

Abstract—Knowledge graphs (KGs) serve as supplementary

data sources for recommendation models, effectively addressing
challenges such as cold-start scenarios and data sparsity. Exist-
ing KG-based recommender systems ignore the importance of
different entities when processing KG, resulting in biased mod-
eling of user and item characteristics; meanwhile, useless infor-
mation in the Knowledge graph also affects the performance of
recommendations. To address such problems, we propose an al-
gorithm named GATKR (graph attention network in knowledge
graph recommender), which uses graph attention networks
(GATs) to traverse the interaction graph and knowledge graph
and apply filters to remove irrelevant information from the
knowledge graph. This algorithm first uses a semantic matching
model for embedding, then aggregates neighborhood features
using GAT, complements user and item features using the atten-
tion function as a weight for neighborhood feature selection, and
finally splices and inner products the features obtained from
embedding and those from GAT to get user and item interaction
probabilities. With a maximum improvement of 4% in the cu-
mulative gain of normalized discount, the algorithm's efficacy is
confirmed on four datasets (Amazon-Book, Yelp2018, Last-FM,
Alibaba).

Index Terms—Graph Attention Network; Knowledge Graph;
Recommender System; Embedding Filtering

I. INTRODUCTION

HE development of the information era has led to a mas-
sive emergence of information, resulting in severe infor-

mation overload. Search engines or recommender systems
are often used to cope with information overload. Search
engines provide information that meets the user's require-
ments by leveraging keywords, particularly in cases where
the user has a specific query. In contrast, recommender sys-
tems do not require keywords to recommend information that
is of interest to the user. This feature significantly enhances
the user experience and has become a prevalent feature in
various domains, including e-commerce platforms, music,

Manuscript received July 18, 2024; revised February 3, 2025. Research
on this work was partially supported by the grants from the National Science
Foundation of China (No. 61762063).

Xuefeng Fu is an Associate Professor at Nanchang Institute of Technol-
ogy (NIT), Nanchang 330099, China. (Corresponding author, tel: 86-
18170936669, email: fxf@nit.edu.cn)

Huangyu Sheng is a graduate student of Nanchang Institute of Technol-
ogy (NIT), Nanchang, China. (email: 1271425661@qq.com)

Yikun Xiong is a graduate student of Nanchang Institute of Technology
(NIT), Nanchang, China. (email: 1326168741@qq.com)

Hao Hu is a graduate student of Nanchang Institute of Technology (NIT),
Nanchang, China. (email: 1847800736@qq.com)

Taotao Wang is a graduate student of Nanchang Institute of Technology
(NIT), Nanchang, China. (email: 1440338590@qq.com)

and short video platforms.
There are three categories for traditional recommendations:

content-based, collaborative filter-based and hybrid [1,2].
Content-based recommendation extracts the features of items
from the item descriptions, matches them with the features of
items that users have interacted with, and recommends the
items with the same features to users. Collaborative filter-
based recommendation begins with the user and identifies a
group of users with similar interests to suggest items they
have interacted with or items similar to those the user has in-
teracted with. The hybrid recommendation combines the two
methods, taking advantage of their strengths and overcoming
weaknesses. Traditional recommendation requires a large
number of interaction records, so no recommendation can be
made if there are missing user or item interaction records.

KG-based recommendation algorithms address some of
the problems in traditional recommendation. KG [3,4] is a
large-scale graph data of cross-domain information [5],
which is structured to store information via a triplet of (head
entity, relation, tail entity). The head entity and tail entity are
nodes in the graph, and the relation is a directed edge from
the head entity to the tail entity. Recommendation algorithms
based on KG can be divided into the following three types
according to the different processing of the triplets.

The first is an embedding-based recommendation algo-
rithm, knowledge graph embedding using vectors to repre-
sent entities and relations in the triplets, enriching user and
vector representations through vectors. The second is path-
based, with the head entity and tail entity getting path simi-
larity through meta-path and then getting the user's prefer-
ence for recommendation with the help of path similarity. The
third is graph neural network-based, which integrates the ad-
vantages of embedding algorithms and uses graph neural net-
work (GNN) to pass messages, improving the interpretability
of the recommendation.

