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Refinements of Singular Value and Unitarily
Invariant Norm Inequalities

Xingkai Hu, Yaoqun Wang, Yuan Yi, Jianming Xue

Abstract—In this paper, by combining the Kantorovich con-
stant and scalar inequalities of the weighted algebraic mean
for sector matrices, we derive an inequality that relates the
inverse of the real part of a matrix to the real part of its
inverse within the Cartesian decomposition for sector matrices.
Additionally, this inequality is used to enhance two existing
singular value inequalities for sector matrices under certain
conditions. Furthermore, leveraging the convexity of relevant
functions, we provide two refinements of unitarily invariant
norm inequalities for matrices.

Index Terms—inequality, sector matrix, Kantorovich constan-
t, singular value, unitarily invariant norm

I. INTRODUCTION

N this paper, let M, m, M’ m’ represent scalars. Denote

by M, the space of n X n complex matrices, with
the identity matrix of this space being [,,. The Cartesian
decomposition of A is given as follows

A=TR(A)+iI(A),

where R(A) and Z(A) denote the real and imaginary parts
of A, respectively.

Here and in what follows, a norm ||-|| is said to be unitarily
invariant norm if [UAV|| = ||A|| for any A € M,, with all
unitary matrices U,V € M,. The Ky Fan k-norm|-|| ;, is
expressed as

k
HAH(k) - Zsj (A)vk =1,---,n,
j=1

where s; (4) (j =1,2,---,n) represents j-th largest singu-
lar of A with s1 (A) > s (A) > > 8, (A). These
singular values correspond to the eiglenvalues of the positive
semidefinite matrix |A| = (AA*)2, which are listed in
decreasing order and repeated according to multiplicity. The
Schattenp-norm ||-||,, is defined as

n

1AL, = (O 82 (AP = (e |AP)7

j=1

1<p<oo.
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It is well known that both the Ky Fan k-norm|-||;, and
the Schattenp-norm ||-||, are unitarily invarian norms (See
[1D.

The Kantorovich constant, denoted by K (h')
satisfies the following properties:

i K(1)=1
(i) K(h')=K(55) for h > 0;
(iii) K(Rh') is monotonic, increasing on [1,+00) and de-
creasing on (0, 1] (See [2]).
For a € [0, §), we define a sector S, as

Sa ={2€C:R(2)>0,|Z(z)] <tanaR(z)}.

_ (W+1)?
- 4h/ 9

The numerical range of A € M,, is given by the set on

the complex plane [3]:
W(A) = {a*Azx|x € C",z*x = 1}.

If W(A) C Sq, for some a € [0,7), then A is called
a sector matrix [4]. Clearly, if W(A) C S, then R(A)
is positive definite. Furthermore, if A and B are sector
matrices, then A+ B and (A+ B)~! are also sector matrices.
Subsequently, Numerous influential studies have investigat-
ed inequalities involving sector matrices, particularly those
related to singular values, unitarily invariant norms and
determinants. Notable references include [5-9].

If A, B € M, are positive definite, we adopt the notation
as introduced in [10]

AV,B = (1—-v)A+vB,
At,B=A(A"2BA 2)A7,0<v <1,

when v = %, we denote AV B and AfB in place of AV%B
and Aﬁ%B, respectively.
It is clear that

AV,B > A4,B,0 < v < 1. (1)

Garg and Aujla [11] derived that if A, B € M,, are positive
semidefinite, then

l l l
1) 5;(A+ B) < 1 s;(In+A) II sj(In+B) (2

J Jj=1

J

and

l l l
(5i(In+ A+ B) < 1L s(In + A) 1L 5(In + B), 3)
= Jj= Jj=

J
where 1 <[ <n.

For A,B € M, with W(A),W(B) C S, Nasiri and
Furuichi [12] obtained

l sect(a) 1
A+ B < 2O f g,
s @
,Hl 5.7'(]71 +B_1)
j:
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and
l
11 s5(In+ (A4 B)™)
J:

l 2
< sec? (@) I s;(I, + sec’()
Jj=1

4
B™h,

A7h (5)

sec? ()

l
I s; (In +
j=1
where 1 <[ <n.

