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Abstract—We consider an unstaggered central scheme based
on the staggered Lax-Friedrichs scheme to solve a non-local
traffic flow model with an Arrhenius-type look-ahead rule. Our
model appears in the form of a scalar non-local conservation
law. The method produces a nonoscillatory numerical solution
on a single grid, avoiding the highly detailed Riemann problem-
solving process that arises at the cell boundaries. It is second-
order accurate. Additionally, to achieve the desired second-
order accuracy, the convolution term in each cell is evaluated
using piecewise linear reconstruction. It then evaluates the
gradient by ensuring non-oscillatory nature reconstruction
using a non-linear limiter. The obtained numerical results are in
good agreement with the data reported in the current literature,
thus assessing the accuracy and ease of application of the new
method.

Index Terms—Finite volume methods, Traffic flow models,
Nonlocal conservation laws, Limiters.

I. INTRODUCTION

TRAFFIC flow modeling is currently a subject of active
investigation in the field of research. The impetus

behind these is the imperative to comprehend and forecast
the intricate dynamics of vehicular traffic. Accurate traffic
simulations are unquestionably critical for road infrastructure
design [12], urban planning, and congestion management
strategies [6]. However, conventional, macroscopic models of
traffic flow, such as the Lighthill-Whitham-Richards (LWR)
model [11], typically fail to consider the emergent behaviors
and interfused interactions that exist in real-world traffic
scenarios. Despite this, these models have provided profound
insights.

In recent years, the models describing drivers have been
developed toward more sophisticated ones, including nonlo-
cal effects and reproducing the realistic behaviors of drivers.
One of these developments is introducing the so-called look-
ahead Arrhenius-type model that defines drivers’ anticipation
of conditions ahead [16]. This is because the rule considers
empirical observations that show that, as vehicle density
increases, the traffic flux exhibits complex, right-skewed
behavior rather than being purely concave or symmetric [8].

The creation of reliable numerical schemes to roughly
solve issues arising in traffic flow models has been an
extremely active and ongoing process. The authors of [3], [5],
[9] devised a second-order central scheme to approximate
the solution of nonlocal traffic flow models. The plan can
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be seen as a logical progression from the second-order
central scheme of Nessyahu and Tadmor (NT) [15] and
the staggered Lax-Friedrichs (LxF) scheme. The NT scheme
alternates between the staggered dual grid and the original
grid at successive time steps [14], avoiding the solution of
Riemann issues at cell interfaces. The numerical solution,
which is piecewise linear and specified at the centers of
the control cells, assures second-order accuracy in space.
Additionally, the use of slope-limiting ensures an oscillation-
free numerical solution.

This paper aims to develop an unstaggered central scheme
(UCS) specifically for the numerical solution of nonlocal
conservation laws governing Arrhenius-type look-ahead rules
in traffic flow models. This new UCS method represents a
significant advancement over previous approaches [1], [2],
[13], [14], as it extends and generalizes the well-established
Nessyahu-Tadmor (NT) staggered central scheme and the
unstaggered adaptation proposed by Jiang et al. [7], incorpo-
rating the Arrhenius-type look-ahead distance formulation.

A key distinguishing feature of the UCS is its ability to
evolve the numerical solution on a single computational grid,
eliminating the need for staggered grids employed in earlier
methods. This streamlined approach simplifies the computa-
tional process and has the potential to enhance computational
efficiency by avoiding the complexities associated with al-
ternating between staggered grids at successive time steps.
To circumvent the need for solving Riemann problems at
cell interfaces, a critical challenge in numerical schemes for
hyperbolic conservation laws, the UCS ingeniously employs
an implicit ”ghost” staggered grid layer. This innovative
technique allows the scheme to leverage the benefits of
staggered grids without explicitly computing the solution on
multiple grids.

Furthermore, the UCS employs a piecewise linear recon-
struction of the numerical solution, ensuring that the scheme
maintains second-order accuracy in both space and time. This
high-order accuracy is a desirable property inherited from the
original NT scheme and is crucial for capturing the intricate
dynamics of traffic flow accurately.

The paper substantiates the performance and accuracy of
the proposed UCS through several numerical experiments,
demonstrating its ability to effectively solve nonlocal traffic
flow models while retaining the desirable properties of the
NT scheme and overcoming its limitations related to stag-
gered grids.

