
 

  

Abstract-Urban air pollution is a critical global challenge, 

especially in rapidly industrializing cities, where effective 

environmental management requires robust probabilistic 

models. This study evaluates the three parameter Burr-XII 

distribution for modeling daily average concentrations of 

carbon monoxide (CO), sulfur dioxide (SO₂), and nitric oxide 

(NO) in Visakhapatnam, India, using data from January 1st, 

2018 to December 31st, 2022. Various statistical tools-such as 

skewness-kurtosis plots, probability density functions (PDFs), 

empirical cumulative distribution functions (ECDFs), P-P, and 

Q-Q plots are employed to assess the model's validity. 

Maximum Likelihood Estimation (MLE), goodness-of-fit tests 

(Kolmogorov-Smirnov, Anderson-Darling, and Cramér-von 

Mises), and model selection criteria like Akaike Information 

Criteria (AIC), Bayesian Information Criteria (BIC) are 

applied to evaluate the performance of the Burr-XII 

distribution compared to the Dagum-I and Log-Logistic 

distributions. Results show that the Burr-XII distribution 

consistently provides the best fit, demonstrating superior error 

metrics-mean absolute error (MAE), mean square error 

(MSE), root mean square error (RMSE), and the coefficient of 

determination (R²), excelling in goodness-of-fit and model 

selection criteria, while showing lower standard errors and 

better alignment with empirical data, particularly in the tails 

and extreme values. These findings highlight the robustness of 

the Burr-XII distribution in capturing the variability and 

skewness inherent in air pollutant concentrations. The study 

underscores the potential of the Burr-XII distribution as a 

reliable tool for air quality modeling, enhancing pollution 

forecasting and regulatory compliance. By supporting effective 

environmental monitoring and policy-making, the findings 

contribute to improved public health protection in urban 

centers. 

 
Index Terms—Environment, Air Pollution, Burr-XII 

Distribution, Carbon Monoxide, Sulfur Dioxide, Nitric Oxide. 

Maximum Likelihood Estimation. 

I. INTRODUCTION 

HE increasing concentration of airborne 

contaminants in urban and metropolitan areas poses 

significant challenges in managing air pollution.  
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Urban air pollution poses a significant threat to human 

health and the environment, particularly in rapidly 

industrializing cities. Pollutants such as carbon monoxide 

(CO), sulfur dioxide (SO₂), and nitric oxide (NO) are known 

contributors to respiratory and cardiovascular diseases, acid 

rain, and smog formation. Their persistent presence in urban 

environments necessitates robust modeling approaches to 

predict pollutant concentrations accurately and inform 

mitigation strategies. Visakhapatnam, a major industrial city 

on India's eastern coast, faces substantial air quality 

challenges due to dense vehicular traffic, industrial 

activities, and rapid urbanization. Accurate pollution 

modeling is essential for understanding pollutant dynamics 

in such contexts, enabling timely regulatory measures and 

public health interventions. Traditional statistical methods 

often fail to capture the complexity and variability of 

pollution data, especially the extreme values. Hence, the 

need arises for advanced probabilistic models that can 

accommodate skewed, heavy-tailed data. 

Several studies have demonstrated the utility of statistical 

distributions in air quality modeling. Marani, A., et al. [1], 

employed the generalized gamma distribution to model air 

quality data in Venice, Italy, highlighting its ability to 

capture the characteristics of observed frequency 

distributions of air pollutant concentrations. Bell, Michelle 

L. [2], aimed to enhance the geographic and temporal 

precision of exposure estimates in air quality assessments by 

using air quality modeling instead of traditional monitoring 

methods. De Foy et al. [3], demonstrated different statistical 

methods for analyzing the impact of air pollutants on the 

health of urban populations. Jiang, Xue et al. [4], analysed 

components of air pollutants such as SO₂, NO₂, and PM10 by 

fitting them to statistical models. Sharma et al. [5], utilized 

the Type I asymptotic distribution to predict NAAQS 

violations in Delhi, finding Gumbel's method effective for 

fitting observed data and managing urban air quality. 

Benjamin et al. [6], compared the Dagum and GEV 

distributions for modeling ozone levels in Mexico City [7]. 

Favarato, Graziella, et al., evaluated a statistical model to 

analyse the association between NO₂ levels and asthma 

prevalence in children, finding a positive correlation 

between the two. Ganora, D., and F. Laio [8], proposed the 

Burr-XII distribution for modeling stream flows and rainfall, 

demonstrating negligible errors in quantile estimation and 

confirming its suitability using flow duration curves from 

north-western Italy. 

Thupeng, W. M. [9], modeled daily maximum NO₂ 

concentrations in Gaborone using the Burr-XII distribution, 

finding it provided the best fit compared to other 
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distributions for extreme air pollution values. Jamaati et al. 

[10], investigated the trend of air pollution concentrations in 

Tehran, using data from 22 air quality monitoring stations to 

analyze pollutants such as CO, NO₂, SO₂, O₃, and PM₁₀, and 

found a worsening trend in air quality, with an increase in 

unhealthy days and a decline in healthy days. Lopez-

Rodríguez et al. [11], Introduced the Dagum distribution for 

fitting rainfall data, finding it superior to traditional models 

like Gumbel and GEV. Muse, A.H, et al. [12], illustrated the 

log-logistic tangent (LLT) distribution for analyzing 

COVID-19 mortality in Somalia, finding it superior to other 

models for fitting mortality data processed various 

goodness-of-fit measures. Elbatal et al. [13], introduced the 

Sine Burr X−G family of probability distributions for 

modeling extreme environmental factors, designed for both 

site-specific and multi-site applications. Emam, W., and Y. 