Let A,B,X € M, such that A and B are positive
semidefinite. Then, the function

U(r)=||A"XB* "+ A> "XB"||

is convex on [0, 2]. ¥(r) is decreasing on [0, 1] and increasing
on [1,2], moreover, ¥(r) = ¥(2 — r) for r € [0,2],
consequently ¥ (1) < ¥ (r), which implies that

2|AXB| < |A"XB* 7"+ A*"XB"

where 0 < r < 2.
Zhan [13] showed that for A, B, X € M, if A and B are

positive semidefinite, then
|A"X B> + A>T XB"||

E (6)

(7

)

< 2 HA2X+tAXB+X32
t+2

where £ <7 < 2 and —2 < t < 2. Combining (6) with (7),
the following result is obvious

2|AXB|| < |A"XB*7"+ A*"XBY||
5 ®)
< —||A2X +tAXB+ XB?|.
t+2

Later, Fu and He [14] demonstrated a stronger version of
inequality (8) as follows:

2|AXB||

o

+2(/2 |A" X B2 + A2 "X B"||dr
: 9
—2||AX BJ))

2
< =
T t+2

Recently, by utilizing the convexity of the function ¥(r),
Xue and Hu [15] obtained a refined version of inequality (9),
which can be expressed as:

i/

2

|A*’X +tAXB+ XB?||.

3

g
||[A"XB* " + A>""XB"||dr — ||AX B||

—%HA%XB% + AT XBH||) + 2||AX B|| (10)

2
< ——||A*X +tAXB + XB?||.
+2
Bhatia and Davis [16] derived that for A, B, X € M, if
A and B are positive semidefinite, then
||AVXBlf” + Al-YXBY
2

AX + XB
< 15220

|A2 X B3|

IN

I
(1)

where 0 < v < 1.
Setting

Y(v) = [|[AVXB™" + AV X BY||,

then inequality (11) can be simply rewritten as

¥(3) < ¥() < (0).

Let A,B,X € M, such that A and B are positive
semidefinite. Then, the function v (v) is convex on [0,1].
¢(v) is decreasing on [0, 3] and increasing on [%,1], more-
over, Y(v) = (1 — v) for v € [0,1]. Using the convex-
ity of ¥ (v), Zou and He [1] gave a stronger version of

P(%) < (0) as follows:

v(z)+2( [ vy — i) <v.0<r <1 (2

Additional information on convex functions can be found
in the recent paper [17] and references therein.

This note, building on the preceding discussions, focuses
on refining singular value inequalities for sector matrices and
inequalities involving unitarily invariant norms. The structure
of the note is as follows. In Section 2, we introduce a new
inequality for sector matrices and use it to derive two sharper
singular value inequalities, which improve inequalities (4)
and (5) under certain conditions. Section 3 is dedicated
to providing two refinements of inequalities (10) and (12)
by utilizing the properties of convexity. Finally, Section 4
provides concluding remarks.

II. SINGULAR VALUE INEQUALITIES FOR SECTOR
MATRICES

Before presenting our main results, we first summarize
four lemmas that will be instrumental in the proof of the
results in this paper.

Lemma 1 ([4]). Let A € M,, with W(A) C S,. Then

R(A™Y) < R7L(A) < sec?(a)R(A™Y).

Lemma 2 ([18]). Let A, B € M,, be positive definite such
that 0 < ml, < A < m'I, < M'I, < B < MI, or
O0<ml,<B<mI,<MI,<A<MI,. Then

K" (W) A '#,B~Y) < A~'v,B7!,

where 0 < v < 1, ' = M g(py) = LD
min{v,1 — v}.
Lemma 3 ([3]). Let A € M,, with W(A) C S,. Then

sj(A) < sec?(a)s;(R(A)),1<j <n.

and r =

Lemma 4 ([3]). Let A € M,,. Then
5;(R(A)) < 5;(A),1 <j<n.