The remainder of the paper is structured as follows:
Section 2 introduces the nonlocal traffic flow model with
Arrhenius-type look-ahead rules, which serve as the govern-
ing equation for the numerical simulations. The formulation
of the novel unstaggered, finite volume one-dimensional
scheme is detailed in Section 3, where we elucidate the
main aspects of our approach, including the implicit ”ghost”
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staggered grid and the piecewise linear reconstruction of the
numerical solution. Section 4 then presents and analyzes
the numerical results from various test cases, showcasing
the accuracy, convergence, and performance of the proposed
unstaggered central scheme in solving the nonlocal traffic
flow model. Finally, the paper concludes with a summary in
Section 5, highlighting the main contributions and potential
implications of the developed numerical method.

II. ARRHENIUS-TYPE LOOK-AHEAD TRAFFIC FLOW
MODEL

Nonlocal traffic flow equations are increasingly employed
to quantitatively simulate the dynamic and rapidly changing
interactions among vehicles, capturing the emergent behav-
iors that arise from complex, interdependent movements on
the road. These models extend beyond local traffic dynamics
to consider the influence of traffic conditions over a broader
spatial extent, offering a more holistic view of traffic behavior
and providing insights into the cascading effects of traffic
congestion and variability in driver behavior.

We are particularly interested in exploring a sophisticated
traffic flow model characterized by its nonlocal-concave-
convex flux function [10]. This model diverges from tra-
ditional approaches by incorporating a flux function that
transitions between concave and convex forms depending on
traffic density. Such a model is adept at depicting a more
nuanced representation of traffic flow, reflecting real-world
phenomena where traffic conditions can rapidly shift from
free-flowing to congested states.

The mathematical formulation of the model is given by
the partial differential equation:

∂tρ+ ∂x (f(ρ) exp(−κη ∗ ρ)) = 0, (1)

where
f(ρ) = vmaxρ(1− ρ)γ , γ > 1

and

κη ∗ ρ(t, x) =
∫ x+η

x

κη(y − x)ρ(t, y)dy, η > 0.

The Kernel κη is a decreasing function such that

κη ∈ C1([0, η];R+),

∫ η

0

κη(x)dx = 1,

ρ(t, x) is the local traffic density, with ρ ∈ [0, ρmax], (t, x) ∈
R2, ρmax is the maximum density, vmax is a maximum traffic
velocity, and f represents a fundamental diagram such that
f ∈ C1(I;R+).

The model was first published in 2006 [16] by Sopasakis
and Katsoulakis (SK), using κη = 1. An updated version
was proposed in 2009 by Kurganov and Polizzi [9].

The model is an extension of one of the most well-known
macroscopic traffic flow models, the Lighthill-Whitham-
Richards (LWR) [11],

∂tρ+ ∂x (ρv(ρ)) = 0, v(ρ) = vmax(1− ρ). (2)

The flux in (2) is concave and symmetric. However, statistical
evidence from traffic networks in the real world indicates that
neither a concave nor symmetric flux is expected. Instead, as
the density increases, the measured empirical fluxes become
right-skewed and convex, as seen in [8].

Another source of concern is the SK model’s fundamental
diagram (2). In contrast to the experimental results [8], the
flux

f(ρ) = vmaxρ(1− ρ) (3)

is a concave function with even symmetry (concerning ρ =
1
2 ). A flux that is right-skewed and non-concave seems to fit
better.

f(ρ) = vmaxρ(1− ρ)γ , γ > 1. (4)

The flux f in (4) has a right skew and changes from concave
to convex at ρ = 2

γ+1 .

III. NUMERICAL SCHEME

In this section, we provide a brief overview of the stag-
gered Nessyahu-Tadmor (NT) schemes before presenting our
unstaggered extension in one space dimension for numeri-
cally solving nonlocal conservation laws of the form [1]. ∂tρ+ ∂xF (ρ, U) = 0, x ∈ R, t > 0,

ρ(0, x) = ρ0(x), ρ0 ∈ BV (R, [0, ρmax]) ,
(5)

where we define the convolution product as being:

U(t, x) = κη ∗ ρ(t, x).

BV represents the space of functions with bounded variation.,
i.e.

BV = {u ∈ L1(R)/TV(u) < ∞},

with
TV(u) = sup

ε>0

1

ε

∫
R
|u(x+ ε)− u(x)|dx.

