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Abstract—Our aim of the article is to report an efficient
numerical method to enhance the accuracy in solving fractional
Riccati differential equations. The main idea is to change the
original differential equation into a simple algebraic one, by
employing the operational matrix of Bernstein wavelets merged
with the collocation method. The details of our method are
summarized in this paper. The numerical examples are devoted
to make known that the method can obtain numerical solutions
effectively and accurately. Compared with the existing results,
the method proposed in the article can reduce errors and
improve accuracy.

Index Terms—Bernstein wavelets, Riccati differential equa-
tions, Collocation method, Absolute error.

I. INTRODUCTION

THE Riccati differential equation (RDE), named af-
ter the renowned Italian mathematician Count Jacopo

Francesco Riccati [1], plays a pivotal role in numerous
applied mathematical fields, including solitary wave theory,
dynamic games, stochastic processes, and differential equa-
tions, among others(see to, for example, [2], [3] and the
references cited herein).

In general, a quadratic RDE has the following form [4]

y′(t) = a(t) + r(t)y(t) + k(t)y2(t), (1)

where k(t) ̸= 0.
Fractional Riccati differential equations (FRDEs) can be

derived by substituting differential operators with fraction-
order differential operators in equation (1). Owing to that
the fractional-order derivatives can describe memory char-
acteristics of various mathematical processes, many mathe-
matical models built by FRDEs seem to be more reasonable,
thus much attention of FRDEs has been attracted by many
mathematicians [5], [6] in recent years.

In this paper, the following fractional Riccati differential
equation (FRDE) was considered [7]:{

Dβy(t) = a(t) + r(t)y(t) + k(t)y2(t), 0 < β ≤ 1,
y(0) = λ,

(2)
with the functions a(t), r(t), k(t) are defined over [0, 1] and
λ is a fixed constant.
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Recently, there are many works focused on the numerical
methods for solving FRDEs. Saker [8] introduced the itera-
tive reproducing kernel Hilbert spaces method (IRKHSM) for
solving FRDEs. Taiwo and Osilagun [9] derived numerical
solutions for FRDEs using an iterative decomposition algo-
rithm. Jin [7] used the generalized Bell collocation method
(GBCM) to obtain more accurate numerical solutions for
FRDEs.

The high-precision numerical solutions has consistently
been the focus of researchers’ efforts. To this end, wavelets
are employed as the foundation for the collocation method in
numerical computations. As stated in [3], the primary advan-
tage is that wavelets can accurately approximate functions
with discontinuities and sharp peaks. There are numerous
papers that demonstrate the increment of accuracy for ap-
plying wavelets in solving various types of equations. These
include the application of wavelet least squares techniques
for boundary value problems [10], the deployment of wavelet
collocation methods for optimal control problems [11], the
fractional-order Boubaker wavelets approach for fractional
differential equations [12], etc.

Motivated by the aforementioned considerations, our ob-
jective is to employ Bernstein wavelets as the basis for
improving the accuracy of solving FRDEs. This entails
demonstrating a highly accurate numerical method for solv-
ing FRDEs. By following the prescribed steps of this method,
(2) can be converted into straightforward nonlinear alge-
braic equations. Once solutions to these nonlinear algebraic
equations have been identified, the numerical solutions can
be readily expressed. In comparison with existing results,
our method has the potential to reduce errors and improve
accuracy.

The other parts of the article are arranged as follows:
A variety of necessary preparations are given in Section
II. Section III summarizes the specific processes of using
wavelets to solve equation (2). In Section IV, some numerical
experiments are conducted to verify the conclusions. A brief
conclusion is provided in the final section.

II. PRELIMINARY

In this section, we present some preliminaries that will be
used further in the introduction to our method. Firstly, we
collect some classical definitions of fractional calculus.

Definition 1. ([7]) Define the Riemann-Liouville frac-
tional integral operator by:

Jβf(t) =


1

Γ(β)

∫ t

0

(t− s)β−1f(s)ds, β > 0,

f(t), β = 0.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 2, February 2025, Pages 436-440

 
______________________________________________________________________________________ 



Definition 2. ([7]) Define the Caputo’s fractional deriva-
tive by:

Dβf(t) =


1

Γ(n− β)

∫ t

0

(t− s)n−β−1 d
n

dsn
f(s)ds,

n− 1 < β < n,
f (n)(t), β = n.

Next, we give the definitions of Bernstein polynomials and
Bernstein wavelets.

Definition 3. ([13]) Bernstein polynomials of degree m
are defined on [0, 1] as follows

Bm,M (t) =

(
M

m

)
tm(1− t)M−m. (3)

where m = 0, 1, · · · ,M and M is a any positive integer.
Moreover, the orthonormal Bernstein polynomials of de-

gree m on [0, 1] are

B̄m,M (t) =
√
2(M −m) + 1(1− t)M−m

×
m∑

k=0

(−1)k
(
2M + 1− k

m− k

)(
m

k

)
tm−k.

