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Abstract—Cryptographic hash algorithms are crucial in the
fast expanding field of digital security in maintaining data
integrity and authenticity. With a focus towards their uses in
many fields, this study evaluates and classifies cryptographic
hash functions. Based on their strengths and weaknesses in
ensuring data integrity, security, and efficiency, a thorough
comparison study evaluates at the performance, security, and
usability of several hash techniques. Key domains where cryp-
tographic hash is applied—including cryptographic security,
data management, authentication, blockchain technology, and
forensic analysis—are found by the study. This work attempts
to fill the literature gap on the thorough assessment of hash
systems by providing a methodical classification based on
construction type, standardising, compatibility, and sensitivity
to input modifications. Our results support the discipline of
digital cryptography by offering understanding of the choice
of suitable hash algorithms for particular uses, considering
the differences between security, efficiency, and adaptability to
quantum attacks.

Index Terms—Cryptographic Hashing; Chaos-Based Hash
Functions; Data Security; Algorithm Evaluation; Digital Cryp-
tography.

I. INTRODUCTION

Cryptographic hashing is a foundation technology in digi-
tal security to ensure data integrity and safety. The develop-
ment and application of hash functions have been significant
in many domains, from secure communication to data storage
and blockchain technology [1]. Chaos-based hash functions
have appeared as a novel and fascinating area of study.
By utilisation of chaos theory principles, these functions
present unpredictability and sensitivity to initial conditions
that traditional cryptographic methods usually lack [2]. This
unique approach in cryptographic hashing has opened a
new way for enhancing security protocols, especially in
environments where unpredictability and complex behaviour
are crucial. Classical hash functions like SHA-256 and MD5
have set foundational standards in Cryptographic hashing [3].
However, advanced computational techniques and emerging
security threats continually challenge the security and oper-
ational efficiency of these traditional hash functions for their
use in various domains. Integrating chaos theory into hash-
ing algorithms upgrades the complexity of hash functions,
making them more robust [4]. This paper comprehensively
reviews existing cryptographic hashing algorithms, focusing
on categorising Hashing Algorithms based on their applica-
tions. Previous research has laid substantial groundwork for
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understanding the strengths and weaknesses of conventional
hash functions. However, there still needs to be a signif-
icant gap in comprehensively evaluating and categorising
hash functions and considering them where chaos theory
has applied, especially with their varied applications. We
have discussed hash functions’ performance, security, and
applicability in various domains. Hence, it fills the gaps in the
current literature by offering a comprehensive categorisation
and evaluation of hashing methods.

The paper is structured as follows: We begin by review-
ing previous studies in Section II. Section III presents an
overview of some popular hash functions and broader ap-
plication categories for categorising hash functions. Section
IV consists of the detailed evaluation and categorisation of
various hashing algorithms and chaos-based methods and
assessing their performance and applicability across different
domains. Section V provides the evaluation and categoriza-
tion of hashing algorithms based on various parameters.
Various recommendations regarding use of Hash Functions
by NIST are discussed in Section VI along with new use case.
The paper is summarised in Section VII, focusing on our
key contributions and offering insights for future research,
highlighting potential routes for further advancements in
chaos-based cryptographic hashing.

II. LITERATURE REVIEW

In 1976, Diffie and Hellman [5], and Merkle [6] indepen-
dently discovered the concept of public key cryptography that
laid the foundational framework for digital signatures. Based
on the suggestions by Rabin [7], the framework was im-
proved by integrating a hash function before signing, leading
to performance and security improvements. Subsequently,
Matyas et. al. [8], contributed to the field by detailing
block cipher-based hash function constructions that remain
significant. Emerged from IBM, the MDC-2 construction,
utilized an n-bit block cipher to produce a 2n-bit hash
function in 1987 [9]. Rivest introduced the MD2 in 1988 as
the first recognized dedicated cryptographic hash function,
followed by MD4 in 1990 and MD5 in 1991. The evolution
of hash functions with MD4 and MD5 formed the basis
for the Secure Hash Standard (SHA) developed by the U.S.
National Institute of Standards and Technology (NIST) in
1993. The transition from SHA to SHA-1 in 1995, with the
prior version becoming SHA-0, represented iterative progress
in hash function design [10] [11] [12] [13] [14] [15] [16]
[17]. However, the cryptographic community soon faced
challenges as vulnerabilities in these hash functions emerged.
Published weaknesses in MD4 in 1991, partial cryptanalysis
of MD5 in 1993, and the discovery of the first collision
in MD4 by Dobbertin in 1996 highlighted the potential
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for security breaches. The cryptanalysis of SHA-0 in 1998
and subsequent discoveries of near-collisions for SHA-0 in
2004, along with significant breakthroughs in 2005 including
collision attacks on MD4, MD5, and SHA-1, underscored
the evolving landscape of cryptographic security. Xiaoyun
Wang’s contributions were notably influential during this
period. These disclosures, especially concerning MD5 and
SHA-1, prompted a re-evaluation of hash function reliability
[18] [19] [20] [21] [22] [23] [24] [25] wang2005efficient.
Although NIST had already introduced the SHA-2 family,
encompassing SHA-224, SHA-256, SHA-384, and SHA-512,
the attacks on their predecessors raised the concerns about
their durability, given the shared foundational principles.
Recognizing the need for robust cryptographic solutions,
NIST responsed to these challenges was to host Crypto-
graphic Hash Workshops and launch a public competition
to develop SHA-3 [26] [27]. Moreover, the cryptographic
landscape has expanded with the development of other
hash functions like HAVAL, RIPEMD and its successors
RIPEMD-128 and RIPEMD-160, as well as Whirlpool.
These additions, including Whirlpool’s innovative design
utilizing a block cipher similar to AES but with a larger
block size, underscore the continuous search for advanced
security mechanisms to address the dynamic challenges of
digital cryptography [28] [21] [29] [30]. The research on hash
functions was predominantly focused on enhancing security,
efficiency, and applications in various domains. Notably,
Poseidon presented a novel approach tailored for Zero-
Knowledge proof systems [31], indicating a significant shift
towards privacy-preserving cryptographic protocols. Con-
currently, advancements in quantum-resistant cryptographic
schemes were explored, as seen in developing subset-resilient
hash function families, highlighting the anticipation of quan-
tum computing threats [32]. Moreover, the era witnessed the
exploration of hash functions in blockchain technologies,
aiming at fortifying IoT privacy through enhanced cryp-
tographic schemes [33], thereby underscoring the growing
interconnection between cryptographic hash functions and
emerging digital infrastructures.