Tashkandy [14], proposed a new five-parameter modified 

Alpha-Power Weibull–Weibull distribution for modeling 

carbon dioxide emissions, demonstrating its superior 

performance compared to other models using the 

Kolmogorov–Smirnov test. Arun Kumar Chaudhary, et al. 

[15], developed the New Extended Kumaraswamy 

Exponential Distribution for air quality data in Kathmandu.  

Ahmat et al. [16], found that the three-parameter 

Generalized Extreme Value (GEV) distribution effectively 

predicted extreme PM10 concentrations in Malaysia, with 

strong accuracy in forecasting exceedances of the air quality 

guideline. Suebyat, K., and N. Pochai [17], performed a 

numerical simulation of air quality under Bangkok's sky 

train platforms using a 3D advection-diffusion equation, 

analyzing pollution from tunnel entrances, wind inflow, and 

obstacles, with satisfactory results for air pollution control in 

tunnel environments. Sooknum, J., and N. Pochai [18], 

developed a mathematical model using an explicit finite 

difference technique to assess airborne infection risk among 

bus passengers, optimizing capacity, ventilation, and air 

quality for enhanced safety. Khamrot et al. [19], applied the 

GEV distribution to carbon dioxide emissions data from 

Phitsanulok, Thailand (2010–2023), identifying rising 

emission peaks and increased environmental risks from fuels 

such as Gasohol and LPG. 

Building on this foundation, the present study explores 

the applicability of the three-parameter Burr-XII distribution 

to model daily average concentrations of CO, SO₂, and NO 

in Visakhapatnam, using data from January 2018 to 

December 2022. The Burr-XII distribution, known for its 

ability to handle skewed and heavy-tailed data, is compared 

with Dagum-I and Log-Logistic distributions. Parameters 

are estimated using Maximum Likelihood Estimation 

(MLE), and model performance is evaluated through 

goodness-of-fit tests (Kolmogorov-Smirnov, Anderson-

Darling, and Cramér-von Mises) and selection criteria (AIC, 

BIC), along superior error metrics (MAE, MSE, RMSE, and 

R²). the best-fitting model for CO, NO, and SO₂ 

concentrations is identified. The comparative analysis seeks 

to identify the distribution that best represents the statistical 

properties of air pollution data, offering the most reliable 

predictions for regulatory and forecasting purposes. By 

advancing the understanding of pollutant concentration 

dynamics, this study contributes to better environmental 

monitoring, more accurate forecasting, and informed 

policymaking, ultimately protecting public health in rapidly 

growing urban centers. 

II. MONITORING SITE AND DATA DESCRIPTION 

 

A. Research Location and Data Overview 

This study focuses on Visakhapatnam, a major industrial 

and coastal city in Andhra Pradesh, India, located at 

17.6868° N and 83.2185° E. Known for its dense 

population, rapid industrialization, and significant vehicular 

emissions, Visakhapatnam faces critical air quality 

challenges. The city is also home to India's Eastern Naval 

Command and is ranked among the world's 100 fastest-

growing cities and one of India's top ten wealthiest cities. 

 The data for this study, spanning January 2018 to 

December 2022, was obtained from the Continuous 

Ambient Air Quality Monitoring Station (CAAQMS) 

operated by the Greater Visakhapatnam Municipal 

Corporation (GVMC). Daily average concentrations of 

carbon monoxide (CO), sulfur dioxide (SO₂), and nitric 

oxide (NO) were analyzed, with each dataset comprising 

1,627 observations. The Andhra Pradesh Pollution Control 

Board (APPCB) monitors daily air pollutant concentrations 

in Visakhapatnam in real time. The CAAQMS records wide 

range pollutants, including NH₃, SO₂, CO, O₃, Benzene, 

Toluene, Xylene, PM₂.₅, PM₁₀, NO, NO₂, and NOx. The Air 

Quality Index (AQI) is calculated based on one particulate 

matter and three gaseous pollutants, reflecting the combined 

impact of weather conditions and pollution levels. Analysis 

CO, NO, and SO₂ concentrations offers valuable insights 

into pollution trends and air quality dynamics in urban 

cities. 

 

B. Probability Distributions in Air Quality Modeling 

Accurately modeling air pollutant concentrations requires 

selecting an appropriate probability distribution that 

captures the data's skewness and variability. This study 

compares the Burr-XII, Dagum-I, and Log-Logistic 

distributions due to their effectiveness in modeling heavy-

tailed and positively skewed environmental data. Each of 

these distributions possesses unique characteristics that 

make them suitable for analyzing air quality data. 

 

Burr-XII Distribution. The Burr-XII distribution is 

widely used for modeling skewed and heavy-tailed 

environmental data. It offers flexibility in capturing 

pollutant concentration variations, particularly at extreme 

values in air quality components like PM10 and O3. This 

distribution is particularly effective for datasets exhibiting 

strong positive skewness and high kurtosis, such as air 

pollution measurements. The cumulative distribution 

function (CDF) for a positive random variable X is: 

  (1) 

This function describes the probability that X is less than 

or equal to a given value x. Then the probability density 

function (PDF) of Burr-XII distribution for X is: 

 

 
                                                                                            (2)   

Here, r and s are shape parameters, while t serves as the 

scale parameter. The Burr-XII distribution reduces to the 

Pareto distribution when r=1 and to the two-parameter Burr 

distribution when t=1. Increasing r increases right skewness, 
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while large s values indicate heavier tails. Large t values 

broaden the distribution. 