Inspired by the knowledge graph attention network (KGAT)
[6] model, we propose a KG-based recommendation algo-
rithm, graph attention network in knowledge graph recom-
mender (GATKR), which incorporates GAT, with the assis-
tance of ConvKB [7] for knowledge graph embedding. GAT
for message propagation and aggregation of neighbor infor-
mation while filtering out useless information using filters to
improve the performance and interpretability of recommen-
dations.

The main contributions of this paper are as follows:
(1) We propose a recommendation algorithm that effec-

tively utilizes knowledge graph information through GAT. It
effectively models node information while filtering know-

GATKR: Knowledge Graph Recommendation
Algorithm Incorporating Graph Attention

Networks
Huangyu Sheng,Xuefeng Fu*,Yikun Xiong, Hao Hu, and Taotao Wang

T

IAENG International Journal of Applied Mathematics

Volume 55, Issue 4, April 2025, Pages 754-762

__

ledge graph noise.
(2) In our studies, we tested GATKR on four different da-

tasets and showed that it performs better than the current
state-of-the-art baselines.

II. RELATED WORK

KG-based recommendation algorithms are divided into
three classes: embedding-based, path-based and GNN-based.

Embedding-based recommendation algorithms process the
KG with knowledge graph embedding, which converts enti-
ties and relationships into a low-dimensional vector represen-
tation [8]. Zhang et al.'s collaborative knowledge base em-
bedding (CKE) [9] model, which makes joint training of in-
teraction graph and KG, extracts KG by TransR [10] to obtain
the structured knowledge. Additionally, a self-encoder is uti-
lized to extract textual knowledge, and a convolutional net-
work is employed to extract visual knowledge. These compo-
nents collectively constitute the item vectors. Subsequently,
these item vectors are integrated with user vectors to yield
prediction outcomes through a collaborative filtering ap-
proach. A notable drawback of the CKE model is its neglect
of the connectivity between different triplets, treating all the
triplets in the KG as a single individual, which lacks whole-
ness. The multi-task learning for knowledge graph enhanced
recommendation (MKR) [11] model proposed by Wang et al.
alternates between training the KG and the recommender sys-
tem. The recommender part of the model learns the click rate,
while the KG part learns to predict the tail node. The model
utilizes cross-feature-sharing units to facilitate the exchange
of information between the two parts. This approach ad-
dresses the sparsity problem to a certain extent, but the lack
of connectivity persists.

Path-based recommendation algorithms get the user's in-
terest preferences through meta-paths and path similarity.
Wang et al. proposed a knowledge path recurrent network
(KPRN) [12] that encodes the elements on the paths with
LSTM, captures the semantic relationships between the enti-
ties, and feeds them into a multilayer perceptron (MLP) to get
the final score. The selection of meta-paths constitutes a crit-
ical aspect of path-based recommendation algorithms, neces-
sitating expertise in relevant domains for their design. A no-
table aspect of the proposed framework is the non-universal-
ity of meta-paths across different domains, a requirement that
poses a substantial challenge to designers.

GNN-based recommendation algorithms [13] are differen-
tiated from the other two by focusing more on messaging in
the KG and using GNN to process the KG. Knowledge graph
convolutional networks (KGCN) [14], proposed by Wang et
al., combine a function of user vectors and relation vectors as
the messaging weights, which puts more focus on the user's
attention than using relationship vectors directly. The weights
of the message pass and the inner product of the neighbor
nodes are used to obtain the final item vector, and the item
vector and the user vector are the inner products to get the
predicted click rate via the activation function. Sha et al.'s
attentive knowledge graph embedding (AKGE) [15] involves
the extraction of subgraphs from user-item pairs. These sub-
graphs are then pre-trained using knowledge graph embed-
ding, followed by the aggregation of neighbor nodes through
an attention mechanism[16]. The representation of items is
updated using a gating mechanism, and prediction is made

via an artificial neural network (MLP).
In summary, the GNN-based recommendation algorithm

demonstrates the most significant efficacy in extracting fea-
tures from the KG and graph structure information from the
KG. Embedding-based recommendation algorithms overlook
the graph structure information, whereas path-based recom-
mendation algorithms face more significant challenges in de-
signing meta-paths. Our proposed model is intended to be op-
timized and extended for recommendation algorithms in
GNN.

III. PROBLEM FORMULATION

Following the dominant recommendation models, we use
a combination of user-item interaction graphs and knowledge
graphs and describe both the inputs and the outputs of the ex-
periments.