The focus has notably shifted towards optimization and
application-specific hash functions. For instance, Poseidon2
emerged as a faster variant of its predecessor, emphasizing
performance improvements for ZK applications [34]. Re-
search also ventured into the automated discovery of protocol
attacks exploiting hash function weaknesses, highlighting
the continuous battle against cryptographic vulnerabilities
[35]. Moreover, the introduction of Tip5 for Recursive
STARKs [36] and Anemoi Permutations [37] showcased
innovative designs aimed at enhancing the efficiency and
security of hash functions, catering to the growing demands
of cryptographic applications. Additionally, the exploration
of quantum hash functions [38] and applications in IoT [39]
illustrated the broadening scope of hash function.

Recent advances in cryptographic and security frameworks
highlight innovative solutions for data protection and au-
thentication. Koroglu et al. [40] and Hassan et al. [41]
contribute to hash function improvements, including FPGA-
based non-cryptographic functions for network efficiency,
while Shi et al. [42] introduce a quantum hash function with
enhanced speed. Addressing password and key management,

Somboonpattanakit and Wisitpongphan [43] propose Prime
Decomposition Password Storing (PDPS), and Cardona-
López et al. [44] enhance key exchange with high-entropy
composite hash functions.

Further security innovations involve tamper detection and
blockchain, as seen in SHA-SARIMAX by Srivatsa et al. [45]
and the blockchain-based adoption framework by Pujari et al.
[46]. In data clustering, Lv [47] utilizes cloud computation
to optimize clustering for big data. In biometrics, Boonkrong
[48] and Xuan et al. [49] enhance multi-factor authentication
and fuzzy identity-based signatures. Additionally, Wang [50]
improves face recognition with a lightweight neural network,
while Tan et al. [51] advance image tampering detection
through attention mechanisms. This collective work drives
forward secure, efficient frameworks across cryptography
and digital security.

III. OVERVIEW OF HASH FUNCTION

MD2, MD4, MD5: All three are early cryptographic hash
functions. MD2 is slow and secure, MD4 is faster but less
secure, and MD5 is widely used but vulnerable to collision
attacks. They are not recommended for cryptographic
security due to vulnerabilities [52] [53]. SHA1: It produces
a 160-bit hash value. Once widely used, it’s now vulnerable
to collision attacks and considered insecure for cryptographic
purposes [54]. SHA224, SHA256: Part of SHA-2, these
functions generate 224-bit and 256-bit hash values,
respectively. They offer robust security and are widely
used in various applications, including SSL/TLS and digital
signatures [55]. SHA384: Another SHA-2 variant, SHA384
produces a 384-bit hash. It offers high security and is used
in applications requiring stronger hash values than SHA256
[55]. SHA512/224, SHA512/256, SHA512: SHA-2 variants
offering different hash lengths (224, 256, and 512 bits).
SHA512 is particularly strong in security and is suitable
for high-security requirements [56]. SHA3-224, SHA3-256,
SHA3-384, SHA3-512: SHA-3 family, successors to SHA-2.
They offer various hash lengths and are known for resistance
to quantum attacks, used in future-proofing cryptographic
applications [57]. RIPEMD128, RIPEMD160, RIPEMD256,
RIPEMD320: RIPEMD family of hash functions with
differing hash lengths. RIPEMD160 is recognised for its
use in Bitcoin. They offer moderate security but are less
common than SHA variants citeliu2023analysis. Whirlpool:
It produces a 512-bit hash. It is known for its security
and speed in cryptographic solid hashing applications
[58]. Tiger128,3, Tiger160,3, Tiger192,3, Tiger128,4,
Tiger160,4, Tiger192,4: Tiger is a cryptographic hash
function designed for integrity checking. The numbers
indicate different versions and hash lengths. It’s faster than
SHA-1 and MD5 but less widely adopted[59]. Snefru,
Snefru256: Early cryptographic hash functions, known for
their security but replaced by more advanced algorithms
like SHA-2 [60]. Gost, Gost-Crypto: Russian cryptographic
hash functions. Gost-Crypto is a variant with improved
security. They are used primarily in Russian government
applications [61]. Adler32: A checksum algorithm, fast but
unsuitable for cryptographic purposes. It is commonly used
in data transmission error detection [62]. CRC32, CRC32B,
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CRC32C: Cyclic Redundancy Check algorithms. Fast and
used for error-checking in networks and storage devices, but
not for cryptographic security [63]. FNV132, FNV1A32,
FNV164, FNV1A64: Fowler–Noll–Vo hash functions,
non-cryptographic and used in hash tables, checksums, and
unique identifiers. They offer good dispersion and speed
[64]. Joaat: Jenkins’s one-at-a-time hash, non-cryptographic,
used mainly in hash tables for quick, simple hashing [65].
Murmur3a, Murmur3c, Murmur3f: Non-cryptographic, fast
hash functions for hash tables, databases, and bloom filters.
They offer high performance and good collision resistance
[65]. XXH32, XXH64, XXH3, XXH128: High-speed
non-cryptographic hash functions used for checksums and
fingerprinting, offering high performance and low collision
rates [66]. Haval128,3; Haval160,3; Haval192,3; Haval224,3;
Haval256,3; Haval128,4; Haval160,4; Haval192,4;
Haval224,4; Haval256,4; Haval128,5; Haval160,5;
Haval192,5; Haval224,5; Haval256,5: HAVAL is a family of
cryptographic hash functions that offer variable length (128
to 256 bits) and a variable number of rounds (3 to 5). They
are known for flexibility but are less common than SHA
or MD5 [29]. CityHash: Developed by Google in 2011,
CityHash is optimised for 64-bit architectures and ideal for
data structures. It’s fast but non-cryptographic and not suited
for high-security applications [66]. FarmHash: A Google
creation in 2014, FarmHash is fast and efficient for modern
CPUs and GPUs. It’s great for data structures but not for
high-security uses [67]. SpookyHash: Developed in 2011, it
is fast and efficient for data structures with good collision
resistance. However, it’s vulnerable to hash flooding attacks
[65]. Jenkins Hash: A non-cryptographic function from the
1990s, Jenkins hash is fast with good distribution but limited
collision resistance. It’s mainly used in data structures [68].
SipHash: A cryptographic function from 2012, SipHash is
fast, secure, and flexible. Vulnerable to length extension
attacks, it’s used in message authentication [69]. Bcrypt:
A password hashing function from 1999, bcrypt is secure
and resistant to brute-force attacks but computationally
expensive. It’s widely used for password storage [70].
Scrypt: Since 2009, Scrypt has been memory-hard and
resistant to large-scale attacks but computationally intensive.
It’s used for password storage and verification [71]. CRC64:
It is a non-cryptographic function for error detection and
storage in digital networks, unsuitable for cryptographic
applications. It is fast and efficient for real-time applications
[72]. BLAKE is a cryptographic hash function finalist in
the NIST SHA-3 competition. It is known for its high speed
and security. The variants (224, 256, 384, 512) refer to
different output hash lengths in bits [73]. Chaos-based hash
functions: These functions use chaos theory in cryptography.
They are unique in their sensitivity to initial conditions,
making them unpredictable and secure. Their complex
behaviour is excellent for encryption. They’re different from
traditional hash functions like MD5 or SHA-1. Chaos-based
functions are hard to crack due to their unpredictable nature.
This makes them ideal for high-security data protection.
They are still evolving and less common than SHA or MD
variants. However, their potential in cryptographic hashing
is significant [4] [74] [75].