A. Nessyahu-Tadmor scheme

We begin with a consistent subdivision of the com-
putational domain. We define the control cells as Ci =
[xi− 1

2
, xi+ 1

2
] is centered at the nodes xi, of length ∆x, and

we designate by Di+ 1
2

the dual cells [xi, xi+1]. We assume
the numerical solution ρni of the equation ρt+∂xF (ρ, U) = 0
is known at time tn at the nodes xi, i.e.,

ρni =
1

∆x

∫ x
i+1

2

x
i− 1

2

ρ(tn, x)dx.

The NT scheme calculates the solution ρn+1
i+ 1

2

at time tn+1

at the centers xi+ 1
2

of the dual cells [xi, xi+1] using the
equation

ρn+1
i+ 1

2

=
1

2
(ρni + ρni+1) +

∆x

8
(δni − δni+1)

− λ(F (ρ
n+ 1

2
i+1 , U

n+ 1
2

i+1 )− F (ρ
n+ 1

2
i , U

n+ 1
2

i )), λ =
∆t

∆x
,

(6)

where

δni =
(ρni )

′

∆x
≃ ∂ρ(t, x)

∂x
⌋x=x0 + o(∆x)

is a limited numerical gradient that approximates the partial
derivative to first-order accuracy; this leads to second-order
spatial accuracy [7]. Second-order temporal accuracy is ob-
tained thanks to a predictor-corrector step.
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The time step t in Eq. (6) is dynamically calculated using
the stability condition

∆t

∆x
<

1

2λmax
, λmax = max

ρ∈[0,ρmax]

∣∣∣∣∂F (ρ, U)

∂ρ

∣∣∣∣ .
Nessyahu and Tadmor [15] give a detailed description of the
one-dimensional NT system.

One of the method’s weaknesses is that the numerical
solution in the NT-type schemes switches between two
staggered grids at subsequent time steps. More specifically,
any treatment of the updated solution typically requires the
solution values computed at different previous times (e.g.,
at time tn, tn−1, and maybe earlier). A synchronization
problem arises if the numerical solution obtained using an
NT-type base scheme (at time tn+1) requires additional
treatment to satisfy a physical property. When the original
and staggered grids’ cells are different in shape or kind [13],
the problem becomes considerably more difficult.

B. Unstaggered central scheme

We assume that the numerical solution ρni is known at
time tn at the nodes xi, the solution at the next time, tn+1 =
tn +∆t is computed in two steps, as follows [13]:

First, we obtain an estimate ρn+1
i+ 1

2

of the solution at time
tn+1 on the dual cells Di+ 1

2
using Nessyahu and Tadmor’s

formula (6) as follows:

ρn+1
i+ 1

2

=
1

2
(ρni + ρni+1) +

∆x

8
(δni − δni+1)

− λ(F (ρ
n+ 1

2
i+1 , U

n+ 1
2

i+1 )− F (ρ
n+ 1

2
i , U

n+ 1
2

i )). (7)

Thanks to the dual cells, the Riemann problems that arise at
the interface xi+ 1

2
can be avoided. Using a first-order Taylor

expansion in time and the original equation (1), the expected
values ρ

n+ 1
2

i and U
n+ 1

2
i at the intermediate time step tn+

1
2

in Eq. (7) are approximated as follows:

ρ(tn+
1
2 , xj) = ρ(tn, xj) +

∆t
2 ρt(t

n, xj)
= ρni + ∆t

2 (−∂xF (ρ, U)⌋(tn,xi))
= ρni − λ

2 (Fi)
′

= ρ
n+ 1

2
i

(8)

and

U(tn+
1
2 , xj) = U(tn, xj) +

∆t
2 Ut(t

n, xj).

= Un
j + ∆t

2 (Un
j )

′

= U
n+ 1

2
j .

