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Abstract—This paper introduces a new outer inverse known
as the Drazin-secondary generalized inverse (D-sg inverse),
which combines the properties of the Drazin inverse and the
secondary generalized inverse. We provide a representation of
the D-sg inverse emphasizing its specific column space and
row space characteristics. Several critical characterizations of
the D-sg inverse are derived, demonstrating its significance.
Additionally, we explore an application of the D-sg inverse
in solving systems of linear equations, illustrating its practical
utility in this context.

Index Terms—Drazin inverse, Secondary generalized inverse,
Secondary transpose, Column space

I. INTRODUCTION

THE Moore Penrose inverse A† of a matrix A is a gen-
eralization of the classic inverse of a matrix. However,

the Moore Penrose inverse can be obtained for any matrix,
even if the given matrix is rectangular.

Definition 1. [1] Let A be any square or rectangular matrix.
Then the Moore-Penrose inverse A† of A, is the unique
matrix satisfying the following conditions:

(1) AA†A = A (2) A†AA† = A

(3) (AA†)∗ = AA† (4) (A†A)∗ = (A†A)

Another matrix inverse that is of greater interest is the
Drazin inverse which is defined for a square matrix of index
k. The index k of a matrix A is the least nonnegative integer
such that rank(Ak+1) = rank(A).

Definition 2. [1] The Drazin inverse of a matrix A is the
unique matrix AD satisfying the conditions:

ADAAD = AD, AAD = ADA, Ak+1AD = Ak

Different types of generalized inverses are characterized
by differing sets of defining conditions. Core inverse [2],
Core EP inverse [3], [4], secondary generalized inverse [5].
A recent trend is to combine these inverses and define
new classes of generalized inverses, which will have several
applications in solving the system of equations, extending the
given class of inverses, etc. Mallik and Thome [6] introduced
the DMP inverse for a square matrix of arbitrary index by
combining the Drazin inverse and the Moore Penrose inverse
of the matrix. The DMP inverse of A is Ad,† = ADAA†.
CMP inverse, i.e., Ac,† = A†SAADAA† is introduced
by Mehdipour and Salemi [7]. The Drazin star matrices
[8] and Drazin theta matrices [9] are particular types of
matrices that act as the outer inverse of (A†)∗ and (A†S )S ,
respectively. There are many more generalized inverses, such

Manuscript received July 15, 2024; revised November 30, 2024.
Divya Shenoy is an Assistant Professor at the Department of Mathematics,

Manipal Institute of Technology, Manipal Academy of Higher Education,
Manipal, Karnataka, India - 576104. e-mail: divya.shenoy@manipal.edu

as Outer theta inverse [10], 1D inverse and D1 inverse
[11], m−DMP inverse [12], MPCEP inverse [13], MPWG
inverse [14] etc.
Here, we define a new generalized inverse by combining
the Drazin inverse and the secondary generalized inverse
and name it the Drazin secondary generalized inverse (D-sg
inverse). Here are a few characterizations, an analytic ap-
proach, and a geometrical representation of the new inverse.
Also, the D-sg inverse is represented as an outer inverse with
specific column space and null space.

II. PRELIMINARIES

In this article, the representation Cn×n denotes the set of
complex matrices of order n× n. The range space, the null
space, the index and the rank of a matrix A are denoted
by C(A),N (A), ind(A) and rank(A) respectively. PL,M

is the projector onto L along M , where L and M are
complementary subspaces.
Additionally, AS represents the secondary transpose of a
matrix. The concept of the secondary transpose of a matrix
is introduced by Anna Lee [15].

Definition 3. [15] Let A ∈ Cn×n. Then the conjugate
secondary transpose of A is denoted by AS and is defined
as AS = (cij) where cij = an−j+1,n−i+1.

Based on the idea of secondary transpose, Savitha et al.
[5] defined secondary generalized inverse A†S , which is
analogous to Moore-Penrose inverse.

Definition 4. Let A ∈ Cm×n. The unique matrix X satisfy-
ing the conditions

(1) AXA = A (2) XAX = X

(3) (AX)S = AX (4) (XA)S = XA.

is called the secondary generalized inverse of A and is
denoted as A†S .