(4)

By Definition 3, the orthonormal Bernstein polynomials
are orthonormal in the following sense∫ 1

0

B̄i,M (t)B̄j,M (t)dt = δi,j , i, j = 0, 1, · · · ,M, (5)

where δi,j denotes the Kronecker function.
Then, we introduce the orthonormal Bernstein wavelets

defined on [0, 1].
Definition 4. ([13]) The orthonormal Bernstein wavelets

ψnm(t) = ψ(k, n,m, t) are defined on [0, 1] by

ψnm(t) =

{
2

k
2 B̄m,M (2kt− n),

n

2k
≤ t <

n+ 1

2k
,

0, otherwise,

where n = 0, 1, · · · , 2k − 1, m = 0, 1, · · · ,M . Here m
denotes the degree of the polynomials.

According to [13], we introduce the unit step function as
follows

µη(t) =

{
1, t ≥ η,
0, t < η,

then we can rephrase the orthonormal Bernstein wavelets as

ψnm(t) = µ n

2k
(t)2

k
2 B̄m,M (2kt− n)

− µn+1

2k
(t)2

k
2 B̄m,M (2kt− n).

(6)

For any function f(t) belonging to L2[0, 1], we can expand
it in terms of the basis ψnm as follows

f(t) =
∞∑

n=0

∑
m∈Z

gnmψnm(t), (7)

where

gnm = (f, ψnm) =

∫ 1

0

f(t)ψnm(t)dt.

By truncating the infinity series of (7), we can approximate
f(t) by

f(t) ≈
2k−1∑
n=0

M∑
m=0

gnmψnm(t) = GTΨ(t), (8)

where G and Ψ(t) denote the 2k(M + 1) vectors,

G = [G0, G1, · · · , G(2k−1)]
T ,

Gi = [gi0, gi1, · · · , giM ], (9)

and

Ψ(t) = [Ψ0(t),Ψ1(t), · · · ,Ψ(2k−1)(t)]
T ,

Ψi(t) = [ψi0(t), ψi1(t), · · · , ψiM (t)]. (10)

We state the operational matrix for Bernstein wavelet
which is also used in [13]. Let

P (t, β) = Jβ(Ψ(t)). (11)

It is obvious P (t, β) is the 2k(M +1) column vector. We
have

P (t, β) =[Jβψ00(t), J
βψ01(t), · · · , Jβψ0M (t), Jβψ10(t), · · · ,

Jβψ1M (t), · · · , Jβψ(2k−1)0(t), · · · , Jβψ(2k−1)M (t)]T ,

where

Jβψnm(t) =


0, 0 ≤ t < n

2k
,

2
k
2 ς(m,M)(t− n

2k
)β , n

2k
≤ t < n+1

2k
,

2
k
2 ς(m,M)(t− n

2k
)β − 2

k
2 ς̄(m,M)

×(t− n+1
2k

)β n+1
2k

≤ t < 1,

and

ς(m,M) =
√
2(M −m) + 1

m∑
i=0

(−1)i
(
2M+1−i

m−i

)(
m
i

)(
M−i
m−i

)
×

M∑
j=m−i

(−1)j−M+i

(
M − i

m− i

)(
M −m

j −m+ i

)
× 2jk(t− n

2k
)j

Γ(j + 1)

Γ(β + j + 1)
,

ς̄(m,M) =
√
2(M −m) + 1

m∑
i=0

(−1)i
(
2M+1−i

m−i

)(
m
i

)(
M−i
m−i

)
×

M∑
j=M−m

(−1)2j−M+m

(
M − i

M −m

)(
m− i

j −M +m

)
× 2jk(t− n+ 1

2k
)j

Γ(j + 1)

Γ(β + j + 1)
.

For example, if we choose k = 1, M = 3, β = 1
2 and the

collocation points ti = 2i−1
2k+1(M+1)

, we can first get 2k(M +

1) = 8 and then obtain the following operational matrix

0.8171 0.8243 0.6217 0.4713 · · · 0.2895
0 0 0 0 · · · 0.4713

−0.3289 0.4359 0.8104 0.6343 · · · 0.2783
0 0 0 0 · · · 0.6343

0.1195 −0.3366 0.1770 0.8417 · · · 0.2419
0 0 0 0 · · · 0.8417

−0.0374 0.1512 −0.1951 0.0990 · · · 0.1506
0 0 0 0 · · · 0.0990


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III. DETAILED STEPS OF THE METHOD FOR FRDES

This section outlines the detailed steps of the numerical
method utilizing Bernstein wavelets operational matrices to
solve Equation (2).

