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Abstract—In this paper, we introduce fixed point theorems
within the context of (β−ψ1−ψ2) contractive conditions applied
to partially E-cone metric spaces. This research work explores
the existence and uniqueness of fixed points for mappings
satisfying these specific contractive conditions, shedding light
on the behavior of such mappings in the context of partially
ordered cone metric spaces. Our findings contribute to the
ongoing discourse on fixed point theory and its applications
in metric spaces, while also identifying avenues for future
research aimed at bridging existing gaps in knowledge and
understanding within this domain.

Index Terms—contraction mapping, fixed point theorems, con-
tinuous mapping, partially E-cone metric spaces, β-admissible.

I. INTRODUCTION

PArtially E-cone metric spaces are an interesting general-
ization of traditional metric space concept. The genesis

of E-cone metric spaces involving using a specific cone in
Banach space [46] to define the metric, structure that provide
non-negative scalar which support the definition of distance
in a reacher setting than real number alone [4], [5], [9], [17],
[20], [28], [35], [39], [45]. Partially E-cone metric spaces
represent an intriguing development in the field of metric
geometry integrating the element of cone metric spaces with
the partial ordering. Introduce as a generalization of metric
spaces where distance is measure not in the usual set of non-
negative real number but within a cone in the Banach space
[46], these spaces offer a further extend in mathematical
structure, the essence of partially E-cone metric spaces lies in
their ability to incorporate and order relation into the frame-
work of cone metric spaces. This innovative approach allows
for more flexibility and broader application than traditional
metric spaces. The idea of metric spaces is functional in
mathematical analysis and topology, offering a structural way
to define distance and continuity, offering new prospective
particularly beneficial in areas like fixed point theory and
theoretical economics where order relationship are crucial.
For a foundational discussion on E-cone metric spaces, one
can refer to the work of Kadalburg, Radenovic and Rakocevic
who provide comprehensive studies in this areas, particularly
in their paper “Revisiting cone metric spaces and fixed
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point theorem of contractive mapping” [13], [14], [29], [36],
[47], and reference therein. In 2007, Huang and Zhang [40]
presented the concept of cone metric space. Basile et al.
[16] introduced the concept of semi-interior point in 2017 by
embedding a non-solid cone and taking into account fixed
point results in E-metric spaces. Mehmood et al. [13] and
Huang [11] in 2019 obtained some fixed point theorem in
the context of embedding cone in E-metric space. Partially
E-cone metric spaces have recently been further explore
to enhance their theoretical foundation and broader their
applicative reach. These spaces are a sophisticated adaptation
of metric spaces are a utilising a cone within a Banach space
[46] coupled with a partial ordering to define distance. These
framework not only enriches the classical notion of distance
and conversion but also integrate on ordering structured that
pivotal for mathematical model involving optimization and
hierarchy sensitive processes. A recent comprehensive review
an advancement in this field can be seen at the work of Aydi
and Karapinar [10], where the author developed into fixed
point theorem that are foundational for mathematical analysis
and algorithm in such structured space. We defined the idea
of partially E-cone metric spaces using (β-ψ1-ψ2)-contractive
conditions in this paper.

II. PRELIMINARIES

Definition 1. [40] A vector space over the real numbers,
called an ordered space E, with a partial order relation
“⪯” such that

(i) r ⪯ t⇒ r + s ⪯ t+ s, ∀ r, s, t ∈ E.
(ii) ∀ α ∈ R+ and ∀ r ∈ E with r ⪰ 0E , αr ⪰ 0E .

Furthermore, E is known as a normed ordered space if it
has a norm of ∥.∥.

Definition 2. [11] Assume that E is a real normed space,
0E is a zero element in E, and E+ is a convex and non-
empty closed subset of E. Then, E+ is known as a positive
cone. if it satisfies

(i) r ∈ E+ and a ≥ 0 ⇒ ar ∈ E+;
(ii) r ∈ E+ and −r ∈ E+ ⇒ r = 0E .

Definition 3. [40] Let E be a real normed space and E+ a
positive cone in E. We say ⪯ is a partial ordering relation
on E if

r, s ∈ E, r ⪯ s ⇔ s− r ∈ E+.

Clearly,
r ∈ E+ ⇔ 0E ⪯ r.

Definition 4. [13] Let E be a real normed space and E+ a
positive cone in E. Then E+ is called:
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(i) a solid cone if intE+ ̸= ϕ;
(ii) a normal cone if there exists an K > 0 such that

0E ⪯ r ⪯ s imply ∥r∥ ≤ K∥s∥, for all r, s ∈ E.

The least positive number satisfying the above is called
the normal constant of E+.

Definition 5. [42] The cone E+ is called regular if every
increasing sequence which is bounded from above is conver-
gent.
That is, if {sn}n≥1 is sequence such that

s1 ⪯ s2 ⪯ ... ⪯ sn ⪯ ... ⪯ r, for some r ∈ E+,

then there is s ∈ E+ such that

∥sn − s∥ → 0 (n→ ∞).

Similarly, the cone E+ is called regular if and only if every
decreasing sequence that has a lower bound is convergent.
Regular cones are known to be normal cones.

Definition 6. [30] Let X ̸= ϕ and consider an ordered space
E over the real scalars. An E-valued function dE : X×X →
E is an ordered E-metric in X such that ∀ r, s and t ∈ X ,
we have

(i) 0E ⪯ dE(r, s), dE(r, s) = 0E ⇔ r = s;
(ii) dE(r, s) = dE(s, r);

(iii) dE(r, s) ⪯ dE(r, t) + dE(t, s).
Then the pair dE(X, d) is called E-metric space.

Example 7. [34] Let E = R2, E+ = {(r, s) ∈ E : r, s ≥
0}, X = R and d : X × X → E be define by dE(r, s) =
(|r− s|, α|r− s|), where α ≥ 0 ia a constant. Then (X, dE)
is an E-cone metric space.

Definition 8. [1] Let X ̸= ϕ and E be an ordered space
over the real scalars ordered by its positive cone with the
assumption that (E+)⊘ ̸= ϕ. A partially E-cone metric on
X is a function pE : X ×X → E+ such that ∀ r, s, t ∈ X;
(p1) : 0E ⪯ pE(r, r) ⪯ pE(r, s).
(p2) : p

E(r, r) = pE(r, s) if and only if r = s
(p3) : p

E(r, s) = pE(s, r),
(p4) : p

E(r, s) ⪯ pE(r, t) + pE(r, s)− pE(t, t).
A pair (X, pE) is called partially E-cone metric space where
X ̸= ϕ and pE is a partially E-cone metric on the set X .
Clearly, if pE(r, s) = 0E ⇒ r = s, [from (p1) and (p2)].
But if r = s, then pE(r, s) may not be equal to 0E .

Definition 9. [1] Let (X, pE) be a partially E-cone met-
ric and E be an ordered space with the assumption that
(E+)⊘ ̸= ϕ. Consider a sequence {rn} in X and r ∈ X .
Then

(i) A sequence {rn} is said to be e-converges to r if for
every 0E ≪ e, there exist a natural number c such
that

pE(rn, r) ≪ e, ∀ n ≥ c.

In this case, we write lim
n→∞

rn = r or rn
e−→ r.

(ii) A sequence {rn} is said to be e-Cauchy sequence if
for every 0E ≪ e, there exists a natural number c
such that

pE(rn, rm) ≪ e, ∀ n,m ≥ c.

(iii) (X, pE) is e-complete if every e-Cauchy sequence is
e-convergent.

Definition 10. [23] Consider a partial ordered set (X,⪯)
and a mapping F : X → X . Then F is called nondecreasing
w.r.t. ⪯ if

r, s ∈ X, r ⪯ s ⇒ Fr ⪯ Fs.