A necessary and sufficient condition for the existence
of secondary generalized inverse A†S is rank(AAS) =
rank(ASA) = rank(A).
The following lemma can be verified directly using the
properties of column space and null space of the matrix A.

Lemma 1. Let A ∈ Cm×n be such that A†S exists. Then,
1) C(A†S ) = C(AS) and N (A†S ) = N (AS);
2) AA†S = PC(A),N (AS);
3) A†SA = PC(AS),N (A).

The representation of the Drazin inverse in terms of its
column space and row space is given in the following lemma.
This particular lemma helps to prove many results of this
article.
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Lemma 2. Let A ∈ Cn×n with ind(A) = k. Then,
1) C(AD) = C(Ak) and N (AD) = N (Ak);
2) AAD = ADA = PC(Ak),N (Ak)

Lemma 3. [1] Let A,B,C ∈ Cn×n. Then the matrix
equation AXB = C is consistent if and only if for some
A(1) ∈ A{1}, B(1) ∈ B{1},

AA(1)CB(1)B = C,

in which the general solution is

X = A(1)CB(1) + Z −A(1)AZBB(1)

for arbitrary Z ∈ Cn×n.

Note that A(1) is a generalized inverse of A, whereas A{1}
is the set of all generalized inverses of A.

III. RESULTS

Theorem 1. Consider A ∈ Cn×n with index k satisfying the
condition rank(AAS) = rank(ASA) = rank(A). Then, the
system of equations

GAG = G GA = ADA AkG = AkA†S (1)

has a unique solution whenever the solution exists.

Proof: Assume that G1 and G2 satisfy (1).
i.e., G1AG1 = G1, G1A = ADA,AkG1 = AkA†S

and
G2AG2 = G2, G2A = ADA and AkG2 = AkA†S .
Since, ADA is a projector and AAD = ADA we get,

G1 = G1AG1 = ADAG1 = (ADA)kG1

= (AD)kAkG1 = (AD)kAkA†S

= (AD)kAkG2 = (ADA)kG2

= ADAG2 = G2AG2 = G2.

Hence, the uniqueness.

Theorem 2. The system of equations (1) is consistent and
has a unique solution G = ADAA†S .

Proof: It is easy to see that ADAA†S satisfies the three
equations in the system (1). Now, theorem (1) gives the
uniqueness.

Thus, for a given matrix A, the matrix ADAA†S is the
unique matrix satisfying system of equations (1).

Definition 5. Let A ∈ Cn×n be a matrix of index k (not
necessarily k ≤ 1). The D-sg inverse of A, denoted by AD,†S ,
is defined to be the matrix

AD,†S = ADAA†S .

An example for D-sg inverse of a matrix A is given below:

Example 1. Consider a matrix A =

(
1 1
2 2

)
.

Here, rank(A) = 1. The secondary generalized inverse of

the matrix is A†S =

(
2/8 1/8
2/8 1/8

)
and

Drazin inverse is AD =

(
1/45 2/45
2/45 4/45

)
The Drazin secondary generalized inverse is given by

AD,†S =

(
1/6 1/12
1/3 1/6

)

Also, it can be observed that the Drazin secondary
generalized inverse differs from the Drazin Moore-Penrose
inverse (DMP inverse) since the DMP inverse of A is

AD,† =

(
1/15 2/15
2/15 4/15

)
Remark 1. Similar to the D-sg inverse, one can define
secondary generalized Drazin inverse (sg-D inverse) for a
square matrix with index k.
Consider A ∈ Cn×n with index k such that A†S exists. Then
the matrix G = A†SAAD is a unique solution for the system
of equations

GAG = G AG = GAD GAk = A†SAk

This particular G can be named as secondary generalized
Drazin inverse.

Even though the secondary generalized Drazin inverse is
an outer inverse of A, it differs from the Drazin secondary
generalized inverse. This is clear from the example given
below.

Example 2. Consider the same matrix in example 1.

i.e., A =

(
1 1
2 2

)
.