Step 1: Dβy(t) is supposed to be approximated as

Dβy(t) ≃
2k−1∑
n=0

M∑
m=0

cnmψnm(t) = CTΨ(t), (12)

where cnm, (n = 0, 1, · · · , 2k − 1,m = 0, 1, · · · ,M) are
unknown.

Step 2: Taking advantage of (11) and (12), we get

JβDβy(t) ≃ Jβ(CTΨ(t)) = CTP (t, β).

Due to the relations between Jα and Dα together with the
initial value condition of (2), we re-express y(t) as

y(t) ≃ CTP (t, β) + λ. (13)

Step 3: By substituting (12)-(13) into the equation of (2),
we have

CTΨ(t) = a(t)+r(t)(CTP (t, β)+λ)+k(t)(CTP (t, β)+λ)2.
(14)

Step 4: We take the points 2i−1
2k+1(M+1)

as collocation
points. After putting these nodes into (14), the following
system of matrix equations can be gotten

CTΨ(tj) = a(tj) + r(tj)(C
TP (tj , β) + λ) + k(tj)

× (CTP (tj , β) + λ)2, j = 1, 2, · · · , 2k(M + 1).
(15)

The unknown coefficient CT can be acquired by solving
the above nonlinear equations. One of the classical methods
is the Newton iteration method. Thereafter, the approximate
solution can be obtained by inserting CT into (13).

IV. NUMERICAL EXAMPLES

In this part, we shall solve several important FREDs which
have been solved in [14], [15], [12] and [7], by utilizing our
method introduced in Section III. As a contrast, the solutions
we obtained have higher accuracy..

Example 1. Firstly, consider the following FRDE [14]:{
Dβy(t) = 1− y2(t),
y(0) = 0.

(16)

By the result of [14], y(t) = e2t−1
e2t+1 is the exact solution

for (16) if β = 1.
Using the algorithm described in Section III, we obtain

numerical solutions. In Figure 1, the numerical solutions are
shown with different fractional order β. To provide a clear
impression of the error, Figure 2 shows the absolute error
graph when β = 1. We carried out this numerical experiment
by choosing different values of k and M . Table I gives
the absolute errors for different values of k and M with
the special case of β = 1. Furthermore, the absolute errors
arising in the method are compared with the existing results
from [9], [7], [8] in Table II.

Example 2. We consider the following FRDE, which is
from [15]: Dβy(t) = (

tβ+1

Γ(β + 2)
)2 + t− y(t)2,

y(0) = 0.
(17)
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Fig. 1. Numerical solutions with different values of β in Example 1
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Fig. 2. Absolute error for Example 1

TABLE I
ABSOLUTE ERROR AT DIFFERENT PARAMETERS FOR EXAMPLE 1

t k = 1,M = 5 k = 1,M = 6 k = 2,M = 4

0.1 9.6743e-08 2.0696e-08 1.3335e-08
0.2 9.9965e-08 2.1949e-08 1.4507e-08
0.3 8.9148e-08 2.0932e-08 2.1650e-08
0.4 8.7907e-08 1.7689e-08 1.8073e-08
0.5 1.0842e-07 5.6627e-09 8.6511e-09
0.6 1.0712e-08 1.0872e-08 1.4801e-09
0.7 1.4968e-09 1.0275e-08 2.0432e-09
0.8 9.7704e-09 9.0817e-09 9.9654e-09
0.9 1.7352e-09 7.2565e-09 8.5933e-09
1.0 8.1716e-09 1.9171e-09 5.0215e-09

By the definition of fractional derivatives, it is not a
difficult task to check that y(t) = tβ+1

Γ(β+2) is the exact
solution.

In general, we provide the numerical solutions for various
values of β in Figure 3. The case of β = 0.8 is taken to
consider the absolute error. The description of the absolute
errors is shown in Figure 4. The comparison results of errors
for β = 0.8 are also illustrated in Table III. To show the
effectiveness of the presented method, we also give the
results of errors by using various methods when β = 0.5
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TABLE II
ABSOLUTE ERROR AT DIFFERENT METHODS FOR EXAMPLE 1

t IDM[9] IRKHSM[8] GBCM[7] Our method

0.1 1.00e-11 9.05e-06 2.51e-08 1.33e-08
0.2 0.00e-10 1.72e-05 4.64e-08 1.45e-08
0.3 2.50e-09 2.38e-05 5.60e-08 2.17e-08
0.4 5.61e-08 2.85e-05 1.08e-08 1.81e-08
0.5 6.03e-07 3.11e-05 1.46e-07 8.65e-09
0.6 4.09e-06 3.17e-05 2.42e-07 1.48e-09
0.7 2.01e-05 3.07e-05 1.17e-06 2.04e-09
0.8 7.78e-05 2.81e-05 1.57e-06 9.97e-09
0.9 2.50e-04 2.32e-05 1.16e-06 8.59e-09
1.0 6.99e-04 1.19e-05 1.04e-06 5.02e-09
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Fig. 3. Numerical solutions at different values of β for Example 2
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Fig. 4. Plot of absolute error with β = 0.8 for Example 2

in Table IV.
Example 3. Let us take the following FRDE as the last

example [12]:{
Dβy(t) = −y(t)2 + 2y(t) + 1,
y(0) = 0,

(18)

In the case of β = 1, the exact solution of (18) is expressed
by

y(t) = 1−
√
2

√
2 tanh(

√
2t)− 1

tanh(
√
2t)−

√
2
.