User-Item Interaction Graph: The interaction between
the user and the item is divided into display interaction and
implicit interaction. The display interaction can get the user's
score of the item, and according to the score, we can know
whether the user likes the item or not, for example, film rating,
product rating, and so on. Implicit interaction can only mean
an interaction exists between the user and the item, for exam-
ple, purchase, click, and so on. In this paper, the interaction
in the user-item interaction graph 𝐺ଵ is implicit interaction,
the interaction records in 𝐺ଵ are {(𝑢, 𝑦௨௜ , 𝑖)|𝑢 ∈ 𝑈, 𝑖 ∈ 𝐼} ,
𝑈 is the set of users, and 𝐼 is the set of items, when 𝑦௨௜ =
1 means that interaction exists between user 𝑢 and item 𝑖,
when 𝑦௨௜ = 0 means that interaction does not exist between
user 𝑢, and item 𝑖.

Knowledge Graph: It stores additional information about
the items. In this paper, each record of the KG 𝐺ଶ is a triplet,
𝐺ଶ = {(ℎ, 𝑟, 𝑡)|ℎ, 𝑡 ∈ 𝐸, 𝑟 ∈ 𝑅}, 𝐸 is the set of entities and
𝑅 is the set of relations. The set of items 𝐼 in 𝐺ଵ is a subset
of the set of entities 𝐸. To correspond entities to items, we
create 𝐷 = {(i, e)|𝑖 ∈ 𝐼, 𝑒 ∈ 𝐸}, which represents the entity
corresponding to an item.

The data in both user-item interaction graph 𝐺ଵ and KG
𝐺ଶ can be represented in the form of triplets. We combine the
two graphs into a collaborative knowledge graph 𝐺 ,
𝐺 = {(ℎ, 𝑟, 𝑡)| ℎ, 𝑡 ∈ 𝐸ᇱ , 𝑟 ∈ 𝑅′} , 𝐸ᇱ = 𝐸 ∪ 𝑈, 𝑅ᇱ = 𝑅 ∪
{𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡}, and {𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡} is the interaction in 𝐺ଵ.

The task of this paper is to predict the probability of inter-
action between a user and a not-interacted item using a col-
laborative knowledge graph.

Input: A knowledge graph 𝐺ଶ and a user-item interaction
graph 𝐺ଵ combine into a collaborative knowledge graph 𝐺.

Output: The probability that user 𝑢 interacts with item 𝑖.

IV. THE PROPOSED GATKR FRAMEWORK

We propose the incorporation of a filter-based attention
mechanism into the knowledge graph recommendation algo-
rithm. The model architecture, shown in Figure 1, consists of
three main parts: (1) Embedding representation layer, which
uses parameterization to produce vector representations of
triplet entities and relations. (2) Attention propagation layer,
which propagates the entity representation recursively. Each
propagation updates the entities using neighbors and filters
to filter information and reduce the influence of noise. (3)
Prediction layer, user and item vectors are aggregated to

IAENG International Journal of Applied Mathematics

Volume 55, Issue 4, April 2025, Pages 754-762

__

Fig. 1. The general structure of the proposed GATKR model consists of several primary modules, including the embedding layer, the attentive propagation
layer, and the prediction layer.

obtain the corresponding prediction results.

A. Embedding Representation Layer

The process of knowledge graph embedding involves
transforming entities and relations into vectors while preserv-
ing the structural features of KG. The complexity of different
knowledge graph methods varies, and their suitability for var-
ious application scenarios also varies. Past work has heavily
utilized trans-embedding methods, particularly TransR. How-
ever, this paper explores an alternative embedding method
that differs from the translation distance model. We use the
semantic matching model ConvKB for knowledge graph em-
bedding.

