 3x3 ≤ 10,

x1, x2, x3 ≥ 0.

Example 6: (See [13], [23], [24])

min
37x1 + 73x2 + 13

13x1 + 13x2 + 13
+

63x1 − 18x2 + 39

13x1 + 26x2 + 13

s.t. 5x1 − 3x2 = 3,
1.5 ≤ x1 ≤ 3.

Example 7: (See [10], [22], [25])

max
37x1 + 73x2 + 13

13x1 + 13x2 + 13
+

63x1 − 18x2 + 39

−13x1 − 26x2 − 13

+
13x1 + 13x2 + 13

63x1 − 18x2 + 39
+

x1 + 2x2 + 4x3 + 50

5x2 + 4x3 + 50

s.t. 5x1 − 3x2 = 3,
1.5 ≤ x1 ≤ 3.

Example 8: (See [10])

min

p∑
j=1

n∑
i=1

ui
jxi + C

n∑
i=1

vijxi + C

s.t.
n∑

i=1

aqixi ≤ bq, q = 1, 2, · · · ,m,

0 ≤ xi ≤ xi, i = 1, 2, · · · , n.
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TABLE I
COMPARISON OF NUMERICAL RESULTS OF EXAMPLE 1-7

Ex. Refs. ϵ x∗ f (x∗) Iter Time(seconds)

1 ours 10−6 (0, 1) 3.5750 2 0.8285
1 [19] 10−6 (0, 1) 3.5750 1 -
2 ours 10−4 (1.1111, 0, 0) 4.0907 2 0.1586
2 [14] 10−4 (5, 0, 0) 4.4286 3 0.4050
2 [20] 10−4 (0, 0.6250, 1.8750) 4.0000 58 2.9684
3 ours 10−4 (0, 1.4267, 0) 3.0007 4 0.9318
3 [14] 10−4 (0, 1.6667, 0) 3.0009 64 7.4100
3 [20] 10−4 (0, 3.3333, 0) 3.0029 80 8.5665
4 ours 10−9 (1, 0, 0) 2.4714 1 0.0928
4 [8] 10−9 (1, 0, 0) 2.4714 2 0.1013
4 [13] 10−2 (1, 0, 0) 2.4714 19 0.5269
4 [19] 10−2 (1, 0, 0) 2.4712 2 0.0109
4 [21] 10−2 (1, 0, 0) 2.4714 3 0.0128
5 ours 10−6 (1.1111, 0, 0) -4.0907 2 0.1110
5 [7] 10−6 (1.1111, 0, 0) -4.0907 72 2.5632
5 [10] 10−6 (1.1111, 0, 0) -4.0907 154 4.9857
5 [13] 10−2 (1.1111, 0, 0) -4.0907 179 2.1459
5 [22] 10−6 (1.1111, 0, 0) -4.0907 769 11.5349
6 ours 10−4 (1.5000, 1.5000) 4.9125 2 0.2664
6 [13] 10−3 (1.5000, 1.5000) 4.9126 56 1.0781
6 [23] 10−4 (1.5000, 1.5000) 5.0000 32 1.0895
6 [24] 10−4 (1.5000, 1.5000) 4.9125 112 201.6260
7 ours 10−6 (3, 4.1919) 3.4140 1 0.2502
7 [10] 10−6 (3, 4) 3.2917 5 0.2207
7 [22] 10−6 (3, 4) 3.2917 2 0.0023
7 [25] 10−6 (3, 4) 3.2917 9 0

Where p is a positive integer, ui
j , vij , aqi, bq , and xi in this

example are all randomly generated on the interval
[
0.01, δ

]
(parameter δ is 1, 10 or 100), except that the value of C is
taken as 100.

The calculation results of Example 1-7 have been shown
in TableI. According to different error tolerance ϵ, the opti-
mal solution and optimal value of Example 1-7 within the
accuracy range have been determined. Additionally, Table I
provides a summary of the iteration times and running time
of the algorithm for reference purposes.