 

Dagum-I Distribution. The Dagum-I distribution is 

frequently used for modeling socioeconomic and 

environmental variables with heavy tails. It is known for its 

ability to represent pollutant concentration fluctuations by 

accommodating different degrees of skewness. The CDF for 

the Dagum-I distribution is: 

 
                                (3) 

 

The parameter  determining the type of Dagum-I 

distribution (Type I, II, or III) with the specific numerical 

values ( ) corresponding to each 

type. For the Dagum-I distribution (where ), the CDF 

simplifies to: 

 
(4) 

The PDF for the Dagum-I distribution is: 

 
                                             (5) 

 

Here, X is the random variable, r and t are shape 

parameters, and s is a scale parameter. The Dagum-I 

distribution is particularly useful for extreme pollutant 

values, often outperforming other distributions in the tail 

regions. 

Log-Logistic Distribution. The Log-Logistic distribution 

is commonly applied in environmental and reliability 

studies. It provides a good fit for skewed datasets and is 

especially useful for pollutant data where concentration 

levels show an initial rise followed by a gradual decline. The 

CDF of the Log-Logistic distribution is: 

 

 
(6) 

The PDF of the Log-Logistic distribution is: 

 

 
(7) 

where X is the random variable, r is the shape parameter, 

s is the scale parameter, and t is the location parameter. This 

distribution is particularly useful for modeling extreme 

pollution levels with declining hazards over time. 

 

C. Evaluation of Goodness fit of the Distribution 

To assess the goodness-of-fit for each model, a range of 

statistical tests and criteria were employed, as outlined 

below. 

Goodness-of-Fit Tests. Assessing the goodness-of-fit for 

statistical models is crucial in data analysis. This study 

employs formal statistical tests including the Kolmogorov-

Smirnov (KS), Anderson-Darling (AD), and Cramer-von 

Mises (CvM) tests. Complementary to these tests, diagnostic 

tools such as skewness vs. kurtosis plots, PDFs, empirical 

CDFs, as well as P-P and Q-Q plots are used to rigorously 

evaluate model fit. 

 

Kolmogorov-Smirnov Test. This non-parametric test 

evaluates the maximum discrepancy between the theoretical 

distribution F0(x) and the empirical distribution function 

Fn(x).  It is calculated as follows: 

 

            (8) 

 

A higher D value indicates a less satisfactory match 

between the sample data and the proposed distribution F0(x). 

 

Anderson-Darling Test. This test focuses on the tails of 

the distribution, offering a robust criterion for model 

evaluation. The Anderson-Darling statistic, A2 is calculated 

as: 

 

 
                                                               (9) 

A smaller value of A2 indicates a better fit of the fitted 

distribution F0(x) to the observed data.  
 

Cramer-von Mises Test. Like the Kolmogorov-Smirnov 

test, the Cramer-von Mises test evaluates the overall fit of 

the distribution, with particular attention to the tails. The 

Cramer-von Mises statistic, W2, is calculated as follows: 

 

                       (10) 

 

A higher  indicates greater discrepancies between the 

observed data and the hypothesized distribution.  

 

Model Selection Criteria. Model selection is the process 

of choosing the best model from a set of candidate models, 

considering several factors. 

 

Log-Likelihood (LL). The log-likelihood measures how 

well a statistical model fits a given dataset. For a dataset, 

X={x1, x2,….,xn}and a probability distribution f(x; θ) with 

the parameter θ, the log-likelihood is calculated as follows: 

 

                (11) 

 

Given a data set and the parameters r, s, and t, the log-

likelihood function of Burr-XII distribution is: 

 

                                                 (12) 

Dagum-I distribution is: 
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                                       (13) 

Log-Logistic distribution is: 

 
(14) 

Akaike Information Criterion (AIC). The Akaike 

Information Criterion balances model complexity with 

goodness of fit. A lower AIC indicates a better model. It is 

calculated as follows: 

 

                      (15) 

 

Bayesian Information Criterion (BIC). The Bayesian 

Information Criterion is a more conservative measure that 

applies a larger penalty for models with additional 

parameters. It is calculated as follows: 

 

 (16) 

 

Lower BIC values indicate better models with a 

preference for simplicity. 

 

Hannan-Quinn Information Criterion (HQIC). The 

Hannan-Quinn Information Criterion is employed for model 

selection, particularly in large sample sizes. It is calculated 

as follows: 

 

                          (17) 

 

Adjusted Bayesian Information Criterion (ABIC). The 

Adjusted Bayesian Information Criterion modifies the BIC 

to account for the number of parameters in relation to the 

sample size. It is calculated as follows: 

 

          (18) 

Consistent Akaike Information Criterion (CAIC). The 

Consistent Akaike Information Criterion is a more 

conservative version of AIC, applying a greater penalty for 

the number of parameters. It is calculated as follows: 

 

                               (19) 

 

Model Evaluation Metrics. Selecting the appropriate 

evaluation metric is crucial to understanding how well your 

model is performing and what aspects of its predictions need 

improvement. 