ConvKB obtains triplet features through the convolutional
layer filter. These features are then combined into a feature
vector and weight vector, which are multiplied to obtain the
prediction score. By continuously optimizing the weights, a
suitable vector representation is obtained. Figure 3 illustrates
the detailed steps for computing the triplet score in the em-
bedding representation layer in Figure 1. The input matrix

consists of 𝑒௛ , 𝑒௥ , 𝑒௧ ∈ ℝ௞ , [e୦，e୰，e୲] ∈ ℝ௞×ଷ , which

are then processed by three 1 × 3 filters in the convolutional
layer to extract global relations. The scoring function for each
triplet is:

𝑓(ℎ, 𝑟, 𝑡) = 𝑐𝑜𝑛𝑐𝑎𝑡൫𝑔([𝑒௛, 𝑒௥ , 𝑒௧] ∗ 𝜇)൯ ⋅ 𝑤 (1)

where 𝜇𝜖ℝଵ×ଷ represents the filter, 𝑤𝜖ℝ|ఓ|௞×ଵ where |𝜇|
denotes the number of 𝜇, 𝑔 stands for the non-linear activa-
tion function ReLU, and 𝑐𝑜𝑛𝑐𝑎𝑡 denotes the concatenation
operator that concatenates three vectors into one vector. As
the value of 𝑓(ℎ, 𝑟, 𝑡) decreases, the probability that the tri-
plet is true increases, and conversely, the probability is lower.

Valid and invalid triplets are trained in pairs and are distin-
guished by a loss function, which is as follows:

ℒ௄ீ = ∑ −log (1 + exp (𝑓(ℎ, 𝑟, 𝑡ᇱ) −(௛,௥,௧)ఢீ,(௛,௥,௧ᇲఢீᇲ)

 𝑓(ℎ, 𝑟, 𝑡))) (2)

where 𝐺ᇱ replaces the tail entity of 𝐺, resulting in invalid tri-
plets not existing in 𝐺 , providing negative samples for

embedding training.

B. Attention Propagation Layer

At the attention propagation layer, 𝑒௛ᇲ is used as a substi-
tute for the first-order features of the item consisting of the
set of neighbors, with the following formula:

 𝑒௛ᇲ = ∑ 𝜋(ℎ, 𝑟, 𝑡)𝑒௧(௛,௥,௧)∈௛ᇲ (3)

where ℎᇱ = {(ℎ, 𝑟, 𝑡)|(ℎ, 𝑟, 𝑡) ∈ 𝐺} , 𝑡 is the neighboring
node of the head entity ℎ, where 𝑒௧ is the vector represen-
tation of the neighboring nodes. The attention weight
𝜋(ℎ, 𝑟, 𝑡) determines the weight of the neighboring infor-
mation during message delivery. In Figure 2, the process of
calculation of attentional weights in layer 𝑙 and the process
of attention propagation of item 𝑖ଷ in Figure 1 in layer 𝑙 are
shown.

Fig. 2. The process of calculating attentional weights and attention propa-
gation layer.

The formula for the attention weight 𝜋(ℎ, 𝑟, 𝑡) at the time

of message delivery is as follows:

 𝜋(ℎ, 𝑟, 𝑡) = 𝜎(𝑤 ∗ ([𝑒௛, 𝑒௥ , 𝑒௧] ∗ 𝜇)) (4)

where 𝜎 is the non-linear activation function 𝑡𝑎𝑛ℎ, the fil-
ter applied to the vector splice of the triplets preserves the
most important features, allowing the head entity to focus on
the more important ones.

To prevent overfitting, 𝜋(ℎ, 𝑟, 𝑡) is normalized:

IAENG International Journal of Applied Mathematics

Volume 55, Issue 4, April 2025, Pages 754-762

__

Fig. 3. Detailed steps for the embedding module ConvKB in the GATKR model.

 𝜋(ℎ, 𝑟, 𝑡) =
௘௫௣ (గ(௛,௥,௧))

∑ ௘௫௣ (గ(௛,௥,௧))ഏ൫೓,ೝᇲ,೟ᇲ൯

 (5)

A layer of entities and first-order features from the Atten-

tion propagation layer can be used to expand to higher-order
features. The subsequent layer of entity representations is ob-
tained by using the entities and features from the previous
layer as inputs:

 𝑒௛

௟ = 𝑔(𝑒௛
௟ିଵ, 𝑒௛ᇲ

௟ିଵ) (6)

where 𝑒௛
௟ିଵ and 𝑒௛ᇲ

௟ିଵ represent the entity features and
neighbor features, respectively. 𝑔 is an aggregator that inte-
grates the entity and neighbor features in a certain way, and
the following aggregators are usually used:

(1) The GCN [17] aggregation, also known as summation
aggregation, adds up the features of the entity and its neigh-
bors and then applies a non-linear transformation. The for-
mula is as follows:

 𝑔ீ஼ே = 𝜎(𝑊(𝑒௛ + 𝑒௛ᇲ) + 𝑏) (7)

where 𝜎 is the non-linear activation function 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈,
𝑊𝜖ℝௗ×ௗis a trainable weight matrix, and 𝑏𝜖ℝௗ is the func-
tion bias.