(9)

We compute the convolution terms in (9) using the mid-

point and the composite trapezoidal rule, and we obtain:

Un
j =U (tn, xj)

=

∫ xj+η

xj

ρ (tn, x)κη (x− xj) dx

=

∫ xj+1/2

xj

ρ (tn, x)κη (x− xj) dx

+

∫ xj+N

xj+N−1/2

ρ (tn, x)κη (x− xj) dx

+
N−1∑
k=1

∫ x
j+k+1

2

x
j+k− 1

2

ρ (tn, x)κη (x− xj) dx

=

[
κη(0)ρ

n
j + κη(

∆x

2
)

(
ρnj + δj

∆x

2

)]
∆x

4

+

[
κη(η − ∆x

2
)(ρnj+N − δj+N

∆x

2
) + κη(η)ρ

n
j+N

]
∆x

4

+
N−1∑
k=1

∆xκη(k∆x)ρnj+k

and

(Un
j )

′
=Ut (t

n, xj)

=

∫ xj+η

xj

ρt (t
n, x)κη (x− xj) dx

=−
∫ xj+η

xj

Fx (ρ(t
n, x), U(tn, x))κη(x− xj)dx

=− [κη (x− xj)F (ρ (tn, x), U(tn, x))]
xj+η
xj

+

∫ xj+η

xj

κ′
η(x− xj)F (ρ(tn, x), U(tn, x)) dx

=κη (0)F
n
j − κη(η)F

n
j+N

+
[
κ′
η(0)F

n
j + κ′

η(η)F
n
j+N

] ∆x

2

+

N−1∑
k=1

∆xκ′
η(k∆x)Fn

j+k,

in which Fn
j+k denotes F

(
ρnj+k, U

n
j+k

)
To avoid false oscillations in the numerical solution, the

approximate flux derivatives (Fj)
′ in Eq. (8) and the slope

limiters δni in Eq. (6) are carefully computed with limiters
[15]. The primary tool utilized in this work is a generalized
minmod (mm)limiter [17], where the reconstruction’s slope
and the 1-dimensional case’s flux derivatives are chosen as

δni = mm(θ
ρni − ρni−1

∆x
,
ρni+1 − ρni−1

2∆x
, θ

ρni+1 − ρni
∆x

), (10)

(Fn
i )

′ = mm(θ
Fn
i − Fn

i−1

∆x
,
Fn
i+1 − Fn

i−1

2∆x
, θ

Fn
i+1 − Fn

i

∆x
).

(11)
The parameter θ is set so that 1 ⩽ θ ⩽ 2, and the minmod
limiter is specified as:

mm(a, b) =
sgn(a) + sgn(b)

2
.min(|a|, |b|). (12)

Subsequently, the updated solution found in the dual cells
is returned to the original grid using the proposed UCS
approach. The piecewise linear reconstructions of the solu-
tion values defined on the cells Ci (and Di+ 1

2
) are used

to define the numerical solution; therefore, we first define
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the piecewise linear reconstructions of the dual-cell solution
values: ρD

i+ 1
2

ρDi+ 1
2
(tn+1, x) = ρn+1

i+ 1
2

+ δn+1
i+ 1

2

(x− xi+ 1
2
), x ∈ [xi, xi+1]

(13)
where δn+1

i+ 1
2

denotes a limited numerical gradient that approx-

imates the spatial derivative ∂ρ(x,t)
∂x ⌋x=x

i+1
2

; it is chosen as
[4]:

δn+1
i+ 1

2

= mm(θ
ρn
j+ 1

2

− ρn
j− 1

2

∆x
,

ρn
j+ 3

2

− ρn
j− 1

2

2∆x
, θ

ρn
j+ 3

2

− ρn
j+ 1

2

∆x
), θ ∈ [1, 2], (14)

we then define the solution values ρn+1
i at the center of the

cell [xi− 1
2
, xi+ 1

2
] using the formula:

ρn+1
i = αρDi− 1

2

(
tn+1, xi− 1

2
+ β∆x

)
+ (1− α) ρDi+ 1

2

(
tn+1, xi+ 1

2
− β∆x

)
. (15)

The values of the parameters α and β in Eq. (15) range
between 0 and 1/2. For the calculations presented in this
work, we used the values α = 1/2 and β = 1/4.

Eq.(15) is rewritten using (13) and (15) as

ρn+1
i =

(
αρn+1

i− 1
2

+ (1− α)ρn+1
i+ 1

2

)
+ β∆x

(
αδn+1

i− 1
2

− (1− α)δn+1
i+ 1

2

)
. (16)

The one-dimensional unstaggered central scheme algorithm
operates as follows, in brief:

1) Knowing the solution ρni at time tn, we obtain an
update ρn+1

i+ 1
2

of the solution on the dual cells using
Eq. (7)

2) Computes the solution at time tn+1 on the original and
unique grid using Eq. (16).