 

Mean Absolute Error (MAE). The mean absolute error 

measures the average of the absolute errors between actual 

and predicted values: 

 

                                                    (20) 

 

Mean Squared Error (MSE). The mean squared error 

calculates the average of the squared differences between 

actual and predicted values, giving more weight to larger 

errors. 

                                             (21) 

 

Root Mean Squared Error (RMSE). The square root of 

the MSE, providing an error measure in the same units as 

the data: 

 

                                              (22) 

 

Coefficient of Determination (R²). Measure the 

proportion of variance in the dependent variable explained 

by the model:  

 

                                                         (23) 

 

Adjusted R-Squared (Adj. R²). A more trustworthy 

measure of model fit is provided by adjusted R², for the 

number of predictors, providing a more reliable measure of 

model fit:  

 

                                                 (24)                

 

Where is the actual value,  is the predicted value,  is 

the mean of the observed data, n is the number of 

observations, and k is the number of predictors. These 

metrics provide for a detailed understanding of model 

performance; the selection of metrics is contingent upon the 

objectives of the investigation. For instance, MAE offers a 

simple way to assess average error, but RMSE is helpful in 

recognizing significant prediction mistakes. In order to 

evaluate a model thoroughly, several indications are needed.  

III. METHODOLOGY 

This study analyzed 24-hour ambient air quality data for 

CO, NO, and SO₂, with 1627 observations for each 

pollutant. The data underwent preprocessing to handle 

missing values and outliers. Descriptive statistics, including 

mean, median, variance, standard deviation, skewness, and 

kurtosis, were computed to summarize the distributions of 

CO, SO₂, and NO.  

To visually assess the data and model fit, we employed 

various graphical methods, including Skewness-Kurtosis 

plots, PDFs, Q-Q plots, ECDFs, P-P plots. The data were 

modeled thorough the Dagum-I, Log-Logistic, and Burr-XII 

distributions, with parameters estimated via MLE. 

Goodness-of-fit was rigorously evaluated by statistical tests 

(like KS, CvM, and AD), alongside model selection criteria 

such as LL, AIC, BIC, HQIC, ABIC and CAIC.  

Model performance was further assessed through error 

metrics, including MAE, MSE, and RMSE, as well as R-

squared (R²) and Adjusted R-squared (Adj.R2), which 

provided insights into the explanatory power of each model. 

These comprehensive analyses enabled a rigorous 

comparison of the statistical models, leading to a deeper 

understanding of the distribution and behavior of CO, NO, 

and SO₂ pollutants. 

Figure 1 presents the methodology used to identify the 

best-fit distribution for modeling daily average 

concentrations of CO, NO, and SO₂ in Visakhapatnam, 

during data from January 2018 to December 2022. 
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Fig 1: Data Description and Methodology Chart.  

A. Descriptive Statistics Assessment 

To summarize the data, descriptive statistics were 

calculated for CO, NO, and SO₂ concentrations, including 

minimum, maximum, range, mean, and median values. 

Quartile analysis emphasized the interquartile range, while 

the standard error of the mean assessed precision. 

Confidence intervals (95%) provided the range for the true 

mean. The coefficient of variation, variance, and standard 

deviation quantified relative and overall data variability. The 

presence of significant skewness and kurtosis indicated non-

normal distributions, justifying the use of advanced 

statistical models capable of handling skewed and heavy-

tailed data. 

B. Visual Evaluation 

The fit of the Burr-XII, Log-Logistic, and Dagum-I 

distributions for CO, NO, and SO₂ data was visually 

analyzed with several plotting techniques. Skewness vs. 

kurtosis plots illustrated data asymmetry and peakedness. 

PDFs compared the fitted distributions with observed data. 

P-P plots assessed fit by comparing cumulative 

probabilities, while Q-Q plots compared quantiles of 

observed and fitted data. CDF plots evaluated the 

cumulative distribution fit, and probability difference plots 

highlighted discrepancies between the models and actual 

data. These visual assessments helped determine the 

suitability of each distribution for modeling the pollutants. 

C. Parameter Estimation 

Maximum Likelihood Estimation (MLE) was used to 

estimate the parameters of each distribution. It maximizes 

the likelihood of the observed data under the given 

distribution, ensuring that the parameter estimates and their 

associated standard errors were obtained with high statistical 

efficiency. The R programming language was employed to 

perform all computations, leveraging its robust statistical 

libraries for precise estimation. 

IV. NUMERICAL ILLUSTRATION 

This study evaluates the applicability of the Burr-XII 

distribution using three datasets: CO, SO₂, and NO. The 

datasets consist of daily average ambient concentrations 

(µg/m³) reported in Visakhapatnam city from January 2018 

to December 2022. The Burr-XII distribution is contrasted 

with other models, including the Dagum-I and Logistic 

distributions. The analysis of air quality data for CO, NO, 

and SO₂, compared to international and Indian regulations, 

offers significant insights into concentration levels and 

potential health impacts of each pollutant. with 1627 

samples per contaminant, the study provides a 

comprehensive understanding of the pollutants' 

concentration levels and their possible health effects. 

A. Descriptive Statistics and Data Distribution Analysis 

This section provides an in-depth analysis of the 

descriptive statistics of the daily average concentrations of 

CO, NO, and SO₂ concentrations provide insights into the 

distributional characteristics of these pollutants. Table I and 

II provides the key statistics, including measures of central 

tendency (mean, median), variability (standard deviation 

(Sd), range), and distribution shape (skewness, kurtosis). 