IV. APPLICATIONS AREAS OF HASH FUNCTIONS

Cryptographic Security: This classification pertains to hash
functions that ensure data security and integrity within
cryptographic frameworks. These algorithms play a crucial
role in processes such as encryption, the creation of digital
signatures, and secure data transmission [76].

Data Management and Integrity: This category is dedicated
to hash functions designed for optimizing data storage, re-
trieval, and integrity assurance. Their widespread application
spans database management, file systems, and the efficient
processing of substantial data volumes [77].

Authentication and Verification: Under this category fall
hash functions that are critical in the authentication of user
credentials and the verification of data authenticity. These
functions are vital in the management of password storage,
the issuance of digital certificates, and the generation of
message authentication codes [78].

Blockchain and Distributed Systems: This segment in-
cludes hash functions that preserve integrity and security
in blockchain networks and distributed systems. They are
employed in tasks such as cryptocurrency mining, transaction
validation, and the establishment of immutable digital ledgers
[79].

Forensics and Data Analysis: This category focuses on
applying hash functions in digital forensics and data analysis.
These functions are utilized in the detection of malware, the
verification of file integrity, and the creation of unique data
identifiers crucial for forensic inquiries [80].

V. EVALUATION AND CATEGORIZATION OF HASHING
ALGORITHMS

Table I shows the hashing time for various algorithms as
the file size increases from 1MB to 100MB and finally to
1GB. The time taken for hashing increases with the file size
for all algorithms. However, some algorithms scale better
than others with increasing file size. For instance, the algo-
rithm represented by the blue line (md2) shows a significant
increase in time for hashing when moving from 1MB to 1GB
compared to the others. Most hashing algorithms show a
modest increase in hashing time between 10MB and 100MB
but demonstrate a more pronounced increase from 100MB
to 1GB. Numerous algorithms are listed. The behaviour of
each algorithm in terms of scaling with a file size can be
an essential factor in their evaluation and categorization,
particularly for applications that require hashing of large files
where performance may be a critical factor. Figure 1 shows
hashing time for major hashing algorithms at file sizes of
10MB, 100MB, and 1GB.

Table II provides a classification of various hashing algo-
rithms based on their construction type. Each construction
type represents a different methodological approach to how
the hash functions process the input data to produce a hash
value. Merkle–Damgård category includes well-known hash
functions like MD5 and SHA1, which are widely used for
data integrity verification. It is characterised by breaking the
input into blocks and processing them sequentially, where
each step depends on the output of the previous step. The
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TABLE I
HASHING TIME IN SECONDS FOR DIFFERENT ALGORITHMS AT FILE SIZES OF 1MB, 10MB, 100MB, AND 1GB.

Algorithm Time for 1MB Time for 10MB Time for 100MB Time for 1GB
md2 0.14 1.26 12.30 122.92
md4 0.0017 0.0191 0.16 1.59
md5 0.0057 0.0263 0.24 2.53
sha1 0.0028 0.0259 0.21 2.34
sha224 0.0061 0.0572 0.52 5.53
sha256 0.0061 0.0529 0.53 5.91
sha512/224 0.0037 0.0327 0.35 3.50
sha512 0.0034 0.0375 0.33 3.36
sha3-224 0.0032 0.0368 0.33 3.38
sha3-256 0.0033 0.0347 0.35 3.65
sha3-384 0.0043 0.0446 0.47 4.49
sha3-512 0.0059 0.0622 0.62 6.32
ripemd160 0.0050 0.0525 0.53 5.46
ripemd256 0.0038 0.0392 0.39 4.21
whirlpool 0.0103 0.1047 1.04 10.87
tiger160,3 0.0018 0.0189 0.18 1.90
snefru 0.0310 0.3339 3.37 33.93
snefru256 0.0311 0.3232 3.29 33.68
gost 0.0153 0.1564 1.62 16.55
gost-crypto 0.0152 0.1608 1.56 16.25
adler32 0.0008 0.0090 0.08 0.89
crc32 0.0003 0.0034 0.03 0.33
fnv132 0.0012 0.0159 0.13 1.41
joaat 0.0021 0.0249 0.22 2.33
murmur3a 0.0005 0.0065 0.06 0.62
murmur3f 0.0003 0.0044 0.04 0.46
xxh32 0.0003 0.0042 0.04 0.43
xxh64 0.0003 0.0035 0.03 0.34
xxh3 0.0003 0.0044 0.04 0.39
xxh128 0.0003 0.0039 0.03 0.38
haval128,3 0.0030 0.0373 0.32 3.22
haval160,3 0.0030 0.0370 0.32 3.21

Fig. 1. Hashing Time for Different Algorithms at File Sizes of 10MB, 100MB, and 1GB.
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SHA-3 family of hash functions uses sponge construction
and is known for absorbing data into a state and then
squeezing the hash value out of it. It’s versatile and allows
for variable output lengths. A Wide Pipe generally refers to
hash function designs that use internal state sizes that are
more significant than the output hash value. Checksum in-
cludes non-cryptographic functions like Adler32 and CRC32,
mainly used for error-checking in data transmission rather
than security. Algorithms such as CityHash and Murmur3
are Non-cryptographic algorithms designed for speed and
used in applications like hash tables rather than for secu-
rity. Bcrypt and Scrypt are known primarily for password
hashing, designed to be slow and computationally expensive
as a defence against brute-force attacks. Hash functions like
Snefru and BLAKE don’t fit into the different categories but
are used for secure hashing.

Table III assesses various hash functions, evaluating them
regarding standardization and compatibility. The status of
the hash function in terms of standardization processes and
security, with entries such as Widely Used, Obsolete, or refer-
ences to specific standards like SHA-2 Family. Compatibility
of hash functions in a qualitative measure regarding how well
the hash function is supported across different systems and
platforms, ranging from ’Low’ to ’High’.

Figure 2 illustrates the avalanche effect in different hash
functions, a desirable property where a slight change in the
input results in a significant and unpredictable change in the
output. The graph compares the performance of various hash
functions based on the percentage of bits changed in the
output hash when a single input bit is changed.

Figure 3 displays a horizontal bar chart that compares
the hash rates of a range of hash functions, measured in
millions of hashes per second. Each bar represents a different
hash function, with the length of the bar indicating the hash
rate performance. The hash functions are ordered vertically
from the lowest to the highest hash rates. This compari-
son provides insight into the efficiency of each algorithm
in processing data to generate hashes, which is a crucial
factor in applications where processing speed is a significant
concern, such as in mining cryptocurrencies or processing
large volumes of data.