The secondary generalized Drazin inverse is

A†SAAD =

(
2/8 1/8
2/8 1/8

)(
1 1
2 2

)(
1/45 2/45
2/45 4/45

)
=

(
1/30 1/15
1/30 1/15

)
In the following theorem, the D-sg inverse is represented

as an outer inverse with prescribed column space and null
space.

Theorem 3. Let A ∈ Cn×n be a matrix with index k such
that rank(ASAAS) = rank(A). Then

1) rank(AD,†S ) = rank(Ak);
2) C(AD,†S ) = C(Ak) and N (AD,†S ) = N (AkA†S );
3) AD,†S = A

(2)

C(Ak),N (AkA†S )
;

4) AAD,†S = PC(Ak),N (AkA†S) ;

5) AD,†SA = ADA = PC(Ak),N (Ak).

Proof: (1) By the lemma (2), we have that

rank(A) = rank(ADA) = rank(ADAA†SA)

≤ rank(ADAA†S ) ≤ rank(AD)

which together with the definition (5) shows that
rank(AD,†S ) = rank(Ak).
(2) Using the definition (5) and the item (1), directly we get
C(AD,†S ) = C(Ak).
Since

rank(Ak) = rank(AkA†SA) ≤ rank(AkA†S ) ≤ rank(Ak)

again by the item (1), we get

rank(AkA†S ) = rank(Ak) = rank(AD,†S ).

Moreover,

N (AkA†S ) ⊆ N ((ADA)kA†S )

= N (ADAA†S ) = N (AD,†S )
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(3) It is evident by theorem 1 and the item (2).
(4) In terms of ind(A) = k and the item (2), we infer

C(AAD,†S ) = AC(Ak) = C(Ak+1) = C(Ak)

Evidently, rank(AAD,†S ) = rank(Ak), which together with
the items (1) and (2), shows that

N (AAD,†S ) = N (AD,†S ) = N (AkA†S )

Since AD,†S is an outer inverse of A, we have AAD,†S =
PC(Ak),N (AkA†S ).
(5) It is easily obtained by definition 5 and (2) of lemma 2.

A geometrical approach to characterize the Drazin sec-
ondary generalized inverse is given below:

Theorem 4. Let A ∈ Cn×n with index k and
rank(ASAAS) = rank(A). Then AD,†S is the unique
matrix G ∈ Cn×n such that

AG = PC(Ak),N (AkA†S ), C(G) ⊆ C(Ak) (2)

Proof: Clearly, from (2)nd and (4)th conditions of
theorem 3, AD,†S is a solution to (2).
To prove the uniqueness, assume that G1 and G2 are solu-
tions of (2). Now, since AG1 = AG2 = PC(Ak),N (AkA†S ),
we get C(G1 − G2) ⊆ N (A) ⊆ N (Ak). Moreover, from
C(G1) ⊆ C(Ak) and C(G2) ⊆ C(Ak) we get C(G1 −G2) ⊆
C(Ak). Now, C(G1−G2) ⊆ C(Ak)∩N (Ak) = {0} is direct
which means G1 = G2.
Hence, the uniqueness.

Theorem 5. Let A ∈ Cn×n with ind(A) = k. Let
rank(AAS) = rank(ASA) = rank(A). Then AD,†S =
AC(Ak),N (AkA†S )

Proof: D-sg inverse is an outerinverse by definition.
So it is enough to show that C(AD,†S ) = C(Ak) and
N (AD,†S ) = N (AkA†S ). Evidently

C(AD,†S ) = C(ADAAD,†S ) ⊆ C(Ak)

= C(ADAk+1) = C(ADAA†sAk+1)

⊆ C(AD,†S )

Therefore, C(AD,†S ) = C(Ak). Also

N (AD,†S ) ⊆ N (AkAD,†S )

= N (AkA†S ) ⊆ N ((AD)kAkA†S )

= N (ADAA†S ) = N (AD,†S )

so, N (AD,†S ) = N (AkA†S ).
Different characterizations of D-sg inverse in terms of

column space of AD,†S are obtained here.