(2) The GraphSage [18] aggregation, also known as con-
nection aggregation, connects entities and their neighborhood
features, followed by a non-linear transformation. The for-
mula is as follows:

 𝑔ீ௥௔௣௛ௌ௔௚௘ = 𝜎(𝑊(𝑒௛||𝑒௛ᇲ) + 𝑏) (8)

where 𝑊𝜖ℝௗ×ଶௗ , || is the connection operation.

(3) The Bi-Interaction [19] aggregation proposed in NFM
is expressed as follows:

𝑔஻௜ିூ௡௧௘௥௔௖௧௜௢௡ = 𝜎(𝑊ଵ(𝑒௛ + 𝑒௛ᇲ) + 𝑏ଵ) +

 𝜎(𝑊ଶ(𝑒௛ ⊙ 𝑒௛ᇲ) + 𝑏ଶ) (9)

where 𝑊ଵ, 𝑊ଶ𝜖ℝௗ×ௗ, 𝑏ଵ, 𝑏ଶ𝜖ℝௗ are trainable weight func-
tions with bias, and ⊙ denotes vector dot product.

This layer captures higher-order features of the entity that
help predict the results in the subsequent prediction layer.

C. Prediction Layer

Following the attention propagation layer, we obtain the
higher-order features of both user and item nodes. Addition-
ally, we need to acquire the initial representations of users and
items, denoted as 𝑒௨

଴, 𝑒௜
଴ in Figure 1. These can be obtained

from the entity-item comparison table (𝐷) as outlined be-
low:

𝑒௜
଴ = ൛𝑒௝ห൫𝑖௝ , 𝑒௝൯𝜖𝐻, 𝑗 = 1, … , 𝑁ൟ (10)

𝑒௨
଴ = ቊ

∑ ௘ೕ೐೔
బ

|௘೔
బ|

ቤ൫𝑖௝ , 𝑒௝൯𝜖𝐻, (𝑢, 𝑖)𝜖𝑅, 𝑗 = 1, … , 𝑁ቋ (11)

According to the above equation, the initial representation

of 𝑒௜
଴ is the representation 𝑒௝ of the entity corresponding to

the item in knowledge graph, where 𝑗 is the corresponding
number of 𝑖 in 𝐷. The representation of 𝑒௨

଴ is obtained by
averaging the items 𝑒௜

଴ that the user has interacted with in
the user-item interaction graph 𝐺ଵ.

The final prediction result combines the higher-order fea-
tures and merges the higher-order vector representations into
a single vector:

𝑒௨ = 𝑒௨

଴‖𝑒௨
ଵ‖ … ‖𝑒௨

௅ (12)

𝑒௜ = 𝑒௜
଴‖𝑒௜

ଵ‖ … ‖𝑒௜
௅ (13)

where ‖ is the join operation.

Finally, the prediction score is obtained through the inner
product:

𝑦ො௨௜ = 𝑒௨⊤𝑒௜ (14)

D. Model Optimization and Training

We treat non-existing interactions as negative samples to
ensure the model's normal training process. This approach ad-
dresses the issue of insufficient training data, which can arise
when all samples are positive. Our proposed loss function
consists of three main parts in this paper:

ℒ = ℒ௄ீ + ℒ஼ி + 𝜆||𝛩|| (15)

where 𝛩 is the set of parameters, including the weight func-
tion 𝑊, the embedding dimensions of users, items, entities,
and so on, and the ℒ஼ி formula is:

ℒ஼ி = ∑ −𝑙𝑛𝜎(𝑦ො௨௜ − 𝑦ො௨௝)௨௜ఢோశ,௨௝ఢோష (16)

where 𝜎 is the sigmoid function and 𝑅ା, 𝑅ି represent the
presence and absence of interactions, respectively. ℒ஼ி is
optimized using BPR loss [20], which can give higher predic-
tion scores for observed interactions than unobserved interac-
tions.