Table IV represents the hash values generated by vari-
ous cryptographic algorithms for two inputs: ”CURaj” and
”CURAJ”, and the hash value size in bits. This comparison
highlights each hash function’s sensitivity to input changes, a
fundamental property known as the avalanche effect, which
is crucial for ensuring that even minor variations in input
produce significantly different hashes.

Table V categorizes a range of hash algorithms by their
typical application domain, suitability for high-security appli-
cations, operational speed, and resistance to quantum attacks.
Five application domains are identified: Cryptographic Secu-
rity, Data Management and Integrity, Authentication and Ver-
ification, Blockchain and Distributed Systems, and Forensics
and Data Analysis. Cryptographic Security includes SHA
variants and Whirlpool, which are very suitable for high-
security applications due to their wide usage in encryption
and digital signatures. They possess moderate to high speed

and resistance to quantum attacks. Data Management and In-
tegrity lists MD and RIPEMD series, which are less suitable
for high-security applications due to their high speeds but
are ideal for data storage and checksums. The Authentication
and Verification domain contains hash functions like SHA-
224 and Scrypt, with suitable security properties for user
authentication and data authenticity verification. Blockchain
and Distributed Systems focus on algorithms like SHA-256
and BLAKE variants, which are ideal for cryptocurrency
mining and transaction validation applications. The Forensics
and Data Analysis section includes hash functions like the
SHA-3 series, emphasizing their effectiveness for digital
forensics and data integrity verification due to their strong
cryptographic properties. SHA-3’s enhanced resistance to
quantum attacks further strengthens its suitability for foren-
sics, where preserving long-term data integrity and authen-
ticity is essential.

NIST statistical tests on hash values generated from 10,000
samples for each selected eight hash function. The tests
evaluate the randomness of the hash outputs with three
primary aspects: Bit Stream Distribution: Table VI shows the
frequency distribution of 0s and 1s for different hash algo-
rithms, indicating uniformity across bit positions. P-values:
Table VII provides the p-values for each NIST test, such
as Frequency, BlockFrequency, and CumulativeSums, across
various algorithms, assessing the statistical significance of
randomness. Proportion of Successes: Table VIII displays the
success rate of tests (e.g., ”10/10” indicates all tests passed)
for each algorithm. SHA-256 and Whirlpool demonstrate ex-
cellent randomness properties with balanced bit distributions,
high p-values, and perfect success proportions, making them
highly reliable for cryptographic applications.

Figure 4 presents a bar graph depicting the distribution of
hash algorithms across five key application domains: Data
Management and Integrity, Cryptographic Security, Authen-
tication and Verification, Forensics and Data Analysis, and
Blockchain and Distributed Systems. The x-axis categorizes
these domains, each representing a unique context in which
hash algorithms are utilized, while the y-axis quantifies the
number of algorithms applied within each area. The tallest
bars are seen in the domains of Data Management and
Integrity and Cryptographic Security, suggesting a heavier
reliance on hash algorithms in these fields to ensure data
integrity, consistency, and protection. This high usage likely
reflects the essential role that hash algorithms play in main-
taining secure data management and encryption standards.
Conversely, the shorter bars for Authentication and Verifi-
cation, Forensics and Data Analysis, and Blockchain and
Distributed Systems indicate a more limited or specialized
application of hash algorithms. This may suggest that hash
algorithms in these fields are applied selectively, tailored to
specific needs related to identity verification, forensic analy-
sis, and decentralized data handling, rather than widespread
usage. Overall, Figure 4 provides a comprehensive view of
how hash algorithms are deployed differently across do-
mains, underscoring both the widespread and targeted roles
these algorithms play based on the requirements of each field.
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TABLE II
CLASSIFICATION OF HASH FUNCTIONS BASED ON CONSTRUCTION TYPE

Construction Type Hash Functions
Merkle-Damgard MD2, MD4, MD5, SHA1, SHA224, SHA256, SHA384, SHA512, SHA512/224, SHA512/256, RIPEMD128,

RIPEMD160, RIPEMD256, RIPEMD320, Tiger, Gost, Haval
Sponge SHA3-224, SHA3-256, SHA3-384, SHA3-512
Wide Pipe Whirlpool
Checksum Adler32, CRC32, CRC64
Non-cryptographic FNV1, Joaat, Murmur3, XXHash, CityHash, FarmHash, SpookyHash, Jenkins
Password Hashing Bcrypt, Scrypt
Other Cryptographic Snefru, BLAKE

TABLE III
STANDARDIZATION AND COMPATIBILITY ANALYSIS OF HASH FUNCTIONS

Hash Function Standardization Compatibility
MD2 Obsolete Low
MD4 Obsolete Low
MD5 Widely Used, Not Secure High
SHA1 Insecure, Phasing Out High
SHA224 SHA-2 Family High
SHA256 SHA-2 Family High
SHA384 SHA-2 Family High
SHA512 SHA-2 Family High
SHA512/224 SHA-2 Variant Moderate
SHA512/256 SHA-2 Variant Moderate
SHA3-224 SHA-3 Family Moderate
SHA3-256 SHA-3 Family Moderate
SHA3-384 SHA-3 Family Moderate
SHA3-512 SHA-3 Family Moderate
RIPEMD128 Less Common Low
RIPEMD160 Used in Bitcoin Moderate
RIPEMD256 Less Common Low
RIPEMD320 Less Common Low
Whirlpool ISO/IEC 10118-3:2004 Moderate
Tiger Less Common Moderate
Snefru Obsolete Low
Gost Russian Standard Low
Adler32 Checksum, Non-Cryptographic High
CRC32 Checksum, Non-Cryptographic High
FNV1 Non-Cryptographic High
Joaat Non-Cryptographic High
Murmur3 Non-Cryptographic High
XXHash Non-Cryptographic High
Haval Less Common Low
CityHash Non-Cryptographic, Google High
FarmHash Non-Cryptographic, Google High
SpookyHash Non-Cryptographic High
Jenkins Non-Cryptographic High
SipHash Cryptographic, Recent Moderate
Bcrypt Widely Used in Password Storage Moderate
Scrypt Widely Used in Password Storage Moderate
CRC64 Checksum, Non-Cryptographic High
BLAKE SHA-3 Finalist Moderate
Chaos based hash functions Emerging Field Uncertain

VI. NIST RECOMMENDATIONS AND NEW USE CASES

The National Institute of Standards and Technology
(NIST) is a leading authority in developing and maintaining
cryptographic standards to ensure data security and integrity
in digital systems. Focusing on security, efficiency, and
future-proofing against developing threats, NIST offers clear
recommendations for the use of hash functions in cryp-
tographic applications. For general cryptographic use, the
SHA-2 family—which comprises SHA-224, SHA-256, SHA-
384, and SHA-512—is highly recommended [81]. Because
of their strong security features and fit with current systems,
these algorithms are becoming very popular. Apart from
SHA-2, the SHA-3 family—which comprises SHA3-224,
SHA3-256, SHA3-384, and SHA3-512—is also a substi-

tute, particularly fit for settings needing better resistance
to possible future weaknesses, such as those presented by
developments in quantum computers [82].