Theorem 6. Let A,G ∈ Cn×n and ind(A) = k. Assume
rank(AAS) = rank(ASA) = rank(A). Then the following
conditions are equivalent:

1) G = AD,†S ;
2) AkG = AkA†S , C(G) = C(Ak);
3) C(G) = C(Ak),N (G) = N (AkA†S ), GA ∈ CP

n ;
4) C(G) = C(Ak),N (G) = N (AkA†S ), AG ∈ CP

n ;
5) C(G) = C(Ak),N (G) = N (AkA†S ), GAD = (AD)2;
6) GAk+1 = Ak,N (G) = N (AkA†S );
7) GAAD = AD, rank(G) = rank(Ak), AkG = AkA†S ;
8) GAAD = AD,N (G) = N (AkA†S ).

Proof: (1) =⇒ (2)− (7) can be verified directly using
theorem (5) and the definition of D-sg inverse.
(2) =⇒ (1). Since ADA = PC(Ak),N (Ak) from C(G) =
C(Ak), we have ADAG = G. Since ADA is an idempotent,
it follows that

G = ADAG = (ADA)kG = (AD)kAkA†S

= ADAA†S = AD,†S

(3) =⇒ (1). Since GA is an idempotent, C(A− AGA) ⊆
N (G) = N (AkA†S ), so AkA†SA = AkA†SAGA, i.e.,
Ak = AkGA. Multiplying the last equality by A†S from the
right, AkA†SAGA, i.e., Ak = AkGA. Multiplying the last
equality by A†S from the right, we get AkA†S = AkGAA†S .
Finally, since C(I −AA†S ) ⊆ N (AkA†S ) = N (G) we have
G = GAA†S . Hence, AkA†S = AkG.
The proof of (4) =⇒ (1) follows in the similar line as in
the part (3) =⇒ (1).
(5) =⇒ (2). By C(G) = C(Ak) we have ADAG = G.
Also, GAD = (AD)2 implies GADA = AD. These two
conditions together give G = GADA2G. Hence C(I −
ADA2G) ⊆ N (G) = N (AkA†S ), so AkA†S = Ak+1ADG,
i.e., AkA†S = AkG.
(6) =⇒ (5). Multiplying GAk+1 = Ak from the
right side by (AD)k+2 we get GAD = (AD)2. Now
using C(AkA†S ) = C(Ak), N (Ak) = N (AkA†S ) and
dimC(Ak) = dimC(G) along with C(Ak) ⊆ C(G) yields
C(Ak) = C(G).
(7) =⇒ (2). Notice that GAAD = AD is equivalent
to GAk+1 = Ak which gives C(Ak) ⊆ C(G). Now by
rank(G) = rank(Ak) we get C(Ak) = C(G).
(8) ⇐⇒ (6). This equivalent condition is followed by the
equivalence of GAAD = AD and GAk+1 = Ak.

Theorem 7. Let A,G ∈ Cn×n and ind(A) = k. Assume
rank(AAS) = rank(ASA) = rank(A). Then the following
conditions are equivalent:

1) G = AD,†S ;
2) AG = A2ADA†S , C(G) ⊆ C(Ak);
3) AGA = AADA, C(G) ⊆ C(Ak),N (AkA†S ) ⊆ N (G);
4) GA = AAD,N (AkA†S ) ⊆ N (G);
5) AG2 = G,AkG = AkA†S ;
6) AG2 = G,AG = PC(Ak),N (AkA†S );

7) AG2 = G,AG = A2ADA†S

Proof: (1) implies (2-7) can be proved directly by
definition (5). We have to prove other implications.
(2) =⇒ (1). Since AG = AD,†SCAA

†S = A2ADA†S ,
we have AkG = AkA†S . Also by C(G) ⊆ C(Ak) and
AkG = AkA†S , we get C(G) = C(Ak). Hence, by theorem
(6), it follows that G = AD,†S .
(3) =⇒ (1). Since C(G) ⊆ C(Ak), it follows that ADAG =
G. Multiplying AGA = AADA from the left side by AD we
get GA = ADA. Since C(I−AA†S ) ⊆ N (AkA†S ) ⊆ N (G)
we have that G = GAA†S . Now,