The CO data set exhibits a mean concentration of 0.6973 

ppm, with a standard deviation of 0.2865 ppm, a range of 

2.03 ppm, and a median of 0.66 ppm, indicating moderate 

variability. A positive skewness of 1.1921 and kurtosis of 

2.5205 suggest a right skewed distribution with a longer 

right tail and sharper peak, confirming the need for models 

capable of handling heavy tails. 

For NO, the average concentration is 14.3733 ppb, with a 

high standard deviation of 13.2132 ppb, a range of 128.8 

ppb, and a median of 11.50 ppb, and significant right 

skewness (3.5171) and high positive kurtosis (21.6140), 

reflecting an asymmetric distribution with a long right tail 

and an extremely peaked distribution, requiring a flexible 

model like Burr-XII. 
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The SO₂ concentrations have an average of 12.38 ppb, 

with a standard deviation of 6.6783 ppb, a range of 99.6 

ppb, and a median of 11.30 ppb. SO₂ data are also right-

skewness (2.7937) with notable positive kurtosis (23.6105), 

also demonstrating a high peak and extended right tail. 

These characteristics confirm that all three datasets deviate 

significantly from normality, displaying positive skewness 

and high kurtosis. Such distributions necessitate models that 

can accommodate asymmetry and heavy tails, justifying the 

selection of Burr-XII, Dagum-I, and Log-Logistic 

distributions for analysis. 

Histogram vs. density in Figures 3 (a)–3 (c) illustrates 

these traits, emphasizing the need for probability 

distributions like Burr-XII, which is well-suited for 

positively skewed, heavy-tailed data. The analysis of 

skewness and kurtosis further supports the appropriateness 

of Burr-XII for modeling these pollutants, aligning with 

empirical observations and enhancing the reliability of 

subsequent modeling efforts. Efficient air quality 

management is crucial to address occasional high 

concentrations and ensure public health and safety. 

The descriptive parameters of the empirical distributions 

for CO, NO, and SO₂, as shown in Table II, align with the 

results from Table I. This confirms the strong kurtosis and 

right skewness observed in the data. These characteristics 

highlight the critical need for effective air quality 

management to mitigate health risks associated with high 

pollution levels. 

B.  Skewness-Kurtosis plots 

The best statistical distribution for air quality data, 

particularly for CO, NO, and SO2, may be found using the 

Cullen and Frequency graphs. These graphs compare 

theoretical distributions with empirical data by plotting 

kurtosis against the square of skewness. Figure 2 presents 

Skewness-Kurtosis plots to assess the distributional 

characteristics of CO, NO, and SO₂. These plots visually 

evaluate whether the observed data aligns with theoretical 

probability distributions. Figure 2 (a) shows that 

bootstrapped samples (grey) and actual CO data points 

(black) cluster around the beta distribution region. This 

suggests that CO data exhibits moderate skewness and 

peakedness, favoring the Burr-XII distribution due to its 

flexibility in modeling asymmetric data. Figure 2 (b) The 

NO data distribution falls between Beta and Logistic 

regions, indicating strong positive skewness and heavy-

tailed behavior. The Burr-XII and Log-Logistic distributions 

are appropriate for capturing this trend, with Burr-XII likely 

performing best due to its ability to accommodate extreme 

values. Figure 2 (c) illustrates that SO₂ data points are near 

the gamma and lognormal distribution zones, reflecting 

higher degree of skewness and strong kurtosis typical of 

these distributions. This alignment further supports Burr-XII 

and Dagum-I distributions, as they effectively model 

datasets with extended right tails. 

Overall, the analysis of all three pollutant datasets exhibit 

strong positive skewness and high kurtosis, demonstrates 

that the Burr-XII distribution aligns closely with the 

empirical skewness-kurtosis structure, making it the most 

appropriate model for estimating CO, NO, and SO₂ 

concentrations. This visual assessment supports the 

statistical findings in Table IV (goodness-of-fit tests), which 

confirm the superiority of the Burr-XII model. thereby 

enhancing air quality forecasting and management efforts. 

C.  Parameter Assessments  

Table III provides parameter estimates and standard 

errors for CO, NO, and SO₂ characterized by the Dagum-I, 

Log-Logistic, and Burr-XII distributions. These parameters 

are crucial for evaluating compliance with 24-hour mean 

concentration standards set by international and Indian 

regulations. 

The Burr-XII model is effective for CO, with stable 

parameter estimates and moderate standard errors, assessing 

levels against the WHO’s 24-hour limit of 10 mg/m³ and 

India’s 8-hour limit of 2 mg/m³. For NO, it provides 

consistent estimates with lower standard errors compared to 

Dagum-I, relevant for the WHO’s 1-hour limit of 200 µg/m³ 

and India’s 24-hour limit of 80 µg/m³. For SO₂, the Burr-XII 

distribution shows stable estimates with relatively low 

standard errors, ensuring reliability in monitoring levels 

below the WHO’s 24-hour limit of 20 µg/m³.  

Overall, the Burr-XII distribution consistently exhibits 

lower standard errors and stable estimates, making it the 

most reliable model for pollutant concentration modeling, 

supporting regulatory compliance and public health. 