The ”-” in the above table represents that the corre-
sponding results are not given in the references. It can be
seen from TableI that: for Example1, Example4, Example5
and Example6, the algorithm in this paper is consistent
with the optimal solutions and values obtained by other
algorithms, and basically all use less iteration times and
running time; In the case of Example2 and Example3, the
optimal solution and value derived by this algorithm align
closely with those obtained by other methods. However, our
algorithm demonstrates superiority in terms of iteration times
and running time. In Example 3, our algorithm requires
significantly fewer iterations compared to the other two
methods. In contrast, for Example 7, the numerical results
and iteration times presented in this paper surpass those of
other algorithms, albeit with a marginally longer running
time. In general, the algorithm in this paper is feasible and
effective, and its computing power is comparable to that of
Example1, Example4, Example5, and Example6, and at least
better than that of Example7.

The practical application of the proposed algorithm is
illustrated through the examples provided in Examples 1 to 7.
Additionally, TableI clearly shows that the iteration times and
the running time align with the fundamental observations. To
better demonstrate the merits of the introduced algorithm,
two ways are utilized to showcase the performance of the

proposed algorithm for Example8. Method 1 compares the
proposed algorithm with reference [10], which is consistent
with the iteration times and error tolerance in reference [10].
Run the algorithm at random 100 times, set δ = 1, and
the error tolerance of 10−6. The average iteration time and
average iteration times obtained are shown in TableII.

It can be seen from the data in TableII that with the
change of parameter p,m, n, the iteration times in this paper
is all smaller than that found in the reference [10], taking an
absolute advantage.

However, the algorithm presented in this paper exhibits a
relatively prolonged running time, which escalates markedly
with a steep increase in n. Operating within the R2p-
dimensional division space, the algorithm’s iterations and
running time are increasingly influenced by variations in
p. Therefore, the impact of the change of δ and n on
the performance of the algorithm will be investigated next.
Method 2 takes reference [10] as the basis and adjusts δ to 10
or 100. When the tolerance is 10−3, the algorithm proposed
is contrasted with the large-scale solution in the reference
[10]. For each group (p,m, n), 10 examples are randomly
generated, and the relevant numerical results are obtained,
as shown in TableIII.

As shown in TableIII, when δ = 10, the iteration times
and the running time of this paper exceed those of reference
[10]; however, when δ increases to 100, the iteration times
and the running time of this algorithm are less than that
of the reference [10], and the changes are relatively stable.
The hybrid division rule is applied in this algorithm, and
multiple subsimplexes will be generated during the dividing.
By making full use of the known information obtained from
the calculation, the algorithm in this paper demonstrates
certain advantages when applied to large-scale numerical
experiments.

In summary, the numerical cases demonstrate the robust-
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TABLE II
COMPARISON OF NUMERICAL RESULTS OF EXAMPLE 8 SOLVED BY THE ALGORITHM IN THIS PAPER AND THE ALGORITHM IN REFERENCE [10] WHEN

δ = 1

Ours [10]