Since earlier hash methods like MD5 and SHA-1 have
major flaws, NIST clearly warns against using them. MD5 is
unfit for safe cryptographic operations as it is very vulnerable
to pre-image attacks and collisions. Likewise, SHA-1 is no
longer regarded as safe for important uses, such as digital
signatures or authentication, because it has been realistically
broken through demonstrated collision attacks [83].

NIST suggests selecting hash algorithms that satisfy the
security needs of the application for certain cryptographic
usage situations. Using SHA-2 or SHA-3, for instance,
guarantees in digital signatures that the hash output length
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TABLE IV
HASH VALUES SENSITIVITY COMPARISON FOR INPUTS ”CURAJ” AND ”CURAJ”, AND SIZE IN BITS.

Hash Function Hash Value Size
(bits)

Hash for ”CURaj” Hash for ”CURAJ”

md2 128 1a87aaf9f7abf093afa999a7d3215756 8c1a5280c24dbd350caa1b763cf8aa8f
md4 128 933b0eba42a59a36ab35a81bdd9cac56 872b09aaeebdcd51e0603932904de11c
md5 128 e824288128d77b113c96cd487d5e1e52 1caa07459600797e1f123f55637acc3f
sha1 160 72fb20f47e4d4df2f2961e9468d727c937d6 c639 63ca79292c3d4154424a135558aba57c93b48808
sha256 256 068b7d496eff1717aa22346b90961ac3da5

d8c33b859e9da71927d19dedc2953
0f76630016ee1099564d837f1e6d949979
a67ad2184cc0795df7f94ac3110fe8

sha384 384 a6d20eca21eda60cfa01f00e29ffae348a
a035d1b7a7cbfa734961c39f6c71e2d7c7
0aa8ace1fef8c4de97dad8e8b0de

59bcde11a94f338d506792cdd54bbbc4f8
e0684b8e0c61c5be13dca4e656e442828b
79da46fab66253b5adb35f1b0086

sha512/224 224 e76d74d8dd29e08ad5d621d1f4d633838
bcd4780e5926644953596e9

503f71d3388b72b795d2209ee1476ea7
075d77d66153c5805 eaf380f

sha512/256 256 6fb92b3e1f54005969d7ed504a6a5426
66027a7e4809e0049b223da55f5c62cd

d1d0ba758b46478cad8e6c113bc6894c
4fd3eb993e15d790337e2eaac47db913

sha512 512 d737601875f7bd941f4075ed9d49d6632d8
fca11de45850a017abff30177ad1865dbbf
4b210bf3729673ecd4f22cde9b850d9fd51
cb52639dbb7671ba6e93dbe

aedc36ba662b1477d7aa3067d637483f92d
4f5cae594459b729aa10b5f3a6d2183a7e0
758aafb4f69041ac5b809e87e89c11ff89c
76b457c2299c4fa13918583

sha3-224 224 889c950592400ef349d85024bfe9489ab1
0d711895b66b5ebea9cc52

3c83478b9964f7de78f4ec5ab5ad1ec898
be1fe5e1e8f349ef4bd43

sha3-256 256 2b467b43626f5687201c7704e36b88c99
f219d4e15a57a1deda8bafc7067096a

4430290c737a74a018fa47f0361bfb71
824fba2faece7aba19835d47ba8d4169

sha3-384 384 89d63f07a86cdd96a8d8739638b467e1
188ec42602b710dc08eb6cae13f358c
9a8b294f300d0727668df16454786e6c2

845dbd7e0da06f286af177917c08fe9e
cb99a3b392e53bc16c1d9d6da07452a5
864c37e4226091904b809d4b898689b1

sha3-512 512 834ef2fef178ac2ed33967109834b97c
16e608bbfd90559fc5d61004a414cf6
0f1e3784927dcfc12b84bced5adc2c39
f3ed8c46b88fb2d2bb489b9aef34eeba3

3a95ff26071bc33f1c17902ef64fd62
3ff162013286108d3e8632bba056e1c
5fcca1d42248345a34d4a87cc3ba59b
73f39eeca602cdbce75435fd3ce24a54f0b

ripemd128 128 3cbc4444bcd64898646a69f8 2c11ba0d 498f480b763714390c2ccc1e 2e8ffdf3
ripemd160 160 49bf12c6f402a526ac8dddb0067b8b6df4e3bec0 d314c22851cfad4f5ae7f57e632de8e0ed6efce7
ripemd256 256 8513a06bbec678df86cb4e6c0b58320

bd3f366c16e3aeae9c62aefcd0b1a5ef8
c6904a0805d43edbae829cd354968f8
6c163439bf80bad48f1cd867e7851fc42

ripemd320 320 913bd4ad53d32fb58c66250de4cfc429
c5dba0ed50d661e98c7263a67c10668
cc8d016d36e56c401

564b6ea0f70d11d550c0f95d8922334
ccc9df9a87103e57ae446f1bc3d71b8
9c95612db04554bf83

whirlpool 512 6117df878175f70c0805766be72bf6a
fa4659e3575c1fb6d5a51114e483926
8f78367dc5b03748cf5b2686ac54cc7
1c86aaeb2e12031c320fba61732b240b0b4

17186bb917c7ffdc7552c9937381ad7
7eb0af408233532b4c033ecb896eeef
48da5d6916976641827b11a7e675f2
a96963d9ec30d1436756936f8161cec2b14d

tiger128,3 128 4ce20b0483cbbeec6c530edf551d0304 60ef2abd088c6c2f51bd2db12623b809
tiger160,3 160 4ce20b0483cbbeec6c530edf551d030418510dd0 60ef2abd088c6c2f51bd2db12623b809fb91868a
tiger160,4 160 c43ae734675c6c6f583930f502d674de6aaef275 45a8018698dbd6fa219b027719079e6ae9f8905a
tiger192,4 192 c43ae734675c6c6f583930f502d674de