 
TABLE I 

DESCRIPTIVE STATISTICS FOR CO, NO, AND SO₂ CONCENTRATIONS 

Statistic 
Air Pollutants 

CO NO SO2 

Sample Size (n) 1,627 1627 1627 

Minimum (µg/m³) 0.14 0.5 0.7 

Maximum (µg/m³) 2.17 129.3 100.3 

1st Quartile 0.49 5.9 8.2 

Median (µg/m³) 0.66 11.5 11.3 

Mean (µg/m³) 0.6973 14.3733 12.38 
3rd Quartile 0.84 18.5 15.2 

Range (µg/m³) 2.03 128.8 99.6 

Standard Error of Mean 0.0071 0.3276 0.1656 
Lower 95% CI for Mean 0.6833 13.7308 12.0553 

Upper 95% CI for Mean 0.7112 15.0158 12.7048 

Variance 0.0821 174.5876 44.5995 
Covariance 0.4109 0.9193 0.5394 

Standard Deviation (µg/m³) 0.2865 13.2132 6.6783 

Skewness 1.1921 3.5171 2.7937 
Kurtosis 2.5205 21.614 23.6105 
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Fig. 2 (a): Skewness-Kurtosis Plot for CO.  

 
Fig. 2 (b): Skewness-Kurtosis Plot for NO. 

 
Fig. 2 (c): Skewness-Kurtosis Plot for SO2.      
Fig. 2: Skewness-Kurtosis Plots for Three Air Pollutants (CO, NO and SO2).
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TABLE II 
DESCRIPTIVE PARAMETERS OF EMPIRICAL DISTRIBUTION FOR NON-CENSORED: CO, NO, SO2 

Air Pollutants Min Max Median Mean Estimated Sd Estimated Skewness Estimated Kurtosis 

CO 0.14 2.17 0.66 0.697277 0.286528 1.194298 5.538758 

NO 0.50 129.3 11.5 14.37333 13.21316 3.523572 24.71460 
SO2 0.70 100.3 11.3 12.38002 6.678285 2.798906 26.71975 

 

TABLE III 
MLE’S WITH CORRESPONDING STANDARD ERRORS FOR THREE AIR POLLUTANTS: CO, NO, AND SO₂ USING BURR-XII, LOG-LOGISTIC, 

AND DAGUM-I DISTRIBUTIONS 

 
TABLE III (A) CARBON MONOXIDE (CO) 

Distributions 
Estimate Parameters Standard Errors 

Parameter 1 Parameter 2 Parameter 3 Parameter 1 Parameter 2 Parameter 3 

Burr-XII  3.8664 0.1734 0.4774 0.1395 0.0147 0.0062 
Log-Logistic 0.2129 -0.3571 -0.0490 0.0165 0.0729 0.0490 

Dagum-I 4.7825 0.7050 0.7827 0.2160 0.0203 0.0759 

 
TABLE III (B) NITRIC OXIDE (NO) 

Distributions 
Estimate Parameters Standard Errors 

Parameter 1 Parameter 2 Parameter 3 Parameter 1 Parameter 2 Parameter 3 

Burr-XII  1.6520 0.2442 9.3977 0.0534 0.0284 0.3274 

Log-Logistic 0.4803 2.3879 -0.1690 0.0201 0.0370 0.2774 

Dagum-I 2.7548 16.4654 0.5189 0.1402 0.8813 0.0466 

 
TABLE III (C) SULFUR DIOXIDE (SO2) 

Distributions 
Estimate Parameters Standard Errors 

Parameter 1 Parameter 2 Parameter 3 Parameter 1 Parameter 2 Parameter 3 

Burr-XII  2.9506 0.1898 8.2663 0.1022 0.0174 0.1416 
Log-Logistic 0.2330 2.6081 -2.3598 0.0154 0.0612 0.7900 

Dagum-I 4.1913 13.3208 0.6328 0.1769 0.4174 0.0510 

 

D.  Goodness-of-Fit Criteria 

Table IV presents the results of the goodness-of-fit tests, 

including the CvM, AD, and KS tests, along with 

performance criteria such as LL, AIC, BIC, HQIC, CAIC, 

and ABIC. These metrics were used to identify the best-

fitting distribution for CO, NO, and SO₂. A comprehensive 

summary of each model's performance metrics is provided 

below. 

The Burr-XII distribution consistently provides best fit 

for all three pollutants, confirming its suitability for 

modeling air quality data.: 

• CO (Table IV (A)): It shows the lowest CvM 

(0.1586), KS (0.0272), and AD (1.1651) statistics, 

along with the lowest AIC (252.9086), BIC 

(269.0921), and HQIC (258.9131) values. 

• NO (Table IV (B)): It exhibits the lowest KS 

(0.0299), CvM (0.2614), and AD (2.0444) 

statistics, and the most favorable AIC (11678.24), 

BIC (11694.43), and HQIC (11684.25) values. 

• SO₂ (Table IV (C)): It shows the lowest KS 

(0.0172), CvM (0.0738), and AD (0.7492) 

statistics, with the lowest AIC (10215.26), BIC 

(10231.45), and HQIC (10221.27) values. 

Thus, the Burr-XII distribution is the most accurate model 

for estimating CO, NO, and SO₂ concentrations. 

Implementing this model enhances air quality forecasting, 

aiding in effective pollution mitigation and regulatory 

compliance, and ultimately protecting public health and the 

environment. 