Definition 11. [23] Consider a partially ordered set (X,⪯),
then a sequence {rn} is called a nondecreasing w.r.t. ⪯ if
rn ⪯ rn+1, ∀ n ∈ N.

Lemma 12. [24] A partial E-Cone metric space (X, pE)
with coefficient k > 1 and let us consider {rn} → r and
{sn} → s. Then

1

k2
pE(r, s)−1

k
pE(r, r)− pE(s, s)

≤ lim inf
n→∞

pE(rn, sn)

≤ lim sup
n→∞

pE(rn, sn)

≤ kpE(r, r) + k2pE(s, s) + k2pE(r, s).

Definition 13. [23] Let X ̸= ϕ, suppose F : X → X and
β : X × X → [0, 1) are mappings. Then F is called β-
admissible if for all r, s ∈ X ,

β(r, s) ≥ 1 ⇒ β(Fr, Fs) ≥ 1.

We also state that F is Rβ-admissible (or Lβ-admissible) if
r, s ∈ X ,

β(r, s) ≥ 1 ⇒ β(r, Fs) ≥ 1
(
or β(Fr, s) ≥ 1

)
.

Definition 14. [44] A function ψ : [0,∞) → [0,∞) such
that the following properties are met,

(i) ψ(p) is continuous and nondecreasing,
(ii) ψ(p) = 0 ⇔ p = 0.

Then the function ψ is called an altering distance function.

III. MAIN RESULT

Two new ideas in ordered partially E-cone metric space and
based fixed point findings are presented in this section.
Result-I Type-I (β−ψ1−ψ2)-contractive mapping in ordered
partially E-cone metric space is a new contractive mapping
that we introduce to support our initial finding.

Definition 15. Let (X, pE) be an ordered partially E-cone
metric space with the coefficient k ≥ 1. A mapping F : X →
X is said to be (β −ψ1 −ψ2)-contractive mapping of type-
I, if there exist two altering distance functions ψ1, ψ2 and
β : X ×X → [0,∞) such that

β(r, Fr)β(s, Fs)ψ1

(
udE(Fr, Fs)

)
≤ ψ1

(
∆F

u (r, s)
)
− ψ2

(
∆F

u (r, s)
) (1)

for all comparable r, s ∈ X , where

∆F
u (r, s) = max



pE(r, s), pE(r, Fr),

pE(s, Fs),

pE(r,Fs)+pE(s,Fr)
4k ,

pE(r,Fr)pE(s,Fs)
1+pE(r,s)

,

pE(r,Fr)pE(s,Fs)
1+pE(Fr,Fs)


(2)
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First result is as follows:

Theorem 16. Let (X,⪯, pE) be a pE-complete ordered
partially E-cone metric space with the coefficient k ≥ 1.
Let F : X → X be a (β−ψ1 −ψ2)-contractive mapping of
type-I. Suppose that the following assertions hold:

(i) F is β-admissible and Lβ-admissible (or Rβ-
admissible);

(ii) There exists r1 ∈ X such that r1 ⪯ Fr1 and
β(r1, F r1) ≥ 1;

(iii) F is continuous and nondecreasing, w.r.t. ⪯ and if
Fnr1 → t then β(t, t) ≥ 1.

Then F has a fixed point.

Proof: By supposition (2), a sequence {rn} ∈ X defined
by rn+1 = Frn, ∀ n ≥ 1. We have r2 = Fr1 ⪯ Fr2 =
r3 since r1 ⪯ Fr1 and F is nondecreasing. Also, r3 =
Fr2 ⪯ Fr3 = r4 since r2 ⪯ Fr2 and F is nondecreasing.
By induction, we get

r1 ⪯ r2 ⪯ r3 · · · ⪯ rn ⪯ rn+1 ⪯ · · ·

Then r is the fixed point of F with r = rn, and if rn = rn+1

for some n ∈ N, then this completes the proof. Hence, for
some n ∈ N, we may suppose rn ̸= rn+1. Since F is β-
admissible, we deduce

β(r1, F r1) = β(r1, r2) ≥ 1

⇒β(Fr, Fr2) = β(r2, r3) ≥ 1.

By induction on n we get

1 ≤ β(rn, rn+1) and 1 ≤ β(rn+1, rn+2), ∀n ∈ N (3)

Hence, by (1) ∀ n ∈ N we get

ψ1

(
pE(rn+1, rn+2)

)
≤ β(rn, F rn+1)β(rn+1, F rn+2)

ψ1

(
upE(Frn, F rn+1)

)
≤ ψ1

(
∆F

u (rn, rn+1)
)
−

ψ2(∆
F
u

(
rn, rn+1)

) (4)

where

∆p
u(rn, rn+1)

=max



pE(rn, rn+1), p
E(rn, F rn),

pE(rn+1, F rn+1),

pE(rn,Frn+1)+pE(rn+1,Frn)
4k ,

pE(rn,Frn)p
E(rn+1,Frn+1)

1+pE(rn,rn+1)
,

pE(rn,Frn)p
E(rn+1,Frn+1)

1+pE(Frn,Frn+1)



=max



pE(rn, rn+1), p
E(rn+1, rn+2),

pE(rn,rn+2)+pE(rn+1,rn+1)
4k ,

pE(rn,rn+1)p
E(rn+1,rn+2)

1+pE(rn,rn+1)
,

pE(rn,rn+1)p
E(rn+1,rn+2)

1+pE(rn+1,rn+2)



=max



pE(rn, rn+1), p
E(rn+1, rn+2),

upE(rn, rn+1)

+ upE(rn+1, rn+2)

+ 2kpE(rn+1, rn+2)


4k ,

pE(rn,rn+1)p
E(rn+1,rn+2)

1+pE(rn,rn+1)
,

pE(rn,rn+1)p
E(rn+1,rn+2)

1+pE(rn+1,rn+2)


<max

{
pE(rn, rn+1), p

E(rn+1, rn+2)
}

(5)

From (4) and (5) we get

ψ1

(
pE(rn+1, rn+2)

)
≤ ψ1

(
max

{
pE(rn, rn+1), p

E(rn+1, rn+2)
})

− ψ2

(
max

{
pE(rn, rn+1), p

E(rn+1, rn+2)
})
.

(6)

Suppose that

max
{
pE(rn, rn+1), p

E(rn+1, rn+2)
}

= pE(rn+1, rn+2).

Then (4) implies that

ψ1

(
pE(rn+1, rn+2)

)
≤ ψ1

(
pE(rn+1, rn+2)

)
− ψ2

(
pE(rn+1, rn+2)

)
< ψ1

(
pE(rn+1, rn+2)

)
which is a contradiction. Therefore we get

max
{
pE(rn, rn+1), p

E(rn+1, rn+2)
}

= pE(rn, rn+1).

and so

ψ1

(
pE(rn+1, rn+2)

)
≤ ψ1

(
pE(rn, rn+1)

)
− ψ2

(
pE(rn, rn+1)

)
.