TABLE III
ABSOLUTE ERRORS AT DIFFERENT METHODS FOR EXAMPLE 2 WITH

β = 0.8

t WG[16] FBW[17] Our method

0.1 7.76e-06 2.00e-06 4.23e-16
0.2 2.75e-06 2.94e-06 8.05e-16
0.3 2.54e-06 2.86e-06 8.47e-16
0.4 1.30e-07 1.51e-06 1.92e-15
0.5 3.10e-08 3.97e-04 2.03e-14
0.6 1.32e-06 3.60e-04 1.24e-11
0.7 8.68e-07 3.24e-04 1.01e-10
0.8 4.04e-07 2.85e-04 8.28e-10
0.9 3.39e-06 2.40e-04 4.09e-09
1 5.19e-06 1.76e-04 1.42e-08

TABLE IV
ABSOLUTE ERRORS FOR EXAMPLE 2 WITH β = 0.5

t GBCM [7] FBW[17] Our method

0.1 8.6736e-16 1.42121e-09 0
0.2 1.0131e-15 1.70884e-09 1.3014e-18
0.3 1.4794e-14 1.95085e-08 1.3878e-17
0.4 8.7930e-14 1.47103e-08 2.7756e-17
0.5 2.4547e-13 1.13654e-08 5.5511e-17
0.6 5.0115e-13 8.98023e-09 1.7375e-14
0.7 8.6287e-13 7.46806e-09 4.9905e-14
0.8 1.3342e-12 6.97788e-09 8.0380e-14
0.9 1.9169e-12 7.78465e-09 1.0436e-13
1 2.6106e-12 1.02211e-08 1.1580e-13
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Fig. 5. Numerical solutions and exact solution for Example 3

We will continue to use graphs and tables to illustrate the
numerical results. The closeness between the numerical and
exact solutions is shown in Figures 5 and 6. For the purpose
of showing the accuracy of the method, the global errors are
given in Figure 7.

The absolute errors are stated with different k in Table
V. Moreover, the errors generated by other methods are also
displayed in Table VI.

V. CONCLUSIONS

The purpose of this article was to introduce an efficient
numerical method using Bernstein wavelets to solve FRDEs.
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Fig. 6. An enlarged view of Figure 5 for Example 3
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Fig. 7. Graph of absolute error at β = 1 for Example 3

TABLE V
COMPARISON OF ABSOLUTE ERRORS AT DIFFERENT PARAMETERS FOR

EXAMPLE 3

t k = 1,M = 4 k = 2,M = 4

0.1 1.2334e-05 2.0688e-08
0.2 1.3405e-05 2.8782e-08
0.3 1.5415e-05 3.0496e-07
0.4 1.8256e-05 3.0905e-07
0.5 4.2972e-06 3.8631e-08
0.6 6.9503e-06 8.4466e-08
0.7 5.9286e-06 8.0813e-08
0.8 5.4922e-06 1.7847e-07
0.9 6.6581e-06 1.3913e-07
1.0 1.3200e-05 1.6808e-07

The combination of the Bernstein wavelets operational ma-
trix and the collocation method can convert the requested
problem into nonlinear algebraic equations. In the numerical
experiments, we show the effectiveness and accuracy of the
method through graphs and tables. The numerical results
indicate that a higher-accuracy solution can be obtained using
the Bernstein wavelets method.

TABLE VI
THE ABSOLUTE ERRORS FOR EXAMPLE 3 WITH β = 1

t [12] [14] [18] [19] Our method

0.2 1.55e-05 1.20e-05 2.90e-05 9.23e-05 2.88e-08
0.4 1.71e-05 3.03e-04 2.50e-03 7.35e-05 3.09e-07
0.5 1.93e-05 1.55e-03 4.40e-03 7.62e-05 3.86e-08
0.6 1.90e-05 4.69e-03 5.50e-03 7.56e-05 8.45e-08
0.8 1.92e-05 1.88e-02 3.80e-03 3.94e-05 1.78e-07
1.0 9.99e-06 3.43e-02 3.40e-03 7.12e-05 1.68e-07
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