AkG = AkGAA†S = AkADAA†S = AkA†S

Proof of (4) =⇒ (1) follows in the similar lines as that of
(3) =⇒ (1).
(5) =⇒ (1). Since AG2 = G implies G = AkGk+1,
C(G) ⊆ C(Ak). Furthermore, by AkG = AkA†S , it is easy to
check C(G) = C(Ak). Hence, G = AD,†S by (2) =⇒ (1)
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of theorem 6.
(6) =⇒ (1). As in the part (5) =⇒ (1), and from AG2 =
G we get ADAG = G. Since C(I − AG) = N (AkA†S ), it
follows that

AkA†S = AkA†SAG = AkG.

(7) =⇒ (5). Since AG = A2ADA†S , we have AkG =
AkA†S .

Theorem 8. Consider a matrix A ∈ Cn×n with ind(A) = k
Assume rank(ASAAS) = rank(A). Then,

1) AD,†S = ADPR(A),N (AS);

2)

(AD,†S )l =


(ADA†S )

l

2 if l is even,

A(ADA†S )

l + 1

2 if l is odd

3) (AD,†S ) = (A2A†S )D;
4) ((AD,†S )D)D = AD,†S ;
5) AAD,†S = AD,†SA if and only if A†S = AD if and

only if N (AS) ⊆ N (Ak);
6) AD,†S = 0 if and only if A is nilpotent.

Proof: (1) It is clear by definition (5) and (2)nd part of
lemma (1).
(2) From definition (5) we have

(AD,†S )2 = ADAA†SADAA†S

= ADAA†SAADA†S = ADA†S

Then, for an even number l, it follows that

(AD,†S )l = ((AD,†S )2)

l

2 = (ADA†S )

l

2 (3)

Moreover, if l is odd, then from Equation (3) and definition
(5), we get that

(AD,†S )l = AD,†S (AD†S )l−1

= AD,†S (ADA†S )

l − 1

2

= AADA†S (ADA†S )

l − 1

2

= A(ADA†S )

l + 1

2

(3) Using Cline’s formula, [16], (XY )D = X((Y X)D)2Y
for X ∈ Cm×n and Y ∈ Cn×m, from definition 5,

(A2A†S )D = (A(AA†S ))D = A((AA†SA)D)2AA†S

= A(AD)2AA†S = ADAA†S = AD,†S

(4). Again, using Cline’s formula, from definition (5) and
(2)nd part of lemma (1) and (1)st part of lemma (2) we
have

(AD,†S )D = (AD(AA†S ))D = AD((AA†SAD)D)2AA†S

= AD((AD)D)2AA†S = (AD)DAA†S

= (AD)#AA†S

Again by Cline’s formula,

((AD,†S )D)D = ((AD)#AA†S )D

= (AD)#((AA†S (AD)#)D)2AA†S

= (AD)#(((AD)#)#)2AA†S = ADAA†S

(5) According to definition 5 and (2) of lemma (1) and (2)
of lemma (2) we see that

AAD,†S = AD,†SA

⇐⇒ AAD(AA†S − In) = 0

⇐⇒ N (AS) ⊆ N (Ak)

⇐⇒ AD(AA†S − In) = 0

⇐⇒ AD,†S = AD.

Zuo et al. in [17] gave an interesting result of the DMP
inverse, that is, for A ∈ Cn×n

k ,

AD,† = AA†(In −AAA†)D = (In −AAA†)DAA†

where A = In −A.
The following theorem turns out analogous expressions of
the D-sg inverse.