Thus the sequence
{
pE(rn, rn+1)

}
is nondecreasing. As a

result of its lower boundary, there exists 0 ≤ γ such that

lim
n→∞

pE(rn, rn+1) = γ.
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Applying the properties of functions ψ1 and ψ2 we obtain

ψ1(γ) ≤ lim inf ψ1

(
pE(rn+1, rn+2)

)
≤ lim sup ψ1

(
pE(rn+1, rn+2)

)
≤ lim sup

[
ψ1

(
pE(rn, rn+1)

)
− ψ2

(
pE(rn, rn+1)

)]
≤ lim sup ψ1

(
pE(rn, rn+1)

)
− lim inf ψ2

(
pE(rn, rn+1)

)
≤ ψ1(γ)− ψ2(γ)

< ψ1(γ)

which is not possible for γ > 0. Thus,

γ = lim
n→∞

pE(rn, rn+1) = 0. (7)

Now, we need to prove that {rn} is a pE Cauchy in (X, pE).
Let us consider to the contrary there exists ϵ > 0 such that,
for k > 0, there exist n(q) > m(q) > k for which we can
find the subsequences {rn(q)} and {rm(q)} of {rn} and

pE(rn(q), rm(q)) ≥ ϵ, (8)

and n(q) is the smallest index so that the above statement
holds: that is

pE(rm(q), rn(q)−1) ≥ ϵ. (9)

Then we get

ϵ ≤ pE(rn(q), rm(q))

≤ kpE(rm(q), rn(q)−1) + kpE(rn(q)−1, rn(q))

< kϵ+ kpE(rn(q)−1, rn(q))

(10)

Taking the limit supremum for (9) as n→ ∞, we get
ϵ

k
≤ lim inf

n→∞
pE(rm(q), rn(q)−1)

≤ lim sup
n→∞

pE(rm(q), rn(q)−1) ≤ ϵ.
(11)

Also, from (10) and (11), we get

ϵ ≤ lim inf
n→∞

pE(rm(q), rn(q)−1) ≤ kϵ.

We deduce,

pE(rm(q)+1, rn(q))

≤ kpE(rm(q)+1, rm(q)) + kpE(rm(q), rn(q))

≤ kpE(rm(q)+1, rm(q)) + k2pE(rm(q), rn(q)−1)

+ k2pE(rn(q)−1, rn(q))

≤ kpE(rm(q)+1, rm(q)) + k2ϵ+ k2pE(rn(q)−1, rn(q))
(12)

Then by taking upper limit as n→ ∞ in (12), we get

lim sup
n→∞

pE(rm(q)+1, rn(q)) ≤ k2ϵ.

Finally,

pE(rm(q)+1, rn(q)−1)

≤ kpE(rm(q)+1, rm(q)) + kpE(rm(q), rn(q)−1)

≤ kpE(rm(q)+1, rm(q)) + kϵ.

(13)

Also, by taking upper limit as n→ ∞ in (13), we get

lim sup
n→∞

pE(rm(q), rn(q)−1) ≤ kϵ.

Hence,

ϵ

k
≤ lim inf

n→∞
pE(rm(q), rn(q)−1)

≤ lim sup
n→∞

pE(rm(q), rn(q)−1) ≤ ϵ.
(14)

Similarly,

lim sup
n→∞

pE(rm(q), rn(q)) ≤ kϵ, (15)

ϵ

k
≤ lim sup

n→∞
pE(rm(q)+1, rn(q)), (16)

and

lim sup
n→∞

pE(rm(q)+1, rn(q)−1) ≤ kϵ. (17)

As F is Lβ-admissible (or Rβ-admissible) and by (3), we
get β(rm(q), rm(q)+1) ≥ 1 and β(rn(q), rn(q)+1) ≥ 1.

By using (1) we get

ψ1

(
kpE(rm(q)+1)

)
≤ β(rm(q), rm(q)+1)β(rn(q), rn(q)+1)

ψ1

(
kpE(Frm(q), rn(q)−1)

)
≤ ψ1

(
∆F

u (rm(q), rn(q)−1)
)

− ψ2

(
∆F

u (rm(q), rn(q)−1)
)

(18)

where

∆F
u (rm(q), rn(q)−1)

=max



pE(rm(q), rn(q)−1),

pE(rm(q), F rm(q)),

pE(rn(q)−1, F rn(q)−1),

pE(rm(q),Frn(q)−1)+pE(rn(q)−1,Frm(q))

4k ,

pE(rm(q),Frm(q))p
E(rn(q)−1,Frn(q)−1)

1+dE(rm(q),rn(q)−1)
,

pE(rm(q),Frm(q))p
E(rn(q)−1,Frn(q)−1)

1+dE(Frm(q),Frn(q)−1)



=max



pE(rm(q), rn(q)−1),

pE(rm(q), rm(q)+1),

pE(rn(q)−1, rn(q)),

pE(rm(q),rn(q))+pE(rn(q)−1,rm(q)+1)

4k ,

pE(rm(q),rm(q)+1)p
E(rn(q)−1,rn(q))

1+dE(rm(q),rn(q)−1)
,

pE(rm(q),rm(q)+1)p
E(rn(q)−1,rn(q))

1+dE(rm(q)+1,rn(q))



(19)

By taking the upper limit as n → ∞ in (19) and using (7),
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(14), (15) and (17) we obtain

lim sup
k→∞

∆F
u (rm(q), rn(q)−1)

= max



lim sup
n→∞

pE(rm(q), rn(q)−1),

lim sup
n→∞

pE(rm(q), rm(q)+1),

lim sup
n→∞

pE(rn(q)−1, rn(q)),
lim sup
n→∞

pE(rm(q), rn(q))

+ lim sup
n→∞

pE(rn(q)−1, rm(q)+1)


4k ,

lim sup
n→∞

pE(rm(q), rm(q)+1)

lim sup
n→∞

pE(rn(q)−1, rn(q))


1+ lim sup

n→∞
dE(rm(q), rn(q)−1)

,


lim sup
n→∞

pE(rm(q), rm(q)+1)

lim sup
n→∞

pE(rn(q)−1, rn(q))


1+ lim sup

n→∞
dE(rm(q)+1, rn(q))



= max



lim sup
n→∞

pE(rm(q), rn(q)−1), 0, 0,
lim sup
n→∞

pE(rm(q), rn(q))

+ lim sup
n→∞

pE(rn(q)−1, rm(q)+1)


4k ,

0, 0


≤ max

{
ϵ,
ϵ

2

}
= ϵ

(20)

Next, taking the upper limit as n → ∞ in (18) and using
(16) and (20) we get

ψ1

(
k
ϵ

k

)
≤ ψ1

(
lim sup
n→∞

kpE(rm(q)+1, rn(q))

)
≤ ψ1

(
lim sup
n→∞

∆F
u (rm(q), rn(q)−1)

)
− ψ2

(
lim inf
n→∞

(
∆F

u (rm(q), rn(q)−1)
))

≤ ψ1(ϵ)

− ψ2

(
lim inf
n→∞

(
∆F

u (rm(q), rn(q)−1)
))

which implies that

ψ2

(
lim inf
n→∞

(
∆F

u (rm(q), rn(q)−1)
))

= 0

or
lim inf
n→∞

∆F
u (rm(q), rn(q)−1) = 0.

Therefore by using (18) we obtain,

lim inf
n→∞

pE(rm(q), rn(q)−1) = 0

which conflicts with (14). Therefore, {rn} is a pE-Cauchy
sequence in the partially E−cone metric space (X, pE). As
(X, pE) is a pE-complete, then (X, pE) is a pE-complete
partially E-cone metric space. So from the completeness it
follows that t ∈ X exist such that,

lim
n→∞

pE(rn, t) = 0.

Therefore, by using (7), the condition

pE(rn, rn) ≤ pE(t, rn)

and
lim
n→∞

pE(rn, rn) = 0

we get

lim
n→∞

pE(rn, t) = lim
n→∞

pE(rn, rn) = pE(t, t) = 0.

We obtain

pE(t, F t) ≤ kpE(t, Frn) + kpE(Frn, F t). (21)

So taking limit as n → ∞ in (21) and using the continuity
of F we get

pE(t, F t)

≤ k lim
n→∞

pE(t, rn+1) + k lim
n→∞

(Frn, F t)

= kpE(Ft, F t)

(22)

Since β(t, t) ≥ 1 and by (1) we get

ψ1

(
kpE(Ft, F t)

)
≤ β(t, F t)β(t, F t)ψ1

(
kpE(Ft, F t)

)
≤ ψ1

(
∆F

u (t, t)
)
− ψ2

(
∆F

u (t, t)
)

where

∆F
u (t, t)

= max



pE(t, t), pE(t, F t), pE(t, F t),

pE(t,τt)+pE(t,F t)
4k ,

pE(t,F t),pE(t,F t)
1+pE(t,t)

,

pE(t,F t),pE(t,F t)
1+pE(Ft,F t)


< pE(t, F t).