E.  Model Selection Evaluation 

Table V presents an evaluation of model performance 

metrics for CO, NO, and SO₂, comparing the efficiency of 

three continuous distributions: Burr XII, Log-Logistic, and 

Dagum-I. The findings help determine the most suitable 

model for representing the data. A detailed summary of each 

model's evaluation metrics is provided above. Model 

prediction accuracy based on Table V: 

• CO Prediction: The Burr-XII distribution exhibits 

the lowest MAE (0.3032), MSE (0.1582), and 

RMSE (0.3978), indicating outperforming other 

models despite low R² and Adj. R² values. 

• NO Prediction: Burr-XII achieves the lowest MSE 

(367.2417), RMSE (19.1636), and MAE (11.9272), 

demonstrating superior predictive performance 

among the models. 
• SO₂ Prediction: The Burr-XII distribution again 

records the lowest MAE (6.5943), MSE (82.8279), 

and RMSE (9.1010), confirming its accuracy. 
Overall, The Burr-XII distribution outperforms the other 

models in all pollutant categories-CO, NO, and SO₂, 

demonstrating its robustness in prediction, although R² 

values suggest potential room for improvement in capturing 

extreme variability, making it the best model for air quality 

forecasting despite its relatively low explanatory power 

across all models. 

F. Model Fit Evaluation 

Figure 3 compares the empirical distributions of CO, NO, 

and SO₂ with the fitted Burr-XII, Log-Logistic, and Dagum-

I distributions using histograms overlaid with probability 

density functions (PDFs), empirical cumulative distribution 

functions (ECDFs), quantile-quantile (Q-Q) plots, and 

probability-probability (P-P) plots. The results indicate that 

the Burr-XII distribution provides the best overall fit for all 

three pollutants, particularly in the tail regions. In Figure 

3(a) (CO distribution comparison), both Burr-XII and Log-

Logistic closely align with the empirical data, but Dagum-I 

shows noticeable deviations, particularly in the tails, making 

it less effective in capturing extreme CO concentrations. 

Similarly, in Figure 3(b) (NO distribution comparison), the 

empirical data exhibit strong positive skewness with a heavy 

right tail, where Log-Logistic underestimates high NO 

values, leading to tail-fitting discrepancies. The Burr-XII 

model provides a superior fit, minimizing deviations across 

quantiles, as confirmed by the Q-Q and P-P plots.  
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In Figure 3(c) (SO₂ distribution comparison), while the 

Burr-XII and Log-Logistic distributions show comparable 

performance in central values, Burr-XII proves more 

effective in capturing extreme SO₂ concentrations, whereas 

Dagum-I exhibits substantial deviations in the upper 

quantiles. Across all figures, the P-P and Q-Q plots further 

validate Burr-XII's strong alignment with empirical 

percentiles, confirming its reliability in modeling skewed air 

pollution data. These visual comparisons are consistent with 

the statistical results in Table V, where Burr-XII achieved 

the lowest error metrics (MAE, MSE, RMSE), reinforcing 

its suitability as the most robust distribution for air quality 

modeling. Overall, the Burr-XII distribution provides the 

best fit, slightly outperforming Log-Logistic, while the 

Dagum-I distribution is less suitable. 

 

V. COMPREHENSIVE ANALYSIS AND FUTURE DIRECTIONS 

A.  Comprehensive Analysis 

This research aimed to assess the effectiveness of the 

Burr-XII distribution in modeling daily average ambient 

concentrations of NO, SO₂, and CO concentrations in urban 

cities. By comparing the Burr-XII distribution with the 

Dagum-I and Log-Logistic distributions, the study identified 

the Burr-XII distribution as the most effective model for 

these pollutants. Descriptive statistics indicated that all 

datasets exhibited significant positive skewness and 

kurtosis, suggesting non-normal distributions characterized 

by extended right tails and sharp peaks. Skewness-kurtosis 

plots further supported the Burr-XII distribution’s 

suitability, aligning closely with empirical data in these 

characteristics.   

Parameter estimates, based on MLE, revealed that the 

Burr-XII distribution consistently yielded lower standard 

errors compared to the Log-Logistic and Dagum-I 

distributions. This demonstrates its reliability in assessing 

pollution levels against both Indian and international 

standards. Goodness-of-fit evaluations highlighted the Burr-

XII distribution's superior performance, with the lowest 

values for AD, CvM, KS statistics, as well as the lowest 

AIC, BIC, CAIC, ABIC and HQIC. Additionally, it showed 

the lowest MAE, MSE, and RMSE, underscoring its 

accuracy in predicting pollutant concentrations. 

B.  Conclusions 

The study establishes the Burr-XII distribution has 

emerged as the most reliable model for accurately 

estimating daily average concentrations of carbon monoxide 

(CO), nitric oxide (NO), and sulfur dioxide (SO₂) in urban 

regions. The Burr-XII distribution consistently 

outperformed the Dagum-I and Log-Logistic distributions 

across various statistical tests, selection criteria, and error 

metrics, demonstrating its robustness in handling positively 

skewed, heavy-tailed pollutant data. Its ability to provide 

lower standard errors, better goodness-of-fit statistics (e.g., 

Kolmogorov-Smirnov, Anderson-Darling), and minimal 

prediction errors (MAE, MSE, RMSE) underscores its 

suitability for modeling urban air quality. This model’s 

strong alignment with empirical data and its compatibility 

with regulatory air quality standards reinforce its utility for 

environmental monitoring and policy formulation. By 

accurately modeling pollutant concentrations, the Burr-XII 

distribution supports proactive interventions to mitigate air 

pollution and its adverse effects on public health. 