We are now prepared to present the first theorem in this
note.
Theorem 1. Let A, B € M,, with W(A), W(B) C S, such
that 0 < mI, < R(4A) <m'L, < M'I, < R(B) < MI,
or 0 < ml, < R(B) <m'I, < M'I, <R(A) < MI,.
Then

sec? ()

RV B < Bty

R(A™'V,B™),

13)
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where 0 < v < 1, b/ = %I,/,K(h’): %andr:
min{v,1 — v}.
Proof. Compute

R((1 —v)A+vB)™*
<R Y(1-v)A+vB)
(by Lemmal)
= ((1 = v)R(A) +vR(B))™
< (R(A)4R(B))™ (by(1))

=R (A)R™H(B)

1
<

< gy (1 R (A) + 0R 7 (B)

(by Lemma?2)

(by Lemmal)

_ sec2(a) -1 -1
= K0 R((1—v)A™" +vB™").

This completes the proof.

In the following, we will apply Theorem 1 to derive two
singular value inequalities for sector matrices, which provide
improved versions of inequalities (4) and (5).

Theorem 2. Let A, B € M,, with W(A), W(B) C S, such
that 0 < mI, < R(4A) <m'L, < M'I, < R(B) < MI,
or 0 < ml, < R(B) <m'I, < M'I, <R(A) < MI,.
Then

: ) S (A + B)_l

J

ol .
< M I s;(I, + A7) (14)
4Kz (h') j=1

and

< sec? () IEI 5;(In + ml‘rl) (15)

j=1 4Kz (W)
. 2
5 (I + secl(a) BY),
j=1 4K 32 (h')

where 0 < v < 1,1 <1< n, b =M f(n) = EIL°
and r = min{v, 1 — v}.

Proof. For A,B € M, with W(A),W(B) C S, we
demonstrate that (A + B)~! is a sector matrix.

Compute

J

l
I s;(A+B)~!

< se(a) 11 5,(R(4+B)7)

(by Lemma3)

41
< e la) o meat 4 BY)
AR () =1

(by (13))

_ sect(a) 1 5 -1 -1
= k(o LS RAT  RET)

ol .
< S0 1, e R(ATY)
4Kz (h') j=1

(by Lemmad4).

Similarly, we have

1£I si(I, + (A+B)™h)

< sec?(a) ‘li[1 s;(R(In + (A+ B)™"))
(by Lemma3)
<se(32l(05) ﬁ s-([ _,_M'R(Afl +Bil))
- = AR ()
(by (13))
o T sec?(a) 1
= sec?( )]1:11 ](In+4K%(h/>R(A )
sec?(a) 1
4K%(h/)R<B )
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(by Lemmad4).

This completes the proof.

Remark 1. Under the conditions such that 0 < ml,
R(A) <m'I, < M'l, <R(B) < MI, or 0 < mI,
R(B) < m'l, < M'I, < R(A) < M]I,, because of
K(0) = WEDS > 1 with I/ > 1, inequalities (14) and
(15) are sharper than inequalities (4) and (5).

<
<

III. UNITARILY INVARIANT NORM INEQUALITIES

In this section, we leverage the convexity of the func-
tions W(r) and t(v) to derive two unitarily invariant norm
inequalities for matrices, which yield enhanced versions
of inequalities (10) and (12), respectively. To begin our
discussion, we first present the following two lemmas.
Lemma 5 ([19]). Let f be a real valued convex function
on the interval [a,b] which contains (z1,23). Then for
1 <z < x9, We have

f(:c) < f(.TQ) — f(xl)xi $1f(x2) —xof (1'1)

To — T1 T2 — T1
Lemma 6 ([20]). Let ¢ be a real valued convex function on
the interval [a, b]. Then

a+b 1 b (a) + ¢(b)
< Hdt < —————=.
W5 < = [ et < 295
Theorem 3. Let A, B, X € M, such that A and B are
positive semidefinite. Then

2||AX B||

o

2
+M/‘WNXB%“h¥”XBWW
1

2

—%HA%XB%JrA%XB%H
1, .1 6 6 4 9
~4l43XBf + ARXBY|| - 5[|AX B])

gQLwMX+MXB+XWW
t+2

where $ <r <3, —2<t<2
Proof. If % <r< %, applying Lemma 5 and utilizing the
convexity of the function ¥(r), we have

V() -V(3) W) -39(3)
"= 31

U(r) < ;

1
2

N

=

which is equivalent to

U(r) < (3-— 41")\1’(%) +2(2r — 1)\11(%)

< u(y) / (3 — 4r)dr + 2\1/(2) /;(21" ~ 1),

that is

e

w el s

co| —

/l U(r)dr <

If 2 <r <%, applying Lemma 5 and the convexity of the
function ¥(r), we obtain

S
—
IS
S—
|
S
—
N[N
N—
N[N
S
—
(SN
SN~—
|
W
Py
N[
-

S
INIT SIS

which is equivalent to

W(r) < 44— 5r)U(3) + 5(4r - 3)\11(%).