Therefore

ψ1

(
kpE(Ft, F t)

)
≤ β(t, F t)β(t, F t)ψ1

(
kpE(Ft, F t)

)
≤ ψ1

(
pE(t, F t)

)
− ψ2

(
pE(t, F t)

) (23)

Since ψ1 is nondecreasing kpE(Ft, F t) ≤ pE(t, F t) and
kpE(Ft, F t) = pE(t, F t), which is possible only when
(pE(t, F t)) = 0 and Ft = t. Hence, a fixed point of F
is t.
We observe that the prior result is still applicable for F that
is not always continuous. The outcome is as follows.

Theorem 17. Let (X,⪯, pE) be a pE-complete ordered
partially E-cone metric space with the coefficient k ≥ 1.
Let F : X → X be a (β−ψ1 −ψ2)-contractive mapping of
type-I. Suppose that the following conditions hold:

(i) F is β-admissible and Lβ-admissible (or Rβ-
admissible);

(ii) There exists r1 ∈ X such that r1 ⪯ Fr1 and
β(r1, F r1) ≥ 1;

(iii) F is nondecreasing, w.r.t ⪯;
(iv) If a sequence {rn} in X such that rn ⪯ r ∀ n ∈

N, β(rn, rn+1) ≥ 1 and rn → r ∈ X , as n → ∞,
then β(rn, r) ≥ 1 ∀ n ∈ N.

Then, F has a fixed point.
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Proof: Along the same lines as Theorem 16, the se-
quence {rn} defined by rn+1 = Frn, ∀ n ∈ N is
a nondecreasing pE-Cauchy sequence in the pE-complete
partially E-cone metric space (X, pE). According to (X, pE)
completeness, there exist t ∈ X such that lim

n→∞
rn = t.

Assuming on X , we deduce rn ⪯ t, ∀ n ∈ N. Thus it suffices
to show that Ft = t. Then by using (16) and β(rn, r) ≥ 1
for all n ∈ N, we have

ψ1

(
kpE(rn, F t)

)
≤ β(rn, F rn)β(t, F t)ψ1

(
kpE(Frn, F t)

)
≤ ψ1

(
∆F

u (rn, t)
)
− ψ2

(
∆F

u (rn, t)
) (24)

where

∆F
u (rn, t)

= max



pE(rn, t),

pE(rn, F rn), p
E(t, F t),

pE(rn,F t)pE(Frn,t)
4k ,

pE(rn,Frn)p
E(t,F t)

1+pE(rn,t)
,

pE(rn,Frn)p
E(t,F t)

1+pE(Frn,F t)



≤ max



pE(rn, t),

pE(rn, rn+1), p
E(t, F t),

pE(rn,F t)+pE(rn+1,t)
4k ,

pE(rn,rn+1)p
E(t,t)

1+pE(rn,t)
,

pE(rn,rn+1)p
E(t,t)

1+pE(rn+1,t)



(25)

Now by taking the limit as n→ ∞ in (25) and using Lemma
12, we get

pE(t, F t)

4k2
= min

{
pE(t, F t),

pE(t,F t)
k

4k

}
≤ lim inf

n→∞
∆F

u (rn, t)

≤ lim sup
n→∞

∆F
u (rn, t)

≤ max

{
pE(t, F t),

kpE(t, F t)

4k

}
= pE(t, F t)

(26)

Also, using (24) and applying the upper limit as n→ ∞

ψ1

(
kpE(rn+1, F t)

)
≤ β(rn, F rn)β(t, F t)ψ1

(
kpE(Frn, F t)

)
≤ ψ1

(
∆F

u (rn, t)
)
− ψ2

(
∆F

u (rn, t)
)
,

and using Lemma 12, we get

ψ1

(
pE(t, F t)

)
= ψ1

(
k
1

k
pE(rn+1, F t)

)
≤ ψ1

(
k lim sup

n→∞
pE(rn+1, F t)

)
≤ ψ1

(
lim sup
n→∞

∆F
u (rn, t)

)
− ψ2

(
lim inf
n→∞

∆F
u (rn, t)

)
≤ ψ1

(
pE(t, F t)

)
− ψ2

(
pE(t, F t)

)
< ψ1

(
pE(t, F t)

)
,

a contradiction. Therefore t = Ft. Hence, a fixed point of
F is t.
Result-II Type-II (β − ψ1 − ψ2)-contractive mapping in
ordered partially E-cone metric space was introduced to
support our second finding.

Definition 18. Let (X, pE) be a ordered partially E-cone
metric space with coefficient k ≥ 1. The mapping F : X →
X is called a (β − ψ1 − ψ2)-contractive mapping of type-
II, if there exist two altering distance functions ψ1, ψ2 and
β : X ×X → [0,∞) exists such that

β(r, Fr)β(s, Fs)ψ1

(
kdE(Fr, Fs)

)
≤ ψ1

(
(∆I)

F
u (r, s)

)
− ψ2

(
(∆I)

F
u (r, s)

) (27)

for all comparable r, s ∈ X , where

(∆I)
F
u (r, s)

= max



p(r, s),

pE(s, Fs), pE(r, Fr),

pE(r,Fs)+pE(s,Fr)
4k ,

pE(r,Fr)pE(r,Fs)+pE(s,Fs)pE(s,Fr)

1+k
[
pE(r,Fr)+pE(s,Fs)

] ,

pE(r,Fr)pE(r,Fs)+pE(s,Fs)pE(s,Fr)
1+pE(r,Fs)+pE(s,Fr)


(28)

Theorem 19. In replacement of the Type-I (β − ψ1 − ψ2)-
contractive condition in Theorem 16, suppose that Type-II
(β − ψ1 − ψ2)-contrative condition is satisfied. Then F has
a fixed point.

Proof: Let r1 ∈ X such that r ⪯ Fr1 and β(r1, F r1) ≥
1. A sequence {rn} in X is defined by rn+1= Frn,∀ n ≥ 1.
We have r2 = Fr1 ⪯ Fr2 = r3 since r1 ⪯ Fr1 and F is
nondecreasing. Also, r3 = Fr2 ⪯ Fr3 = r4 since r2 ⪯ Fr2
and F is nondecreasing. We obtain by induction,

r1 ⪯ r2 ⪯ r3 · · · ⪯ rn ⪯ rn+1 ⪯ · · ·

If rn = rn+1 for some n ∈ N, then r = rn is a fixed
point of F and the proof is finished. So we may assume that
rn ̸= rn+1 for some n ∈ N. Since F is β- admissible, we
deduce

β(r1, F r1) = β(r1, r2) ≥ 1

⇒β(Fr1, F r1) = β(r2, r3) ≥ 1

By induction on n we get

β(rn, rn+1) ≥ 1 and β(rn+1, rn+2) ≥ 1 (29)

for all n ∈ N.
Therefore by using (29) ∀ n ∈ N, we get

ψ1

(
pE(rn+1, rn+2)

)
≤ β(rn, F rn+1)β(rn+1, F rn+2)ψ1

(
kpE(Frn, F rn+1)

)
≤ ψ1

(
(∆I)

F
u (rn, rn+1)

)
− ψ2

(
(∆I)

F
u (rn, rn+1)

)
(30)
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where

(∆I)
F
u (rn, rn+1)

=max



pE(rn, rn+1),

pE(rn, F rn), p
E(rn+1, F rn+1),

pE(rn,Frn+1)+pE(rn+1,Frn)
4k ,p

E(rn, F rn)p
E(rn, F rn+1)

+ pE(rn+1, F rn+1)p
E(rn+1, F rn)


1+k
[
pE(rn,Frn)+pE(rn+1,Frn+1)