The use of the Adam [21] adaptive optimizer in this paper
allows for the alternating optimization of 𝐿஼ி and 𝐿௄ீ . This
approach adaptively adjusts the learning rate and helps pre-
vent overfitting during training. After updating the user and
item representations layer by layer, the loss function updates

IAENG International Journal of Applied Mathematics

Volume 55, Issue 4, April 2025, Pages 754-762

__

the model parameters. The optimal parameter that minimizes
the loss is eventually found through continuous training.

V. EXPERIMENTS

A. Dataset Description

In this paper, we use four types of datasets, Amazon-Book,
Yelp2018, Last-FM and Alibaba, to verify the effectiveness
of our algorithm. Amazon-Book is a subset of the Amazon
dataset that mainly contains book-related data. Yelp2018 is a
dataset about offline businesses, including restaurants, thea-
tres, and so on, that treats businesses as items. Last-FM col-
lects users' listening history in the Last-FM music app as data
records, with songs viewed as items. Alibaba is an e-com-
merce dataset containing records of user and clothing inter-
actions with clothing as items. We will filter users and items
with more than 10 interaction records in order to guarantee
the dataset's quality. Table I shows the details of the four da-
tasets.

For each dataset, interactions are randomly partitioned into
training (80%), testing (20%), and validation (10% subset of
training) sets to ensure robust evaluation.

TABLE I

STATISTICS OF THE EXPERIMENTAL DATASETS.

 Amazon-
Book

Yelp2018 Last-FM Alibaba

Interactions
Users 70,679 45,919 23,566 114,737
Items 24,915 45,538 48,123 30,040

Interactions 847,733 1,185,068 3,034,796 1,781,093
Knowledge Graph

Entities 88,572 90,961 58,266 59,156
Relations 39 42 9 51
Triplets 2,557,746 1,853,704 464,567 279,155

B. Evaluation Indicators

We use recall and ndcg to measure the effectiveness and
performance of our model. Recall is obtained by the ratio of
the number of items in the test set that the user interacted with
and the number of items that the model predicted correctly,
with the formula:

𝑟𝑒𝑐𝑎𝑙𝑙 =
ே೅ು

ே೅ುାேಷಿ
 (17)

where 𝑁்௉ is the number of items recommended by the
model and user interacted with, and 𝑁ிே is the number of
items not recommended by the model but with which the user
interacted.

ndcg is used to assess the model's ranking performance us-
ing the formula.:

𝑛𝑑𝑐𝑔 =
ௗ௖௚

௜ௗ௖௚
 (18)

where 𝑑𝑐𝑔 is the discounted cumulative gain, which calcu-
lates the score of the list of items recommended by the model,
the score is impacted by the rank of the items, with higher
ranked items having a more significant impact on the score,
with the formula:

𝑑𝑐𝑔 = ∑
௥௘௟(௜)

௟௢௚మ(௜ାଵ)

௞
௜ୀଵ (19)

where 𝑟𝑒𝑙(⋅) represents the relevance score of the item,
while 𝑖𝑑𝑐𝑔 stands for the ideal 𝑑𝑐𝑔 , which is the 𝑑𝑐𝑔
score when optimal alignment is achieved.

C. Baseline

To validate the effectiveness of our model, we compared it
to seven popular recommendation models, divided into the
following categories: traditional model (MF), embedding-
based models (CKE, CFKG), and graph neural network-
based models (RippleNet, KGCN, KGNN-LS, CKAN,
KGAT), as follows:

MF [22]: As a standard matrix decomposition model, it
does not incorporate a knowledge graph. It solely relies on
the user-item interaction graph to make predictions through
the decomposition matrix of users and items.

CKE [9]: This is the classic embedding-based recommen-
dation model. It learns vector representations of users and
items and makes recommendations based on these vector rep-
resentations. The recommended results are generated through
joint training in recommendation and knowledge graph.

CFKG [23]: This model integrates heterogeneous know-
ledge from multiple sources and models the entities and rela-
tionships of the knowledge graph in a unified vector space
where recommendations are made by similarity.

RippleNet [24]: This model combines the embedding-
based method and the path-based method. It uses the "water
waves "-like way to propagate from the user's items of inter-
est and spread over the knowledge graph to obtain the user's
potential preferences and make recommendations.

KGCN [14]: The model leverages users and relationships
to capture potential user interests.

KGNN-LS [25]: This model applies graph neural networks
to the knowledge graph scoring function using user-specific
relationships. It then aggregates it with neighborhood infor-
mation of varying weights to learn edge weights.