Mw\
S
—
=
QU
3

4

< 4\11(2) /; (4 —5r)dr + 5@(%) /g(47° — 3)dr,

3

that is

[ v < S ey an

4
It % < r <1, applying Lemma 5 and the convexity of the
function ¥(r), we deduce

v(1) -3 F)-U(5)

U(r) < T — 7 ,
11 1-1

which is equivalent to
4
U(r) <5(1-— r)\Il(g) + (5br —4)¥(1).

So

< 5\11(3) [11(1 —r)dr + ¥(1) /11(57" — 4)dr,

5

that is .
W(r)dr < = [U(5) + V().

5 (18)

S
10

o

Volume 55, Issue 4, April 2025, Pages 720-726



TAENG International Journal of Applied Mathematics

If 1 <r <3, similarly, we have
() — ‘I’(l)r () - 3v()

U(r) < o
g _

which is equivalent to
6
U(r) < (6—5r)U(1)+5(r — 1)\1’(5)

So

g\Il(l)/lg(G—5r)dr+5ﬁ/(g)/1€(r—1)dr,

that is

wloy

/1 W(r)dr < %[\P(l) oy (19)

5
If2<r< %, similarly, we obtain
() -
6
5

uloy

W(r) <

PN

-

which is equivalent to

W(r) < 5(5 4@@(2) + 4G — 6)u(d).

m\m\
wlo

S
~—
=

N
ISH
3

5

<5\11(5)/2(5—4r)dr+4\11(i)/4(5r—6)dr,

6

that is .
[ v < e+ u) (0)
P TR e
If 2 <r < 3, similarly, we deduce
U -w(3) w3 -39
\I/(T)i 23_24 4 23_; 47
271 271
which is equivalent to
5 3
W(r) < 2(3 - 20)W(5) + (4r = 5)U(5).
So
3
2
/ U(r)dr
%
3 3
5 2 3 2
<20(}) ["G -2+ v) [ -syar
5 5
1 1
that is .
[Temar g redl en
. r)dr < 2[¥(3 5

It follows from (16)-(21) and W(3) = ¥(2), U(3) = ¥(3),

U(3)=U(L) that

4/1§ U(r)dr < \II(%) + g\p(%) + \If(%) + %\D(U,

2

which is equivalent to
3

V(1) 4l [ W) - ) - ) - w)
<u(y)
Thus
2|4 B

3
2
+4(/ ||[A"XB* " + A>"" X B"||dr
1

2

_ 3 AtxBY 1 At xBE

10

1, .4 6 6 4 9
~;l43XBE + ARXBY|| - 5[] AX B

<||AZXB? + A3 X B?||.
By (7), we get
2/|AX B||

3

+4(/2 |A"X B2~" 4+ A2 "X B"||dr
1

2

3
—EHA%XB% + AT XBi||

1
—ZHA%XB% + ASXB53|| - %HAXBH)

2
< ——||A’X +tAXB + X B?||.
t+2

This completes the proof.
Remark 2. Theorem 3 is sharper than inequality (10).
By the convexity of the function ¥(r), it follows that

W) < 2u() + LU0,

Thus

o

-

4(/2 A" X B> 4 A> "X B'||dr — %HAXBH

2

_%HA%XB% + AT XBi||

1
—4 /AR X B+ ARXBE))

[

74(/2 |A" X B2 + A>"X B"||dr
1

2
1, .z 5 5
—5|[4TXBY + ATXBY|| - ||AXB|))
4.8 5 53, 2
= S lATXBY + ATXBY|| + £]|AXB]|

—||A* XBS + A5 XB3||

> 0.
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Consequently, Theorem 3 is a refinement of inequality (10).
Theorem 4. Let A, B, X € M, such that A and B are
positive semidefinite. Then

+2/¢ Vv — (=

+2( ; Yv)dv —¥(3))
< ¥(0),
where (v [|[A¥XB=" + Al=*XB"||, 0 < v < 1.