(p,m, n) Avg.Iter Avg.Time Avg.Iter Avg.Time

(2, 20, 20) 2.93 0.4261 3.55 0.1025
(2, 30, 30) 3.13 0.5407 3.76 0.1254
(2, 40, 40) 3, 27 0.6509 3.71 0.1461
(2, 50, 50) 3.40 0.6938 4.04 0.1807
(2, 10, 100) 3.70 1.3176 4.89 0.2032
(2, 30, 100) 4.07 1.7881 4.81 0.2432
(2, 10, 200) 4.26 2.6666 4.79 0.2914
(3, 20, 20) 3.01 0.4432 5.11 0.1658
(3, 30, 30) 3.20 0.5916 5.34 0.2058
(3, 40, 40) 3.56 0.6487 5.26 0.2349
(3, 50, 50) 3.35 0.7251 5.40 0.2782
(3, 10, 100) 4.01 1.4484 6.75 0.3321
(3, 30, 100) 4.40 1.7959 6.47 0.3768
(3, 10, 200) 4.42 3.1653 7.28 0.4990
(4, 20, 20) 3.68 0.5313 7.43 0.2615
(4, 30, 30) 3.76 0.6262 7.21 0.3347
(4, 40, 40) 4.36 0.7219 7.03 0.3283
(4, 50, 50) 4.40 0.9021 7.69 0.4101
(4, 10, 100) 4.65 1.6038 8.58 0.4321
(4, 30, 100) 4.76 2.0465 8.67 0.5470
(4, 10, 200) 4.73 2.7660 8.60 0.6344
(5, 10, 100) 4.72 2.1204 11.34 0.6146
(5, 10, 200) 4.80 3.4643 13.84 1.0281
(5, 10, 300) 4.80 7.1198 15.99 1.5051
(6, 10, 100) 4.80 2.2450 15.25 0.8519
(6, 10, 200) 5.07 3.6898 19.75 1.5526
(6, 10, 300) 5.20 7.2014 20.69 1.8879
(7, 10, 100) 5.25 2.4445 19.26 1.1569
(7, 10, 200) 5.41 4.0131 21.85 1.8085
(7, 10, 300) 6.20 13.1893 29.78 3.0462

ness and effectiveness of the proposed algorithm in this
paper, and compared to some other algorithms, it offers
notable advantages.

VI. PRACTICAL APPLICATIONS

A. Transportation problem

In our analysis, we examine the power transportation issue
outlined in [26]. Assume a power company possesses three
power stations tasked with fulfilling the electrical demands of
four municipalities. For each conceivable route of electricity
transmission, we introduce the variable xij to denote the
quantity of electricity dispatched from the i-th plant to the j-
th city. Utilizing the data provided in [26], we have obtained
the mathematical model of the power transmission problem
as detailed below:

max 5x11+4x12+4x13+3x14+6x21+2x22

8x11+6x12+10x13+9x14+9x21+12x22
· · ·

+3x23+4x24+10x31+5x32+6x33+2x34

+13x23+7x24+14x31+9x32+16x33+5x34

s.t. x11 + x21 + x31 ≥ 45,
x12 + x22 + x32 ≥ 20,
x13 + x23 + x33 ≥ 30,
x14 + x24 + x34 ≥ 30,

x11 + x12 + x13 + x14 ≤ 35,
x21 + x22 + x23 + x24 ≤ 50,
x31 + x32 + x33 + x34 ≤ 40,

xij ≥ 0, i = 1, 2, 3, j = 1, 2, 3, 4.

When ϵ = 10−6, after 4 iterations, it takes 0.2435 s to
solve the problem by the given algorithm, and the optimal

solution is x∗ = (0, 17, 18, 0, 21, 0, 4, 25, 24, 3, 8, 5)
T , the

optimal value is 0.5691.

B. The production planning problem

We delve into the production planning problem outlined
in [27], and present its corresponding mathematical model
in the following manner:

max

n∑
i=1

cixi + c0

n∑
i=1

dixi + d0

s.t. Ax ≤ b, x ≥ 0.

The elements of A and b consist solely of randomly
generated integers within the range of [0,10]. All di and ci
are integers, di randomly taken from [0,10] and ci randomly
taken from [-10, 0]. For each instance that is randomly
generated, the proposed algorithm is employed to solve
the problem 5 times, and the resultant average numerical
outcomes are presented in Table IV. An examination of
Table IV reveals that the proposed algorithm is capable of
effectively addressing this type of problem.