The suggested UCS scheme is second-order precise in both
space and time, and it has the same stability criteria as the
original NT.

IV. NUMERICAL RESULTS

In this section, we study the performance of our pro-
posed scheme by using several numerical tests with different
choices of f ∈ C1([0, 1];R+):

f(ρ) = vmaxρ(1− ρ)γ , γ ∈ {2, 3}

with vmax=1 and ρmax=1, and kernels κη ∈ C1([0, η];R+):

constant: κη(x) =
1
η ,

linear decreasing: κη(x) =
2
η (1−

x
η ),

nonlinear decreasing: κη(x) =
3
2η (1−

x2

η2 ).

In all tests, the computational domain is [0, 1], the parameter
θ = 2 and the Current-Friedrichs-Lewy (CFL) is 0.5. We
impose periodic boundary conditions, i.e.,

ρnm = ρn0 , and ρni+m = ρni for i = 1, . . . , N

where N =
[

η
∆x

]
, m = 1

∆x and tn = n∆t

We utilize the UCS scheme with a refined mesh to get
a reference solution because we cannot compute an exact
solution. The cell average’s L1-error is provided as follows:

L1(∆x) = ∥ρ∆x(t, x)− ρ
∆x
2 (t, x)∥L1

where ρ∆x(t, x) and ρ
∆x
2 (t, x) are the solutions computed

with m and 2m mesh cells, respectively.
The numerical order of convergence is computed by

δ(∆x) =
ln

(
L1(∆x)

L1(∆x
2 )

)
ln(2)

A. Test 1: Convergence to reference solution
We consider equation (1) subject to the following initial

conditions including two constant states, as considered in [2]:

ρ0(x) =

{
0.8, if 1/3 < x < 2/3,
0.2, otherwise. (17)

We apply the UCS scheme to the problem (1), (17) and
compute its solutions for the look-ahead distance η equals
0.1 at time t=0.11. The solutions, computed on two uniform
grids with ∆x = 1/80 and ∆x = 1/320, together with the
reference solution, obtained by the UCS scheme on a much
finer uniform mesh with ∆x = 1/1280, are plotted in Figs.
1a, 1b, 1c, 2a, 2b and 2c. Compared to the reference solution,
the numerical solutions derived using the UCS approach
converge nicely to the reference solution.
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Fig. 1. Comparison of solutions computed with the UCS scheme using
γ = 2.
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Fig. 2. Comparison of solutions computed with the UCS scheme using
γ = 3.

B. Test 2: Accuracy of the UCS scheme

To prove that the suggested approach in this work is
second-order accurate, we consider a test case with a smooth
function.

ρ0(x) = 0.5 + 0.4 sin(πx) (18)

We compare the L1 errors and the convergence order
of the UCS scheme with the NT scheme to show the
precision and effectiveness of the UCS scheme. We fix
η = 0.1, f(ρ) = ρ(1 − ρ)2, and the final time T=0.25. We
contrast the L1 of the corresponding numerical schemes on
a uniform grid with ∆x = 1/320 compared to a reference
solution computed with the NT scheme and ∆x = 1/1280.
The spatial step size is given by ∆x = 0.1 × 2−p with
p ∈ {2, ...6}. Table I provides the results of this test case.
We observe that the correct order of convergence has been
obtained for the UCS and NT schemes, and the L1-errors
obtained are nearly identical.

TABLE I
L1 ERRORS AND CONVERGENCE ORDERS AT T=0.25

UCS NT

κη p L1error δ(∆x) L1error δ(∆x)

2 6,6087e-05 - 6,2733e-05 -
3 1,6509e-05 2,00 1,5904e-05 1,97

1
η

4 4,1506e-06 1,99 3,9621e-06 2,00

5 1,0422e-06 1,99 9,8701e-07 2,00
6 2,5964e-07 2,00 2,4611e-07 2,00

2 7,0635e-05 - 6,6678e-05 -
3 1,7439e-05 2,01 1,6879e-05 1,98

2
η
(1− x

η
) 4 4,3739e-06 1,99 4,2430e-06 1,99

5 1,0976e-06 1,99 1,0611e-06 1,99
6 2,7381e-07 2,00 2,6463e-07 2,00

2 7,2210e-05 - 6,8336e-05 -
3 1,7851e-05 2,01 1,7324e-05 1,97

3
2η

(1− x2

η2 ) 4 4,4922e-06 1,99 4,3681e-06 1,98

5 1,1323e-06 1,98 1,0913e-06 2,00
6 2,8271e-07 2,00 2,7264e-07 2,00

C. Test 3: Limit η −→ 0

Here, we examine the limit situation η −→ 0 and quantita-
tively examine if the approximate solutions generated by the
suggested unstaggered central scheme converge to the local
traffic model solution.