6aaef2750990a54e
45a8018698dbd6fa219b027719079e6a
e9f8905a9a7fc983

snefru 256 757cedccec30f7cf4964a55ca5027f5
c7e18a401c4837c 3ee5fe9e8689a90344

fd858aa5a6e189efc956f6d23c17e497f
03e156a8b10d4b97fe0b5417d0a9b4b

adler32 32 04ca01b6 046a0176
crc32 32 a7bf6ebb 613fee03
crc32c 32 bf07708b e0311d57
fnv132 32 7b4180dc 5b414e1c
fnv1a64 64 aef57130d1cf2b62 af625130d22bc6e2
joaat 32 5ec5542b d4946253
murmur3a 32 1e4d677f dfe3d04e
murmur3f 128 cb80db78abcce80192d56f08 af1bcb8d 8de502b0d44ff8a3b254f5cd5 b4b1e7c
xxh128 128 54b92a69cdb8746a1d4aec3a 82e10675 d8836a7fc9b1aaff94d91b48 d6e30720
haval128,3 128 77e87d8a90ff5863814edacd4 1b219a4 ab42e886d7c0909d558f2a03 daeb9d14
haval160,3 160 7db36c2704f972388fb64ea63b333da87bd20776 1ffec659e65e91a63f6f302aa19cc999e9e6ae87
haval192,3 192 da683dd25ab130471a8ce8fc7fe5e3d1b

b3e1ab60b7a78a6
90fa535008acf10a073c512acca4df9c
14861a283866183b

haval160,4 160 683774205ae9cf80436a7116 701b9b9de3d05aed 69afd4d4ce0a1f535d9365e5 6c346940b6aa8a2a
haval192,4 192 f428cea675ed696ffa9407826

02cec8c0196df136b6ba818
e143d50baa55f18e0070c8e6
e6a658dfd777cae3286b4ecc

haval224,4 224 f1f6dc8ebcfcf3cb8d3d2a958b1ac76122d9a32bc
d957ebc54da969f

a202d380acce8ccc847b747f6b7e4adb6af5d992
43ece266b555ef8f

haval256,4 256 e30a845a64826bf66e4cb948972a5b02694c4d
d666240a8ce6bb312fb29dba73

32315e9dfc0067052d6f8388b180e3541aa2d
cf98acee9c54f379ad7c9017434
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Fig. 2. Comparative Analysis of Avalanche Effect in Hash Functions

TABLE V
SUITABILITY AND PERFORMANCE CHARACTERISTICS OF HASH ALGORITHMS ACROSS DIFFERENT APPLICATION DOMAINS

Application Domain Hash Algorithms Suitability for
High-Security
Applications

Speed Resistance to Quantum
Attacks

Cryptographic Security SHA224, SHA256, SHA384, SHA512/224,
SHA512/256, SHA512, SHA3-224, SHA3-256,
SHA3-384, SHA3-512, Whirlpool, Tiger series,
Gost, Gost-Crypto, Haval series, BLAKE variants,
Chaos based hash functions

Very Suitable Moderate
to High

Widely used in encryp-
tion, digital signatures, se-
cure data transmission

Data Management and In-
tegrity

MD2, MD4, MD5, SHA1, RIPEMD series, Adler32,
CRC32, CRC32B, CRC32C, FNV series, CityHash,
FarmHash, XXH32, XXH64, XXH3, XXH128

Less Suitable High Data storage, checksums,
error-checking in
networks and storage
devices

Authentication and Verifi-
cation

SHA224, SHA256, SHA384, SHA512/224,
SHA512/256, SHA512, SHA3 series, Bcrypt,
Scrypt, SipHash, RIPEMD160 (notably used in
Bitcoin)

Suitable Moderate
to High

User authentication, data
authenticity verification

Blockchain and
Distributed Systems

SHA256 (widely used in blockchain technologies),
RIPEMD160 (as in Bitcoin), BLAKE variants,
Chaos based hash functions (potential application
due to their unique properties)

Suitable Moderate
to High

Cryptocurrency mining,
transaction validation,
distributed ledgers

Forensics and Data Anal-
ysis

SHA3 series (due to their resistance to quantum
attacks), Whirlpool, Haval series, Gost, Gost-Crypto

Suitable Moderate
to High

Digital forensics, data in-
tegrity verification, mal-
ware detection
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Fig. 3. Performance Comparison of Hash Functions by Hash Rate
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TABLE VI
BIT POSITION VALUES FOR VARIOUS ALGORITHMS.

Bit pos.
/ Algo.

crc32 haval256,5 md5 ripemd160 sha1 sha256 tiger192,3 whirlpool

1 5004:4996 5053:4947 4912:5088 4925:5075 5003:4997 4936:5064 4978:5022 5013:4987
2 4990:5010 5046:4954 4913:5087 4925:5075 4956:5044 5060:4940 4976:5024 5046:4954
3 5022:4978 4981:5019 4953:5047 5070:4930 5012:4988 4926:5074 4954:5046 5078:4922
4 4964:5036 4977:5023 5024:4976 4956:5044 5034:4966 4938:5062 5034:4966 4942:5058
5 4977:5023 4996:5004 4958:5042 4930:5070 4936:5064 4982:5018 4953:5047 4944:5056
6 5025:4975 4984:5016 4932:5068 4914:5086 4996:5004 4974:5026 5002:4998 4952:5048
7 5011:4989 5001:4999 5005:4995 4951:5049 4987:5013 5067:4933 5011:4989 5001:4999
8 4945:5055 5063:4937 5003:4997 5012:4988 4934:5066 4936:5064 5043:4957 4938:5062
9 5039:4961 5034:4966 4951:5049 4947:5053 5061:4939 5050:4950 5028:4972 4998:5002
10 4985:5015 4949:5051 5023:4977 5032:4968 5022:4978 5025:4975 5015:4985 5044:4956

TABLE VII
P-VALUES FOR STATISTICAL TESTS ACROSS DIFFERENT ALGORITHMS.

Test/p-value crc32 haval256,5 md5 ripemd160 sha1 sha256 tiger192,3 whirlpool
Frequency 0.350485 0.911413 0.739918 0.122325 0.534146 0.122325 0.122325 0.911413
BlockFrequency 0.000199 0.066882 0.911413 0.066882 0.122325 0.534146 0.911413 0.534146
CumulativeSums 0.350485 0.534146 0.911413 0.534146 0.991468 0.350485 0.350485 0.350485
CumulativeSums 0.350485 0.534146 0.911413 0.534146 0.991468 0.350485 0.350485 0.350485
Runs 0.534146 0.213309 0.213309 0.534146 0.739918 0.350485 0.213309 0.534146
LongestRun 0.534146 0.739918 0.350485 0.534146 0.350485 0.534146 0.911413 0.122325
Rank 0.000000 0.017912 0.017912 0.739918 0.911413 0.000199 0.350485 0.739918
FFT 0.000000 0.991468 0.122325 0.017912 0.008879 0.534146 0.911413 0.911413
OverlappingTemplate 0.213309 0.911413 0.911413 0.534146 0.534146 0.911413 0.350485 0.739918

TABLE VIII
PROPORTION OF SUCCESSFUL OUTCOMES FOR STATISTICAL TESTS ACROSS DIFFERENT ALGORITHMS.