VII. CONCLUDING REMARKS

In this paper, for a class of sum-of-linear-ratios problems,
an improved branch-and-bound algorithm is obtained by
combining relaxation techniques and hybrid division rules.
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TABLE III
COMPARISON OF NUMERICAL RESULTS OF EXAMPLE8 BETWEEN THE ALGORITHM IN THIS PAPER AND THE ALGORITHM IN REFERENCE [10] WHEN

δ = 10 AND δ = 100

δ 10 100

Ours [10] Ours [10]

(p,m, n) iter time iter time iter time iter time

(4, 10, 200) 3.80 4.4059 2.55 0.2364 5.40 3.0238 9.80 2.5156
(5, 10, 100) 4.01 3.9256 2.50 0.1711 6.80 4.8521 27.54 4.0338
(5, 10, 200) 3.80 5.0328 4.23 0.2885 7.94 6.2125 34.87 8.8408
(5, 10, 300) 4.16 7.1789 2.19 0.2384 11.83 7.9897 28.66 11.6785
(5, 20, 300) 4.51 7.9154 1.34 0.2328 15.41 9.1213 18.60 9.7752
(5, 20, 500) 4.08 17.4266 1.60 0.3188 20.06 22.0931 15.83 14.3958
(6, 20, 500) 4.28 18.0535 1.45 0.3732 17.13 20.3645 35.54 27.4491
(7, 20, 500) 4.40 19.6236 1.74 0.4363 18.54 20.6411 51.06 48.7854
(8, 20, 500) 4.40 20.0412 1.74 0.5976 20.81 23.4046 182.33 183.1540
(9, 20, 500) 4.45 22.9562 1.79 0.6248 12.16 12.9536 220.52 22.0193
(10, 20, 500) 4.56 25.9861 1.95 0.6453 13.08 13.7458 196.01 29.2540
(6, 20, 600) 3.80 27.3811 1.40 0.4479 17.56 25.5235 102.56 9.6076
(6, 20, 700) 3.85 32.2583 1.81 0.4988 19.92 33.3258 79.03 117.1986
(6, 20, 800) 4.11 40.7466 1.80 0.5481 22.04 38.0006 36.54 69.9123
(7, 20, 800) 3.92 40.9808 1.80 0.6278 23.46 38.7024 103.70 185.3989
(7, 20, 1000) 3.21 42.3243 1.81 0.7798 18.89 35.8677 184.96 379.9043
(2, 20, 1000) 3.16 32.7626 1.24 0.3555 9.88 32.1476 3.47 6.8478
(3, 20, 1000) 3.16 32.0842 1.80 0.3639 10.14 33.8058 10.39 20.4984
(4, 20, 1000) 3.16 33.7799 1.70 0.4624 10.37 34.9667 33.57 87.6891
(5, 20, 1000) 3.21 40.3524 1.70 0.5558 11.21 35.9563 57.88 119.4336
(6, 20, 1000) 3.21 44.0178 1.87 1.3932 10.60 36.9854 127.20 261.2227
(3, 20, 2000) 3.80 47.9786 1.69 1.2717 13.58 49.1715 17.51 130.2921

TABLE IV
RESULTS OF THE PROPOSED ALGORITHM FOR PRODUCTION PLANNING

PROBLEM

(m,n) Time(seconds) Iter

(10, 10) 0.3970 2
(100, 100) 1.4967 1
(500, 500) 2.7019 1.57
(1000, 1000) 16.6234 3.85
(2000, 2000) 50.2186 4.92

The proposed algorithm has a faster convergence speed and
more advantages in terms of the iteration times and running
time. The results of the numerical experiments demonstrate
that, in the first 7 examples, the optimal solution and its
corresponding value derived in this paper closely resemble
those reported in the references. Notably, the iteration times
and the running time required are significantly reduced,
thereby suggesting the feasibility and efficacy of the pro-
posed algorithm. In Example8, for large-scale random cases,
with the increase of δ, the algorithm in this paper has
more advantages in iteration times and is more efficient in
solving problems. Finally, the practicality of the proposed
algorithm was demonstrated through transportation problem
and product planning problem. In future research, further
consideration will be given to reducing branch space and
proposing acceleration methods to improve the speed of
algorithm operation.
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