C.  Future Directions 

Future research should explore the Burr-XII distribution's 

applicability to broader geographic regions and longer 

temporal datasets, incorporating diverse environmental 

settings and seasonal variations. Expanding the study to 

include additional pollutants like PM₂.₅, PM₁₀, ozone (O₃), 

and nitrogen dioxide (NO₂) can provide a more 

comprehensive understanding of urban air quality dynamics. 

Integrating meteorological factors (e.g., wind speed, 

temperature, and humidity) with pollutant modeling can 

enhance predictions of pollutant dispersion and seasonal 

trends. Comparing the Burr-XII distribution with machine 

learning techniques, such as neural networks and ensemble 

methods, could provide valuable insights into improving 

prediction accuracy. Real-time monitoring systems and 

linking pollutant data with health outcome metrics will help 

bridge the gap between research and policy, enabling more 

targeted interventions. Additionally, incorporating 

uncertainty analyses, cross-validation methods, and 

community-based air quality data collection can improve 

model reliability and applicability, paving the way for 

advanced environmental management solutions. 

TABLE IV 

GOODNESS-OF-FIT AND PERFORMANCE CRITERIA FOR CO, NO, AND SO₂ MODELED THROUGH BURR-XII, LOG-LOGISTIC, AND 
DAGUM-I DISTRIBUTIONS 

 

TABLE IV (A) CARBON MONOXIDE (CO) 

Distributions KS CvM AD LL AIC BIC HQIC CAIC ABIC 

Burr-XII 0.0272 0.1586 1.1651 -123.4543 252.9086 269.0921 258.9131 272.0921 269.0958 

Log-Logistic 0.0334 0.3311 2.2286 -130.1866 266.3733 282.5568 272.3777 285.5568 282.5603 

Dagum-I 0.0316 0.2429 1.7051 -127.8667 261.7334 277.9169 267.7378 280.9169 277.9206 

 

 

TABLE IV (B) NITRIC OXIDE (NO) 

Distributions KS CvM AD LL AIC BIC HQIC CAIC ABIC 

Burr-XII 0.0299 0.2614 2.0444 -5836.122 11678.24 11694.43 11684.25 11697.43 11694.43 

Log-Logistic 0.0435 0.9413 7.2729 -5866.226 11738.45 11754.63 11744.46 11757.63 11754.64 

Dagum-I 0.0343 0.3382 2.8448 -5844.813 11695.63 11711.81 11701.63 11714.81 11711.81 

 
 

 

TABLE IV (C) SULFUR DIOXIDE (SO2) 

Distributions KS CvM AD LL AIC BIC HQIC CAIC ABIC 

Burr-XII 0.0172 0.0738 0.7492 -5104.632 10215.26 10231.45 10221.27 10234.45 10231.45 
Log-Logistic 0.0168 0.0958 0.9845 -5111.506 10229.01 10245.19 10235.02 10248.19 10245.20 

Dagum-I 0.0183 0.0670 0.6669 -5105.663 10217.33 10233.51 10223.33 10236.51 10233.51 

 
 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 4, April 2025, Pages 742-753

 
______________________________________________________________________________________ 



 

TABLE V 
MODEL EVALUATION METRICS FOR CO, NO, AND SO₂ USING BURR-XII, LOG-LOGISTIC, AND DAGUM-I DISTRIBUTIONS 

 

TABLE V (A) CARBON MONOXIDE (CO) 

Distributions MAE MSE RMSE R2 Adj.R2 

Burr-XII 0.3031958 0.1582264 0.3977769 0.0007403 0.0001254 

Log-Logistic 0.3138588 0.1850101 0.4301281 0.000797 0.0001821 

Dagum-I 0.3147988 0.1755589 0.4189975 0.0002086 -0.0004066 

 

TABLE V (B) NITRIC OXIDE (NO) 

Distributions MAE MSE RMSE R2 Adj.R2 

Burr-XII 11.92718 367.2417 19.16355 0.0017332 0.0011189 
Log-Logistic 15.04991 1171.030 34.22032 0.0000474 -0.0005680 

Dagum-I 12.11621 347.0137 18.62830 0.0003935 -0.0002217 

 

TABLE V (C) SULFUR DIOXIDE (SO2) 

Distributions MAE MSE RMSE R2 Adj.R2 

Burr-XII 6.594292 82.82789 9.100983 0.000000059 -0.0006153 

Log-Logistic 6.797485 88.15977 9.389344 0.00109890 0.00048420 

Dagum-I 6.639804 85.82865 9.264375 0.00000041 -0.0006150 

 
Fig. 3 (a) Comparison of empirical and theoretical distributions for CO modeled through Burr-XII, Log-Logistic and Dagum-I models. 

 

 
Fig. 3 (b) Comparison of empirical and theoretical distributions for NO assessed through Burr-XII, Log-Logistic and Dagum-I models. 
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Fig. 3 (c) Comparison of empirical and theoretical distributions for SO2 using Burr-XII, Log-Logistic and Dagum-I models.

Fig. 3: Comparison of empirical and theoretical distributions for CO, NO, and SO₂, demonstrating the superior fit of the Burr-XII distribution.
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