] ,p
E(rn, F rn)p

E(rn, F rn+1)
+ pE(rn+1, F rn+1)p

E(rn+1, F rn)


1+pE(rn,Frn+1)+pE(rn+1,Frn)



=max



pE(rn, rn+1), p
E(rn+1, rn+2),

pE(rn,rn+2)+pE(rn+1,rn+1)
4k ,p

E(rn, rn+1)p
E(rn, rn+2)

+ pE(rn+1, rn+2)p
E(rn+1, rn+1)


1+k
[
pE(rn,rn+1)+pE(rn+1,rn+2)

] ,p
E(rn, rn+1)p

E(rn, rn+2)
+ pE(rn+1, rn+2)p

E(rn+1, rn+1)


1+pE(rn,rn+2)+pE(rn+1,rn+1)



≤max



pE(rn, rn+1), p
E(rn+1, rn+2),kp

E(rn, rn+1) + kpE(rn+1, rn+2)
+ 2kpE(rn+1, rn+2)


4k ,p

E(rn, rn+1)p
E(rn, rn+2)

+ pE(rn+1, rn+2)p
E(rn+1, rn+1)


1+k
[
pE(rn,rn+1)+pE(rn+1,rn+2)

] ,p
E(rn, rn+1)p

E(rn, rn+2)
+ pE(rn+1, rn+2)p

E(rn+1, rn+1)


1+pE(rn,rn+2)+pE(rn+1,rn+1)


<max{pE(rn, rn+1), p

E(rn+1, rn+2)}
(31)

From (30) and (31) we get

ψ1

(
pE(rn+1, rn+2)

)
≤ ψ1

(
max

{
pE(rn, rn+1), p

E(rn+1, rn+2)
})

− ψ2

(
max

{
pE(rn, rn+1), p

E(rn+1, rn+2)
}) (32)

Assume that

max
{
pE(rn, rn+1), p

E(rn+1, rn+2)
}

= pE(rn+1, rn+2).

Then (30) implies that

ψ1

(
kpE(rn+1, rn+2)

)
≤ ψ1

(
pE(rn+1, rn+2)

)
− ψ2

(
pE(rn+1, rn+2)

)
< ψ1

(
pE(rn+1, rn+2)

)
.

which is contradiction. This implies that

max
{
pE(rn, rn+1), p

E(rn+1, rn+2)
}

= pE(rn, rn+1)

and then

ψ1

(
pE(rn+1, rn+2)

)
≤ ψ1

(
pE(rn, rn+1)

)
− ψ2

(
pE(rn, rn+1)

)
.

Thus the sequence
{
pE(rn, rn+1)

}
is nondecreasing. There

exists γ ≥ 0, as it is bounded from below, such that
lim
n→∞

pE(rn, rn+1) = γ. Then by applying the properties
of functions ψ1 and ψ2 we obtain

ψ1(γ) ≤ lim inf ψ1

(
pE(rn+1, rn+2)

)
≤ lim supψ1

(
pE(rn+1, rn+2)

)
≤ lim sup

[
ψ1

(
pE(rn, rn+1)

)
− ψ2

(
pE(rn, rn+1)

)]
≤ lim supψ1

(
pE(rn, rn+1)

)
− lim inf ψ2

(
pE(rn, rn+1)

)
≤ ψ1(γ)− ψ2(γ)

< ψ1(γ).

which is not possible for γ > 0. Thus,

γ = lim
n→∞

pE(rn, rn+1) = 0. (33)

Now, we need to prove that {rn} is a pE Cauchy sequence
in (X, pE). Suppose to the contrary that there exist ϵ > 0
such that, for k > 0, there exist n(q) > m(q) > k for which
we can find the subsequences {rn(q)} and {rm(q)} of {rn}
and

pE(rn(q), rm(q)) ≥ ϵ, (34)

and n(q) is the smallest index so that the above statement
holds; that is

pE(rm(q), rn(q)−1) < ϵ, (35)

Then we have
ϵ ≤ pE(rn(q), rm(q))

≤ kpE(rm(q), rn(q)−1) + kpE(rn(q)−1, rn(q))

< kϵ+ kpE(rn(q)−1, rn(q)).

(36)

Applying the upper limit for (35) as n→ ∞ , we get
ϵ

k
≤ lim inf

n→∞
pE(rm(q), rn(q)−1)

≤ lim sup
n→∞

pE(rm(q), rn(q)−1) ≤ ϵ
(37)

Also, from (36) and (37), we obtain

ϵ ≤ lim sup
n→∞

pE(rm(q), rn(q)−1) ≤ kϵ

We deduce,

pE(rm(q)+1, rn(q))

≤ kpE(rm(q)+1, rm(q)) + kpE(rm(q), rn(q))

≤ kpE(rm(q)+1, rm(q)) + k2pE(rm(q), rn(q)−1)

+ k2pE(rn(q)−1, rn(q))

≤ kpE(rm(q)+1, rm(q)) + k2ϵ

+ k2pE(rn(q)−1, rn(q)),

(38)

by applying the upper limit as n→ ∞ in (38), we obtain

lim sup
n→∞

pE(rm(q)+1, rn(q)) ≤ k2ϵ

Finally,

pE(rm(q)+1, rn(q)−1)

≤ kpE(rm(q)+1, rm(q)) + kpE(rm(q), rn(q)−1)

≤ kpE(rm(q)+1, rm(q)) + kϵ.

(39)
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Also, by applying the upper limit as n → ∞ in (39), we
obtain

lim sup
n→∞

pE(rm(q)+1, rn(q)−1) ≤ kϵ.

Hence,

ϵ

k
≤ lim inf

n→∞
pE(rm(q), rn(q)−1)

≤ lim sup
n→∞

pE(rm(q), rn(q)−1) ≤ ϵ.
(40)

Similarly,

lim sup
n→∞

pE(rm(q), rn(q)) ≤ kϵ, (41)

ϵ

k
≤ lim inf

n→∞
pE(rm(q)+1, rn(q)), (42)

lim sup
n→∞

pE(rm(q)+1, rn(q)−1) ≤ kϵ. (43)

As F is Lβ-admissible (or Rβ-admissible) and by (29), we
get β(rm(q), rm(q)+1) ≥ 1 and β(rn(q), rn(q)+1) ≥ 1.

By using (27) we get

ψ1

(
kpE(rm(q)+1, rn(q))

)
≤ β(rm(q), rm(q)+1)β(rn(q), rn(q)+1)

ψ1

(
kpE(Frm(q), F rn(q)−1)

)
≤ ψ1

(
(∆I)

F
u (rm(q), rn(q)−1)

)
− ψ2

(
(∆I)

F
u (rm(q), rn(q)−1)

)
(44)

where

(∆I)
F
u (rm(q), rm(q)−1)

=max



pE(rm(q), rn(q)−1), p
E(rm(q), F rm(q)),

pE(rn(q)−1, F rn(q)−1),p
E(rm(q), F rn(q)−1)

+ pE(rn(q)−1, F rm(q))


4k ,

pE(rm(q), F rm(q))

pE(rm(q), F rn(q)−1)

+pE(rn(q)−1, F rn(q)−1)

pE(rn(q)−1, F rm(q))

1 + kpE(rm(q), F rm(q))

+ kpE(rn(q)−1, F rn(q)−1)


,



pE(rm(q), F rm(q))

pE(rm(q), F rn(q)−1)

+pE(rn(q)−1, F rn(q)−1)

pE(rn(q)−1, F rm(q))

1 + pE(rm(q), F rn(q)−1)

+ pE(rn(q)−1, F rm(q))





=max



pE(rm(q), rn(q)−1), p
E(rm(q), rm(q)+1),

pE(rn(q)−1, rn(q)),p
E(rm(q), rn(q))

+ pE(rn(q)−1, rm(q)+1)