Test/algorithm proportion crc32 haval256,5 md5 ripemd160 sha1 sha256 tiger192,3 whirlpool
Frequency 10/10 9/10 10/10 9/10 10/10 10/10 10/10 10/10
BlockFrequency 6/10* 10/10 10/10 10/10 10/10 10/10 10/10 10/10
CumulativeSums 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
CumulativeSums 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
Runs 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
LongestRun 9/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
Rank 0/10* 10/10 10/10 10/10 10/10 10/10 10/10 10/10
FFT 0/10* 10/10 10/10 10/10 10/10 10/10 10/10 10/10
OverlappingTemplate 9/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10

corresponds with the intended security level of the signature
technique [81]. Similarly, for HMAC (Hash-Based Message
Authentication Codes) and key derivation functions (KDFs),
SHA-2 is still the recommended option because of its great
security and computational efficiency [84]. While NIST
does not prescribe particular methods for securely storing
passwords, specialized password-hashing systems like bcrypt
or scrypt are advised over generic cryptographic hashes.

NIST highlights SHA-3’s durability against theoretical
flaws and quantum computing developments in addressing
newly arising concerns [82]. While SHA-2 is still the most
sensible and efficient option for ordinary usage, the sponge
architecture employed in SHA-3 makes it especially strong
in circumstances needing sophisticated security. Furthermore,
NIST underlines the need to select the hash function’s output
length depending on the necessary security degree. For
applications with strong security requirements or to reduce
dangers from next-generation computational developments,
SHA-512 is a perfect choice.

NIST also promotes adherence to accepted standards such
as FIPS PUB 180-4 (Secure Hash Standard) and guidance
in NIST Special Publication 800-57. These guarantee that
cryptographic systems follow best practices and satisfy legal
criteria [81], [84]. Following these guidelines will help

organizations properly protect digital security, authentication,
and data integrity against evolving threats.

Hash Functions could be used at various other places.
as we know, web crawlers and scrapers are important for
analysing and indexing web information. But they often
use up a lot of computer resources and traffic. It is better
to include both the URL and a hash of the HTML text
for each page in the sitemap. This way not only makes
things run more smoothly, but it also makes security and
content control better. Each page’s URL and a hash of
its HTML text are stored in the suggested index structure.
For example, if the content of a webpage changes, so will
its hash. This lets robots focus on only the new content.
This stops reading pages that haven’t changed, which saves
bandwidth and speeds things up. Crawlers can compare
the current hash to the one they have saved, so they only
get the pages that have been changed. This method not
only improves searching, but it also lowers server load and
stops wasted data. Implementing a hash-based sitemap helps
websites stay compatible with search engines while also
making it easier and smarter for crawlers to do their jobs.
This approach works especially well for websites that are
big or that are changed often, since reducing the number of
unnecessary calls is very important. Assume that we wish to
find out whether the content of any Wikipedia page has been
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Fig. 4. Distribution of Hash Algorithms Across Application Domains

changed. We would need to browse and record the content
of all relevant pages, and then compare each page with its
previously stored version to identify changes. This procedure
is resource-intensive, needing multiple queries to retrieve the
entirety of each page. Nevertheless, this task is significantly
more efficient when utilising a hash-based sitemap. A single
request is sufficient to retrieve the sitemap when employing
a hash-based sitemap.

VII. CONCLUSION AND FUTURE WORK

Our study provides an in-depth evaluation and categoriza-
tion of cryptographic hashing algorithms, highlighting their
crucial role in digital security across diverse applications.
By examining traditional and chaos-based hash functions,
we have identified critical considerations for choosing ap-
propriate hashing algorithms, focusing on their performance,
security, and applicability. Our findings underscore the im-
portance of balancing efficiency and security in response to
evolving digital threats. This research contributes to the field
of digital cryptography by offering guidance on selecting
hashing algorithms suited to specific security requirements
and applications, paving the way for future advancements in
secure and efficient cryptographic solutions. In future, we
will focus on following:

• Chaos-Based and Quantum-Resistant Algorithms: Con-
tinued research on how chaos theory can be used and
how to make hashing methods that are not affected
by quantum mechanics. Combining these methods into
hybrid models might make them more resistant to ad-
vanced cryptoanalysis. Combining quantum physics and

chaos theory could lead to new, robust coding methods
that are good for security after quantum computing.

• Adaptable Hash Systems: Future hashing methods
should include adaptable systems that can change with
threats in real time and keep security high.

• Efficiency in Real-World Applications: Making sure that
new hash functions are easy to use on various devices
will ensure that they can be used in real-world systems.

• For the future of safe security systems, it is essential to
work on chaos-based and quantum-resistant hashes and
flexible and quick solutions.
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[44] M. A. Cardona-López, J. C. Chimal-Eguı́a, V. M. Silva-Garcı́a, and
R. Flores-Carapia, “Key exchange with diffie-hellman protocol and
composite hash-functions,” in 2024 12th International Symposium on
Digital Forensics and Security (ISDFS), pp. 1–6, IEEE, 2024.

[45] A. Srivatsa, T. Ananthapadmanabha, L. K. MV, and A. Suma, “En-
hancing smart grid security with sha-sarimax: Identifying and restoring
corrupted files from fdia.,” IAENG International Journal of Computer
Science, vol. 51, no. 8, pp. 1112–1121, 2024.

[46] C. Pujari, C. CB, S. R. Muppidi, and M. C. Belavagi, “A novel method
of secure child adoption using blockchain technology.,” IAENG Inter-
national Journal of Applied Mathematics, vol. 53, no. 4, pp. 1531–
1539, 2023.

[47] Y. Lv, “Cloud computation-based clustering method for nonlinear
complex attribute big data,” IAENG International Journal of Computer
Science, vol. 49, no. 3, pp. 736–744, 2022.

[48] S. Boonkrong, “Security analysis and improvement of a multi-factor
biometric-based remote authentication scheme.,” IAENG International
Journal of Computer Science, vol. 46, no. 4, pp. 713–724, 2019.

[49] X. Y. H. Xuan and J. Tao, “A forward-secure fuzzy identity-based fully
homomorphic signature over lattices,” IAENG International Journal of
Computer Science, vol. 48, no. 3, pp. 605–612, 2021.

[50] S. Wang, “A face recognition method based on lightweight neural
network and multi hash recognition degree weighting.,” IAENG Inter-
national Journal of Applied Mathematics, vol. 54, no. 3, pp. 581–586,
2024.

[51] K. Tan, L. Li, and Q. Huang, “Image manipulation detection using
the attention mechanism and faster r-cnn [j],” IAENG International
Journal of Computer Science, vol. 50, no. 4, pp. 1261–1268, 2023.

[52] A. M. Ali and A. K. Farhan, “A novel improvement with an effective
expansion to enhance the md5 hash function for verification of a secure
e-document,” IEEE Access, vol. 8, pp. 80290–80304, 2020.

[53] A. Zellagui, N. Hadj-Said, and A. Ali-Pacha, “Secure md4 hash
function using henon,” Malaysian Journal of Computing and Applied
Mathematics, vol. 3, no. 2, pp. 73–80, 2020.