(v) =
Proof. If 0 <v < %, by Lemma 5, we have

v) < 8(0(5) -

— 4 0))/0é ydu+/j¢(0)dy

(22)

$(0))v +(0).

| wwiar < sig)
0

which is equivalent to

, by Lemma 5, we obtain

1 1 1

B(0(7) — B — ) +¥(3).

So
[ v <s@p-v) [ w-gavs [Tuga

which is equivalent to

=
S
IA

1
B 1

Y(v)dy < 2 (0(3 >+w< ))

16 (23)

1
8

< 2, by Lemma 5, we deduce

So
8 3
L P)dv < 8((2)—

which is equivalent to

Cuan

S udy < S )+ (),

16 @4

I

If 2 <v <1, by Lemma 5, we have

() < 8(3) ~ PN = 2) +9(3)

2 8 8
So
[ v <sw@)-v@) [ [T o

1
27

<

which is equivalent to

1

; Y(v)dv < %w)( )+ (S ))- 25)
If ;<o < %,Ssimilarly, we get

[g W) < W) HUG) @
Ifg<v< g,Zsimnarly, we get

/f sy < @) +u). @
If§<v< g,ssimﬂarly, we get

ﬁ vy < L ey e
Ifi<v<i, 4simi1ar1y, we get

[ v s bwmaedy e

It follows from (22)-(29) and ¢(0)
P(3) = ¥(3), ¥(3) = (3) that

[oww = [ o /;W)dy
+ /j o)+ /; p)d
+ /j (o) + /; w)d
+ /; i [ ooy

S((0) + 26(3) + 26(7)

= (1), ¥(§) = (%),

IN

+9(3) +20(2),

which is equivalent to

1
8 [ v < 00)+20(3) +20(7)

1 3
-Hﬁ(i) +2¢(§)-
Thus

v(z)+2( [ v =)

1 1
2| v —uig) 2| v —v(p)

2| vy = ()
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This completes the proof.
Remark 3. Theorem 4 is sharper than inequality (12).
By Lemma 6, we have

s <t [ v, (30)
0
3 3
Q) =4[ vw)d 31)
and .
Uy < 2/2 b(v)dv. (32)
0
It follows from (30)-(32) that
1 3 1 2
v+ e <6 [uwan 6y
By Lemma 6, we have
5 b
v(@) <4 [ vwan 4)
7 2 !
w4 [ vy 39)
and
3 1
v <2 [ v (36)
It follows from (34)-(36) that
5 7 3 !
v+ v+ e <6 [ vodn 6D

2

It follows from (33) and (37), ¥(2) = (). v(3) = 9 (2),
P(3) = ¢(3) that

6 [ wlw)s —20(5) = 20(5) ~20(3) = 0.

Consequently, Theorem 4 is a refinement of inequality (12).

IV. CONCLUSION

Sector matrices have potential applications in various
fields such as image processing, numerical analysis, com-
putational fluid dynamics and optimization problems. For
instance, sector matrices can be used for efficient convolution
operations in image filtering, particularly when performing
computations on image blocks or specific regions, thus
reducing computational complexity. Similarly, unitarily in-
variant norm inequalities are widely applied in areas such
as quantum mechanics, signal processing, data analysis and
optimization theory. In particular, in the context of quantum
entanglement measures, these inequalities play a crucial role
in maintaining the consistency of entanglement properties
across different reference frames. As a result, studying sector
matrices and unitarily invariant norm inequalities holds con-
siderable theoretical and practical significance. This paper
investigates the inverse of the matrix real part and the
real part of the inverse matrix in the context of Cartesian
decomposition for sector matrices. This is done using the
Kantorovich constant and scalar inequalities related to the
weighted algebraic mean for sector matrices. The inequality
derived in this work leads to refinements of two existing
singular value inequalities for sector matrices under specific

conditions. Additionally, by utilizing the convexity of the
functions ¥(r) and (v), we introduce two new unitarily
invariant norm inequalities for matrices, which enhance and
extend several previously known results. Future research will
further explore these topics.
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