4k ,

pE(rm(q), rm(q)+1)

pE(rm(q), rn(q))

+pE(rn(q)−1, rn(q))

pE(rn(q)−1, rm(q)+1)

1 + kpE(rm(q), rm(q)+1)

+ kpE(rn(q)−1, rn(q))


,



pE(rm(q), rm(q)+1)

pE(rm(q), rn(q))

+pE(rn(q)−1, rn(q))

pE(rn(q)−1, rm(q)+1)

1 + pE(rm(q), rn(q))

+ pE(rn(q)−1, rm(q)+1)




(45)

By taking the upper limit as n → ∞ in (45) and using
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(33),(40),(41),(43) we obtain

lim sup
n→∞

(∆I)
F
u (rm(q), rn(q)−1)

=max



lim sup
n→∞

pE(rm(q), rn(q)−1),

lim sup
n→∞

pE(rm(q), rm(q)+1),

lim sup
n→∞

pE(rn(q)−1, rn(q)),
lim sup
n→∞

pE(rm(q), rn(q))

+ lim sup
n→∞

pE(rn(q)−1, rm(q)+1)


4k ,

lim sup
n→∞

pE(rm(q), rm(q)+1)

lim sup
n→∞

pE(rm(q), rn(q))

+ lim sup
n→∞

pE(rn(q)−1, rn(q))

lim sup
n→∞

pE(rn(q)−1, rm(q)+1)


1 + k lim sup

n→∞
pE(rm(q), rm(q)+1)

+ k lim sup
n→∞

pE(rn(q)−1, rn(q))


,



lim sup
n→∞

pE(rm(q), rm(q)+1)

lim sup
n→∞

pE(rm(q), rn(q))

+ lim sup
n→∞

pE(rn(q)−1, rn(q))

lim sup
n→∞

pE(rn(q)−1, rm(q)+1)


1 + lim sup

n→∞
pE(rm(q), rn(q))

+ lim sup
n→∞

pE(rn(q)−1, rm(q)+1)





=max



lim sup
n→∞

pE(rm(q), rn(q)−1), 0, 0
lim sup
n→∞

pE(rm(q), rn(q))

+ lim sup
n→∞

pE(rn(q)−1, rm(q)+1)


4k ,

0, 0


≤max{ϵ, ϵ

2
}

=ϵ.
(46)

Then by applying the upper limit (44) as n → ∞ and using
(42) and (46) we obtain

ψ1

(
k
ϵ

k

)
≤ ψ1

(
lim sup
n→∞

kpE(rm(q)+1, rn(q))
)

≤ ψ1

(
lim sup
n→∞

(∆I)
F
u (rm(q), rn(q)−1)

)
− ψ2

(
lim inf
n→∞

(∆I)
F
u (rm(q), rn(q)−1)

)
≤ ψ1(ϵ)

− ψ2

(
lim inf
n→∞

(∆I)
F
u (rm(q), rn(q)−1)

)
,

which implies that

ψ2

(
lim inf
n→∞

(∆I)
F
u (rm(q), rn(q)−1)

)
= 0

or
lim inf
n→∞

(∆I)
F
u (rm(q), rn(q)−1) = 0

Therefore by using (44) we obtain,

pE(rm(q), rn(q)−1) = 0

which conflict with (35). Therefore,{rn} is a pE-Cauchy se-
quence in partially E-cone metric space (X, pE). As (X, pE)
is a pE-complete, then (X, pE) is a pE-complete partially E-
cone metric space. So from the completeness it follows that
t ∈ X exist such that,

lim
n→∞

pE(rn, t) = 0.

Therefore, by using (33), the condition pE(rn, rn) ≤
pE(t, rn) and lim

n→∞
pE(rn, rn) = 0 we get

lim
n→∞

pE(rn, t) = lim
n→∞

pE(rn, rn) = pE(t, t) = 0.

We obtain

pE(t, F t) ≤ kpE(t, Frn) + kpE(Frn, F t). (47)

So by using the continuity of F and applying limit as n→ ∞
in (47), we obtain

pE(t, F t)

≤ k lim
n→∞

pE(t, rn+1) + k lim
n→∞

pE(Frn, F t)

= kpE(Ft, F t).

(48)

As β(t, t) ≥ 1 and using (27) we obtain

ψ1

(
kpE(Ft, F t)

)
≤ β(t, F t)β(t, F t)ψ1

(
kpE(Ft, F t)

)
≤ ψ1

(
(∆I)

F
u (t, t)

)
− ψ2

(
(∆I)

F
u (t, t)

)
here

(∆I)
F
u (t, t)

=max



pE(t, t), pE(t, F t), pE(t, F t),

pE(t,τt)+pE(t,F t)
4k ,

pE(t,F t)pE(t,F t)+pE(t,F t)pE(t,F t)

1+k
[
pE(t,F t)+pE(t,F t)

]
pE(t,F t)pE(t,F t)+pE(t,F t)pE(t,F t)

1+pE(t,F t)+pE(t,F t)


< pE(t, F t)

so

ψ1

(
kpE(Ft, F t)

)
≤ β(t, F t)β(t, F t)ψ1

(
kpE(Ft, F t)

)
≤ ψ1

(
pE(t, F t)

)
− ψ2

(
pE(t, F t)

)
.

(49)

Since ψ1 is nondecreasing kpE(Ft, F t) ≤ pE(t, F t)
and kpE(Ft, F t) = pE(t, F t), which is true only when
pE(t, F t) = 0 and Ft = t. Thus, t is a fixed point of F .

Similarly result can be design for (β−ψ1 −ψ2)-contractive
mapping of type-II in the line of Theorem 17. Now from our
main result, we have the following consequences:

Corollary 20. Let (X,⪯, pE) be an pE-complete ordered
E-cone metric space. Assume that there exists ψ1, ψ2 and
β : X ×X → [0,∞). Suppose F : X → X is an increasing
mapping with respect to ⪯ such that an element r0 ∈ X
exists with r0 ⪯ Fm(r0), and satisfying (β − ψ1 − ψ2)-
contractive mapping of the form

β(r, Fmr)β(r, Fmr)ψ1

(
kdE(Fmr, Fms)

)
≤ ψ1

(
∆F

u (r, s)
)
− ψ2

(
∆F

u (r, s)
) (50)
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for all comparable r, s ∈ X , where

∆F
u (r, s) = max



pE(r, s), pE(r, Fmr),

pE(s, Fms),

pE(r,Fms)+pE(s,Fmr)
4k ,

pE(r,Fmr)pE(s,Fms)
1+pE(r,s)

,

pE(r,Fmr)pE(s,Fms)
1+pE(Fmr,Fms)


(51)

Consider the following statements hold:
(i) F is β−admissible and Lβ−admissible (or

Rβ−admissible)
(ii) r1 ∈ F exists such that r1 ⪯ Fr1 and β(r1, F r1) ≥ 1;

(iii) If Fnr1 → t then β(t, t) ≥ 1 and F is continuous
Then F has a fixed point.

Corollary 21. Consider a pE−complete ordered E-cone
metric space (X,⪯, pE) with coefficient k ≥ 1. Assume that
ψ1, ψ2 are mappings. Let F : X → X be a continuous and
nondecreasing mapping satisfying

ψ1

(
kdE(Fr, Fs)

)
≤ ψ1

(
∆F

u (r, s)
)
− ψ2

(
∆F

u (r, s)
)

for all comparable r, s ∈ X , where

∆F
u (r, s) = max



pE(r, s), pE(r, Fr),

pE(s, Fs),

pE(r,Fs)+pE(s,Fr)
4k ,

pE(r,Fr)pE(s,Fs)
1+pE(r,s)

,

pE(r,Fr)pE(s,Fs)
1+pE(Fr,Fs)


If there exists r1 ∈ X such that r1 ⪯ Fr1, then F has a
fixed point.