Theorem 9. Let A ∈ Cn×n
k with rank(ASAAS) =

rank(A), and let A = In −A. Then,

AD,†S = AA†S (In −AAA†S )D (4)

= (In −AAA†S )DAA†S (5)

Proof: Using corollary 1 of [18], i.e., (X + Y )D =
XD + Y D, where X,Y ∈ Cn×n satisfies XY = Y X = 0
and a clear fact

(In −AA†S )A2A†S = A2A†S (In −AA†S ) = 0,

we can directly have

(In −AA†S +A2A†S )D = (In −AA†S )D + (A2A†S )D

= In −AA†S + (A2A†S )D

Hence, it follows from theorem 8, theorem 3 and lemma 1
that

AA†S (In −AAA†S )D

= AA†S (In −AA†S +A2A†S )D

= AA†S (In −AA†S ) +AA†S (A2A†S )D

= AA†SAD,†S = AD,†S

and

(In −AAA†S )DAA†S

= (In −AA†S +A2A†S )DAA†S

= (In −AA†S )AA†S + (A2A†S )DAA†S

= AD,†SAA†S = AD,†S

which shows that equation (4) and equation (5) are true.

Theorem 10. Let A ∈ Cn×n such that ind(A) = k. Assume
rank(AAS) = rank(ASA) = rank(A) = r. Let U be a
matrix such that AU = UA and Ak+1X = Ak. Let V ∈
A{1}. Then the following conditions are equivalent:

1) AD,†S = UAV
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2) UA = ADA,AkV = AkA†S .
3) U = AD +X(In − PA), V = A†S + (In −QAk)Y for

arbitrary X,Y ∈ Cn×n.

Proof: (1) =⇒ (2) Since AD,†S = UAV ,

AD,†SA = UAV A = UA.

Now, UA = AD,†SA = ADAA†SA = ADA.
On the other hand, since AD,†S = UAV ,

AkAD,†S = AkUAV = Ak+1UV = AkV.

By the definition of Drazin inverse, we have
AkV = AkAD,†S = AkADAA†S = AkA†S .
(2) =⇒ (3) Clearly, AD satisfies the equation ADA =
UA. By applying 3 the general solution of ADA = UA is
given by U = AD +X(In − PA), for arbitrary X ∈ Cn×n.
By repeated application of lemma 3, we obtain the general
solution of AkA†S = AkV is given by
V = A†S + (In −QAk)Y for arbitrary Y ∈ Cn×n.
(3) =⇒ (1) Assume that U = AD + X(In − PA) and
V = A†S + (In −QAk)Y for arbitrary X,Y ∈ Cn×n.
Now,

UAV = AD +X(In − PA)AA
†S + (In −QAk)Y

= ADA(A†S + (In −QAk)Y )

= AD,†S

Remark 2. These characterizations obtained for Drazin
secondary generalized inverse can also be explored for
secondary generalized Drazin inverses.

A. An application of D-sg inverse in solving the system of
linear equations
Theorem 11. Let A ∈ Cn×n with ind(A) = k and
rank(ASAAS) = rank(A). Let y ∈ Cn and let the system
of linear equations be

Akx = AkA†Sy (6)

Then the general solution of the system (6) is

x = AD,†Sy + (In −AD,†SA)z, (7)

where z ∈ Cn is arbitrary. Moreover,

x = AD,†Sy

is the unique solution to the system (6) on C(Ak).

Proof: By definition 5, clearly AD,†S is a solution to
equation (6). Hence, by using theorem 3, we have the set of
solutions of (6) given by

{AD,†Sy + b | b ∈ N (Ak)}
= {AD,†S + b | b ∈ C(In −AD,†SA)}

which shows that the general solution of (6) is (7). Moreover,
since C(Ak)⊕N (Ak) = Cn, by using (2) of theorem (3) we
can see that AD,†S ∈ C(Ak) is a unique solution to (6) on
C(Ak).

IV. CONCLUSION

In conclusion, this article has introduced and character-
ized a new outer inverse, the Drazin secondary generalized
inverse. We have explored the application of the Drazin
secondary generalized inverse (D-sg inverse) in solving sys-
tems of linear equations, demonstrating its utility in dealing
with singular matrices. Furthermore, we propose that the
D-sg inverse can be extended to rectangular matrices, thus
broadening its applicability. Additionally, the results concern-
ing the D-sg inverse can be further generalized to Hilbert
and Banach spaces, opening new avenues for research and
application in functional analysis.
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