∂tρ+∂x (f(ρ) exp(−ρ)) = 0, f(ρ) = vmaxρ(1−ρ)γ , γ > 1.
(19)

We take a numerical look at the same (non-linear) scenario
as previously, but we vary η ∈ {0.1, 0.05, 0.025} and use a
fixed space step size ∆x = 1/320. Consider the final time
to be T = 1.15.

We calculate the L1 distances between the approximate
solutions produced by the suggested unstaggered central
scheme used to (5) and the outcome for the related local
problem (19) to assess the convergence. The corresponding
L1 distances shown in Table II decrease when η is small
enough. The results are further illustrated in more detail in
Figs. 3a, 3b, 3c, 4a, 4b and 4c.
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Fig. 3. The solutions to the model (5) and non-local model (19), which
were calculated using various kernel functions and decreasing values of
η = 0.1, 0.05, 0.025 at T = 1.15 for γ = 2
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Fig. 4. The solutions to the model (5) and non-local model (19), which
was calculated using various kernel functions and decreasing values of η =
0.1, 0.05, 0.025 at T = 1.15 for γ = 3

TABLE II
L1 DISTANCE BETWEEN THE APPROXIMATE SOLUTIONS TO THE LOCAL

MODEL (19) AND THE NON-LOCAL MODEL (5)WITH KERNEL
κη(x) =

2
η
(1− x

η
) FOR DIFFERENT VALUES OF η AT T = 1,15.

η 0.1 0.05 0.025

L1 distance 0.0578 0.0343 0.0204

In the case of the Arrhenius look-ahead model, as shown
in Figs. 3a, 3b, 3c, 4a, 4b, and 4c the solutions to the non-
local model (5) equation appear to converge to the solution
of the local model (19) equation as the look-ahead distance
converges to 0. As one can see, the dependence on η is
evident; thus, the non-local flux has a negligibly small effect
as η decreases.

D. Test 4: Comparison of the schemes NT and UCS

Here, we aim to compare the approximate solutions with
the original NT and UCS schemes. For this purpose, we
set the initial conditions to be (17) in Figs. 5a, 5b, 5c, 6a,
6b, and 6c, we depict the solutions that arise from the two
choices of γ. We can see from Figs. 5a, 5b, 5c, 6a, 6b, and
6c that there is a good agreement between the NT scheme
and the proposed scheme, thus confirming the efficiency and
the potential of our proposed unstaggered central scheme.
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Fig. 5. Comparison of the UCS and NT scheme for f(ρ) = ρ(1 − ρ)2,
at T = 1.01
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Fig. 6. Comparison of the UCS and NT schemes for f(ρ) = ρ(1 − ρ)3

at T = 1.01

V. CONCLUSION

In this study, we have introduced and evaluated an un-
staggered central scheme for numerically solving nonlocal
conservation laws, specifically tailored for traffic flow models
with Arrhenius-type look-ahead rules. Our developed method
leverages a second-order accurate finite volume approach that
operates on a single computational grid, thereby simplifying
the computation and potentially increasing efficiency by
avoiding the complexities of staggered grids typically used
in traditional schemes. The scheme that was developed as a
result is an accurate scheme of the second order in both
space and time. It develops a piecewise linear numerical
solution and avoids the resolution of the Riemann problems
that occur at the cell interfaces. Following this, the suggested
numerical technique is verified for a nonlocal traffic model
with a concave-convex flux distribution.

The efficiency of these numerical tools is validated by
extensive numerical experiments showing capability in han-
dling nonlocal traffic flow models while keeping essential
features of accuracy and non-oscillatory properties. The con-
sistency of results, with good alignment with the established
literature, proves our method’s robustness and applicability.

This work helps to provide more efficient numerical tools
for the simulation of traffic flow and helps in understanding
nonlocal traffic dynamics. It opens a way for future research
to further extend this methodology to even more complicated
and realistic models of traffic and thus further enrich the
current discipline of traffic modeling.
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