Corollary 22. Consider a pE−complete ordered E-cone
metric space (X,⪯, pE) with the coefficient k ≥ 1. Assume
that ψ1, ψ2 are mappings, Let F : X → X be a continuous,
nondecreasing mapping satisfying

ψ1

(
kdE(Fr, Fs)

)
≤ ψ1

(
(∆I)

F
u (r, s)

)
− ψ2

(
(∆I)

F
u (r, s)

)
for all comparable r, s ∈ X , where

(∆I)
F
u (r, s)

=max



pE(r, s), pE(r, Fr), pE(s, Fs),

pE(r,Fs)+pE(s,Fr)
4k ,

pE(r,Fr)pE(r,Fs)+pE(s,Fs)pE(s,Fr)

1+k
[
pE(r,Fr)+pE(s,Fs)

] ,

pE(r,Fr)pE(r,Fs)+pE(s,Fs)pE(s,Fr)
1+pE(r,Fs)+pE(s,Fr)


If r1 ∈ X exists such that r ⪯ Fr1, then F has a fixed point.

Example 23. Let X = [0,∞) with the partial order ⪯
defined by

r ⪯ s⇔ r ≤ s

and the function pE : X ×X → R+ defined by pE(r, s) =(
max{r, s}

)2 ∀ r, s ∈ X . Clearly, (X, pE) is an ordered
partially E-cone metric space with k = 1.
A mapping F : X → X defined by

F (r) =

{
r√

3r+2
if r ∈ [0, 2],

5r
3 otherwise.

,

and β : X ×X → [0,∞) by

β(r, s) =

{
1 if r, s ∈ [0, 2],

0 otherwise.

Now using control functions ψ1(p) = p and

ψ2(p) =

{
p(3

√
p+1)

3
√
p+2 if p ∈ [0, 2],

3p
5 if p ≥ 2,

Then F is increasing and continuous, 0 ⪯ F0.
We will prove the following:

(i) F : X → X is an (β −ψ1 −ψ2)-contractive mapping
of type-I, with ψ1(p) = p ∀ p ≥ 0;

(ii) F is β-admissible;
(iii) r1 ∈ X exists such that r1 ⪯ Fr1 and β(r1, F r1) ≥ 1;
(iv) If a sequence {rn}∞n=1 in X such that β(rn, rn+1) ≥ 1

and rn → r, as n→ ∞, then β(rn, r) ≥ 1, ∀ n ∈ N.

Proof:
(i) Clearly F is (β − ψ1 − ψ2)-contractive mapping with

ψ1(p) = p, ∀ p ≥ 0, since ∀ r, s ∈ X ,

β(r, Fr)β(s, Fs)ψ1

(
kpE(Fr, Fs)

)
= ψ1

(
pE
(

r√
3r + 2

,
s√

3s+ 2

))
= ψ1

((
max

{
r√

3r + 2
,

s√
3s+ 2

})2
)
.

keeping generality intact if 0 ≤ s ≤ r ≤ 2, then

β(r, Fr)β(s, Fs)ψ1

(
kpE(Fr, Fs)

)
= ψ1

(
pE
(

r√
3r + 2

,
s√

3s+ 2

))
= ψ1

((
r√

3r + 2

)2
)

=

(
r2

3r + 2

)
and

∆F
u (r, s)

= max


r2, r2, s2,

r2+
(
max

{
s, r√

3r+2

})2

4 ,

(r2)(s2)
1+r2 , (r2)(s2)

1+
(

r√
3r+2

)

 = r2.

Then

β(r, Fr)β(s, Fs)ψ1

(
kpE(Fr, Fs)

)
=

(
r2

3r + 2

)
≤ r2 −

(
3r3 + r2

3r + 2

)
≤ ψ1(r

2)− ψ2(r
2)

= ψ1

(
∆F

u (r, s)
)
− ψ2

(
∆F

u (r, s)
)
.

(ii) Let (r, s) ∈ X×X be such that β(r, s) ≥ 1. From the
definition of F and β we have both Fr = r√

3r+2
, and

Fs = s√
3s+2

are in [0, 2], so we have β(Fr, Fs) =
1 ≥ 1. Then F is an β-admissible.

(iii) Assuming r1 = 1 ∈ X , we get

β(r1, F r1) = β(1, F1) = β(1,
1√
5
) = 1 ≥ 1.
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(iv) Consider a sequence {rn} in X such that
β(rn, rn+1) ≥ 1, for all n ∈ N and rn → r ∈ X as
n → ∞. As β(rn, rn+1) ≥ 1, ∀ n ∈ N and by the
definition of β, we obtain rn ∈ [0, 2], ∀ n ∈ N and
r ∈ [0, 2]. Then β(rn, r) = 1 ≥ 1.

At this point, every hypothesis in Theorem 16 is true.
Therefore, F has a fixed point.

It is noted that without for the β term, the contraction
condition (1) is not true. For example at r = 1 and s = 3,
we obtain

ψ1

(
pE(F1, F3)

)
= ψ1

(
FE
( 1√

5
, 5
))

= ψ1(25) = 25 ≰ 10 = 25− 15

= ψ1(25)− ψ2(25)

= ψ1

(
∆F

u (1, 3)
)
− ψ2

(
∆F

u (1, 3)
)
.

Example 24. Let X = [0,∞) with the partial order ⪯
defined by

r ⪯ s⇔ r ≤ s

and the function pE : X ×X → R+ defined by pE(r, s) =(
max{r, s}

)2
, ∀ r, s ∈ X . Clearly, (X, pE) is an ordered

partially E-cone metric space with k = 1.
A mapping F : X → X defined by

F (r) =

{
r√

r2+5
if r ∈ [0, 2],

r + 2 otherwise.
,

and β : X ×X → [0,∞) by

β(r, s) =

{
1 if r, s ∈ [0, 2],

0 otherwise.

Now using control functions ψ1(p) = p and

ψ2(p) =

{
p(p+4)
p+5 if p ∈ [0, 2],

(p+1)
2 if p ≥ 2,

Then F is increasing and continuous, 0 ⪯ F0.
We will prove the following:

(i) F : X → X is an (β −ψ1 −ψ2)-contractive mapping
of type-II, with ψ1(p) = p ∀ p ≥ 0;

(ii) F is β-admissible;
(iii) There exist r1 = 0 ∈ X such that r1 ⪯ Fr1 and

β(r1, F r1) ≥ 1;
(iv) If a sequence {rn}∞n=1 in X such that β(rn, rn+1) ≥ 1

and rn → r, as n→ ∞, then β(rn, r) ≥ 1, ∀ n ∈ N.

Proof:
(i) Obviously F is (β−ψ1−ψ2)-contractive mapping with

ψ1(p) = p, ∀ p ≥ 0, since ∀ r, s ∈ X ,

β(r, Fr)β(s, Fs)ψ1

(
kpE(Fr, Fs)

)
= ψ1

(
pE
(

r√
r2 + 5

,
s√

s2 + 5

))
= ψ1

((
max

{
r√

r2 + 5
,

s√
s2 + 5

})2
)
.

keeping generality intact if 0 ≤ y ≤ x ≤ 2, then

β(r, Fr)β(s, Fs)ψ1

(
kpE(Fr, Fs)

)
= ψ1

(
pE
(

r√
r2 + 5

,
s√

s2 + 5

))
= ψ1

((
r√

r2 + 5

)2
)

=

(
r2

r2 + 5

)
and

∆F
u (r, s)

= max



r2, s2, r2,

r2+

(
max

{
s, r√

r2+5

})2

4 ,

(r2)(r2)+(s2)

(
max

{
s, r√

r2+5

})2

1+(r2+s2) ,

(r2)+(s2)

(
max

{
s, r√

r2+5

})2

1+r2+s2


= r2.