[54] S. Debnath, A. Chattopadhyay, and S. Dutta, “Brief review on journey
of secured hash algorithms,” in 2017 4th International Conference on
Opto-Electronics and Applied Optics (Optronix), pp. 1–5, IEEE, 2017.

[55] D. M. A. Cortez, A. M. Sison, and R. P. Medina, “Cryptographic
randomness test of the modified hashing function of sha256 to address
length extension attack,” in Proceedings of the 2020 8th International
Conference on Communications and Broadband Networking, pp. 24–
28, 2020.

[56] A. Maetouq, S. M. Daud, N. A. Ahmad, N. Maarop, N. N. A. Sjarif,
and H. Abas, “Comparison of hash function algorithms against attacks:
A review,” International Journal of Advanced Computer Science and
Applications, vol. 9, no. 8, 2018.

[57] N. Mouha, M. S. Raunak, D. R. Kuhn, and R. Kacker, “Finding bugs
in cryptographic hash function implementations,” IEEE transactions
on reliability, vol. 67, no. 3, pp. 870–884, 2018.

[58] E. Swathi, G. Vivek, and G. S. Rani, “Role of hash function in
cryptography,” Int. J. Adv. Eng. Res. Sci.(IJAERS), 2016.

[59] S. Park, C.-G. Jung, A. Park, J. Choi, and H. Kang, “Tiger: tiny
bandwidth key encapsulation mechanism for easy migration based on
rlwe (r),” Cryptology ePrint Archive, 2022.

[60] A. Sadeghi-Nasab and V. Rafe, “A comprehensive review of the
security flaws of hashing algorithms,” Journal of Computer Virology
and Hacking Techniques, vol. 19, no. 2, pp. 287–302, 2023.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 3, March 2025, Pages 540-552

 
______________________________________________________________________________________ 



[61] A. Konkin and S. Zapechnikov, “Zero knowledge proof and zk-snark
for private blockchains,” Journal of Computer Virology and Hacking
Techniques, vol. 19, no. 3, pp. 443–449, 2023.

[62] W. Xia, C. Wei, Z. Li, X. Wang, and X. Zou, “Netsync: A network
adaptive and deduplication-inspired delta synchronization approach for
cloud storage services,” IEEE Transactions on Parallel and Distributed
Systems, vol. 33, no. 10, pp. 2554–2570, 2022.

[63] P. Koopman, K. Driscoll, and B. Hall, “Selection of cyclic redundancy
code and checksum algorithms to ensure critical data integrity,” 2015.

[64] C. Hayes, Non-Cryptographic Hash Functions: Focus on FNV. PhD
thesis, National University of Ireland Maynooth, 2023.

[65] V. Akoto-Adjepong, S. Okyere-Gyamfi, and M. Asante, “An enhanced
non-cryptographic hash function,” International Journal of Computer
Applications, vol. 176, no. 15, 2020.

[66] M. Cheng, Y. Wu, X. Zhou, J. Li, and L. Zhang, “Efficient web archive
searching,” 2020.

[67] T. Ferdousi, D. Gruenbacher, and C. M. Scoglio, “A permissioned
distributed ledger for the us beef cattle supply chain,” IEEE Access,
vol. 8, pp. 154833–154847, 2020.

[68] F. Yamaguchi and H. Nishi, “Hardware-based hash functions for
network applications,” in 2013 19th IEEE International Conference
on Networks (ICON), pp. 1–6, IEEE, 2013.

[69] J.-P. Aumasson and D. J. Bernstein, “Siphash: a fast short-input prf,”
in International Conference on Cryptology in India, pp. 489–508,
Springer, 2012.

[70] N. Provos and D. Mazieres, “Bcrypt algorithm,” in USENIX, 1999.
[71] C. Percival and S. Josefsson, “The scrypt password-based key deriva-

tion function,” tech. rep., 2016.
[72] N. H. M. Ali and R. A. Abdul-Sattar, “Data integrity enhancement for

the encryption of color images based on crc64 technique using multiple
look-up tables,” Iraqi Journal of Science, pp. 1729–1739, 2017.

[73] N. Mouha, “Exploring formal methods for cryptographic hash function
implementations,” in Australasian Conference on Information Security
and Privacy, pp. 177–195, Springer, 2023.

[74] P. Ayubi, S. Setayeshi, and A. M. Rahmani, “Chaotic complex hashing:
A simple chaotic keyed hash function based on complex quadratic
map,” Chaos, Solitons & Fractals, vol. 173, p. 113647, 2023.

[75] J. Liu, Y. Liu, and B. Li, “Design and analysis of hash function based
on spark and chaos system,” International Journal of Network Security,
vol. 25, no. 3, pp. 456–467, 2023.

[76] B. Preneel, “Cryptographic hash functions,” European Transactions on
Telecommunications, vol. 5, no. 4, pp. 431–448, 1994.

[77] M. R. Anwar, D. Apriani, and I. R. Adianita, “Hash algorithm in ver-
ification of certificate data integrity and security,” Aptisi Transactions
on Technopreneurship (ATT), vol. 3, no. 2, pp. 181–188, 2021.

[78] G. Hatzivasilis, “Password-hashing status,” Cryptography, vol. 1, no. 2,
p. 10, 2017.

[79] X. Zhao, Z. Lei, G. Zhang, Y. Zhang, and C. Xing, “Blockchain
and distributed system,” in Web Information Systems and Applica-
tions: 17th International Conference, WISA 2020, Guangzhou, China,
September 23–25, 2020, Proceedings 17, pp. 629–641, Springer, 2020.

[80] Z. E. Rasjid, B. Soewito, G. Witjaksono, and E. Abdurachman, “A
review of collisions in cryptographic hash function used in digital
forensic tools,” Procedia computer science, vol. 116, pp. 381–392,
2017.

[81] National Institute of Standards and Technology (NIST), “Secure Hash
Standard (SHS),” Tech. Rep. FIPS PUB 180-4, National Institute of
Standards and Technology (NIST), August 2015.

[82] National Institute of Standards and Technology (NIST), “SHA-3
Finalist Evaluation Report,” tech. rep., National Institute of Standards
and Technology (NIST), 2012.

[83] National Institute of Standards and Technology (NIST), “Transitions:
Recommendations for Cryptographic Algorithms and Key Lengths
(Rev. 2),” Tech. Rep. NIST Special Publication 800-131A Revision 2,
National Institute of Standards and Technology (NIST), March 2019.

[84] National Institute of Standards and Technology (NIST), “Recommen-
dation for Key Management, Part 1: General (Rev. 5),” Tech. Rep.
NIST Special Publication 800-57 Part 1 Revision 5, National Institute
of Standards and Technology (NIST), May 2020.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 3, March 2025, Pages 540-552

 
______________________________________________________________________________________ 