Then

β(r, Fr)β(s, Fs)ψ1

(
kpE(Fr, Fs)

)
=

(
r2

r2 + 5

)
≤ r2 −

(
r4 + 4r2

r2 + 5

)
≤ ψ1(r

2)− ψ2(r
2)

= ψ1

(
∆F

u (r, s)
)
− ψ2

(
∆F

u (r, s)
)
.

(ii) Let (r, s) ∈ X×X be such that β(r, s) ≥ 1. From the
definition of F and β we have both Fr = r√

r2+5
, and

Fs = s√
s2+5

are in [0, 2], so we have β(Fr, Fs) =
1 ≥ 1. Then F is an β-admissible.

(iii) Taking r1 = 1 ∈ X , we have

β(r1, F r1) = β(1, F1) = β(1,
1√
6
) = 1 ≥ 1.

(iv) Consider a sequence {rn} in X such that
β(rn, rn+1) ≥ 1, for all n ∈ N and rn → r ∈ X as
n → ∞. Since β(rn, rn+1) ≥ 1, ∀ n ∈ N and by the
definition of β, we obtain rn ∈ [0, 2], ∀ n ∈ N and
r ∈ [0, 2]. Then β(rn, r) = 1 ≥ 1.

At this point, every hypothesis in Theorem 19 is true.
Therefore, F has a fixed point.

It is noted that without for the β term, the contraction
condition (1) is not true. For example at r = 0 and s = 3,
we obtain

ψ1

(
pE(F0, F3)

)
= ψ1

(
FE(0, 5)

)
= ψ1(25) = 25 ≰ 12 = 25− 13

= ψ1(25)− ψ2(25)

= ψ1

(
∆F

s (0, 3)
)
− ψ2

(
∆F

s (0, 3)
)
.

IV. AN APPLICATION TO INTEGRAL EQUATION

Consider the following integral equation

x(v) =

∫ τ

0

K(v, q)h
(
q, x(q)

)
dq ∀ p ∈ I = [0, τ ], (52)
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where τ > 0, h : I×R → R and K : [0, τ ]× [0, τ ] → [0,∞)
are continuous functions.

In this section we prove an existence theorem for a solution
of (52) using Theorem 17.
Assume the space

X = C(I,R) = {x : I → R | x is continuous on I}.

Define pE : X ×X → R+ by

pE(x, y) = sup
p∈[0,τ ]

(
|x(p)|+ |y(p)|

)2
∀ x, y ∈ X.

Obviously, (X, pE , 2) is a complete partially E-cone metric
space. Define an order relation ⪯ on X by

r ⪯ s iff r(p) ≤ s(p), ∀ p ∈ I.

Then (X,⪯) is a partially ordered set. Thus, (X, pE , 2,⪯)
is a complete ordered partially E-cone metric space.

Theorem 25. Consider the following assertions hold:

(i) f : I × R → R is continuous;
(ii) A nondecreasing function h(k, ·), ∀ k ∈ [0, τ ], i.e.,

r, s ∈ R, r ≤ s⇒ h(q, r) ≤ h(q, s);

(iii) consider

|h(q, r)|+ |h(q, s)| ≤ Θu(r, s)

where

Θu(r, s)

= max



(r + s)2,

(r + Fr)2, (s+ Fs)2,(
(r+Fs)2+(s+Fs)2

4k

)
,(

(r+Fr)(s+Fs)
1+(r+s)

)2
,(

(r+Fr)(s+Fs)
1+(Fr+Fs)

)2



1
2

for all r, s ∈ X with r ⪯ s and for every q ∈ I;
(iv) there exist x0 ∈ C(I,R) such that

x0(t) ≤
∫ τ

0

K(p, q)h
(
p, r0(q)

)
dq, p, q ∈ I;

(v) sup
p∈[0,τ ]

∫ τ

0

K(p, q)dq ≤ 1

2
.

Then x∗ ∈ C(I,R) is a solution of the integral equation
(52).

Proof: A mapping F : X ×X is defined as

Fx(v) =

∫ τ

0

K(v, q)h
(
q, x(q)

)
dq ∀ v ∈ [0, τ ].

It follows from (i)-(ii) that p is non-decreasing and contin-
uous mapping with respect to ⪯. Again (iv), x0 ∈ F exist
such that x0 ⪯ Fx0.

For all v ∈ [0, τ ], and condition (iii) and (v), we get,(
|F (r)|+ |F (s)|

)2
=

( ∣∣∫ τ

0
K(v, q)h

(
q, r(q)

)
dq
∣∣

+
∣∣∫ τ

0
K(v, q)h

(
q, s(q)

)
dq
∣∣
)2

≤

( ∫ τ

0
K(v, q)

∣∣h(q, r(q))∣∣dq
+
∫ τ

0
K(v, q)

∣∣h(q, s(q))∣∣dq
)2

=

(∫ τ

0

K(v, q)
(∣∣h(q, r(q))+ h

(
q, s(q)

)∣∣) dq)2

≤
(∫ τ

0

K(v, q)
(
Θu(r, s)

)
dq

)2

≤



∫ τ

0

K(v, q)max



(r, s)2,

(r + Fr)2,

(s+ Fs)2,

(r+Fs)2+(s+Fs)2

4k ,(
(r+Fr)(s+Fs)

1+(r+s)

)2
,(

(r+Fr)(s+Fs)
1+(Fr+Fs)

)2



1
2

dq



2

≤ 1

4
max



(
|r|+ |s|

)2
,(

|r|+ |Fr|
)2
,
(
|s|+ |Fs|

)2
,(

|r|+|Fs|
)2

+
(
|s|+|Fs|

)2
4k ,((

|r|+|Fr|
)(

|s|+|Fs|
)

1+
(
|r|+|s|

) )2

,((
|r|+|Fr|

)(
|s|+|Fs|

)
1+
(
|Fr|+|Fs|

) )2


Now, by considering the control functions ψ1, ψ2 : [0,+∞)
into itself defined by:

ψ1(v) = p, and ψ2(p) =
3p

4
, for p ≥ 0,

we get

ψ1

(
pE(Fr, Fs)

)

≤ ψ1


max



pE(r + s),

pE(r + Fr), pE(s, Fs),

pE(r+Fs)+pE(s+Fs)
4k ,(

pE(r+Fr)pE(s+Fs)
1+pE(r+s)

)
,(

pE(r+Fr)pE(s+Fs)
1+pE(Fr+Fs)

)





− ψ2


max



pE(r + s),

pE(r + Fr), pE(s, Fs),

pE(r+Fs)+pE(s+Fs)
4k ,(

pE(r+Fr)pE(s+Fs)
1+pE(r+s)

)
,(

pE(r+Fr)pE(s+Fs)
1+pE(Fr+Fs)

)




Thus all the hypotheses of Corollary 21 are fulfilled. There-
fore x∗ ∈ C(I,R) is a solution of the integral equation (52).
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V. CONCLUSION

The investigation into fixed point theorems for (β−ψ1−ψ2)
contractive conditions in partially E-cone metric spaces
offers valuable insights into the behavior of mappings within
this specific framework. Through rigorous analysis and math-
ematical reasoning, this research has contributed to our
understanding of fixed point existence and uniqueness in par-
tially ordered cone metric spaces. The study has illuminated
the significance of (β − ψ1 − ψ2) contractive conditions
in establishing the existence of fixed points for mappings,
providing a theoretical foundation for further exploration in
this area. By elucidating the properties and implications of
these contractive conditions, the research has enriched the
discourse on fixed point theory and its applications in metric
spaces. Despite the progress made in this study, notable gaps
in research remain, particularly concerning the extension and
generalization of results to broader classes of mappings and
spaces. Future research endeavors should aim to address
these gaps, thereby enhancing our understanding of Fixed
Foint Theory in diverse contexts and uncovering new avenues
for exploration.
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