CKAN [26]: This model uses an asynchronous propagation
strategy to encode collaborative signals explicitly. It also em-
ploys knowledge-aware attention mechanisms to distinguish
between different neighbors.

KGAT [6]: This model utilizes an attention mechanism for
end-to-end modeling based on higher-order connectivity. It is
also the first model to merge the user-item interaction graph
and knowledge graph into a collaborative knowledge graph
for training.

D. Experimental Settings

The code presented in this paper is based on Pytorch and
employs the Xavier initializer to initialize the model param-
eters. The learning rate is adjusted among {5 × 10ିଶ, 1 ×
10ିଶ, 5 × 10ିଷ, 1 × 10ିଷ} , the 𝐿ଶ regularization coeffi-
cients a re adjusted among{1 × 10ିହ, 1 × 10ିସ, … ,1 ×

10ଵ, 1 × 10ଶ} , and the dropout rate is adjusted among
{0.0,0.1,0.2, … ,0.8}. The embedding dimensions for the user,
item, entity, and relationship are all set to 64. RippleNet is set
to 16 due to computational costs and the batch size is fixed at
1024. In the interest of minimizing unnecessary expenditure
of computational resources, an early-stopping strategy has
been utilized. Training is stopped when there is no improvem-

IAENG International Journal of Applied Mathematics

Volume 55, Issue 4, April 2025, Pages 754-762

__

TABLE Ⅱ
PERFORMANCE COMPARISON ON AMAZON-BOOK, YELP-2018, LAST-FM, AND ALIBABA DATASETS IN TERMS OF RECALL@20 AND NDCG@20.

 Amazon-Book Yelp2018 Last-FM Alibaba

recall ndcg recall ndcg recall ndcg recall ndcg
MF 0.1300 0.0678 0.0618 0.0402 0.0724 0.0617 0.0506 0.0276

CKE 0.1342 0.0698 0.0657 0.0423 0.0732 0.0630 0.0835 0.0512
CFKG 0.1264 0.0663 0.0522 0.0395 0.0723 0.0613 0.0901 0.0516

RippleNet 0.1336 0.0697 0.0664 0.0422 0.0791 0.0655 0.0960 0.0521
KGCN 0.1398 0.0569 0.0532 0.0338 0.0839 0.0694 0.0983 0.0633

KGNN-LS 0.1362 0.0560 0.0561 0.0257 0.0840 0.0642 0.1039 0.0633
CKAN 0.1380 0.0698 0.0646 0.0424 0.0812 0.0660 0.0970 0.0509
KGAT 0.1404 0.0746 0.0658 0.0419 0.0819 0.0701 0.1030 0.0627

GATKR 0.1391 0.0728 0.0682* 0.0441* 0.0847* 0.0721* 0.1066* 0.0653*
%Improv. -0.9% -2% 2.7% 4% 0.8% 2% 2.6% 3.1%

ent in the recall@20 for 10 rounds of the validation set.

E. Experimental Results and Analysis

Table Ⅱ presents the effectiveness of recommendation
models in the Amazon-Book, Yelp2018, Last-FM and Aliba-
ba datasets. The evaluation measures that are employed are
ndcg@20 and recall@20.

The best data in the baseline model are underlined, while
the best data containing our proposed algorithmic model is
presented in bold. The %Improv. represents the gap between
the proposed GATKR model and the best data in the baseline.
Figure 4 presents a comparison of model performance for re-
call@K and ndcg@K at various K values using the Yelp 2018
dataset.

(a) recall@K

(b) ndcg@K

Fig. 4. Comparison of recall and ndcg in Top-K recommendations in the
Yelp2018 dataset.

From the experimental results in Table Ⅱ and Figure 4, the
following conclusions can be drawn:

(1) GATKR demonstrates optimal performance on the
Yelp2018, Last-FM, and Alibaba datasets, exhibiting sub-
stantial enhancements in both metrics. Specifically, on the
Yelp2018 dataset, GATKR enhances recall@20 by 2.7% and
ndcg@20 by 4% compared to the optimal baseline model.
The Last-FM dataset shows a 0.8% improvement in re-
call@20 and a 2% improvement in ndcg@20, and the Alibaba
dataset demonstrates a 2.6% enhancement in recall@20 and
a 3.1% improvement in ndcg@20.

(2) On the Amazon-Book dataset, a performance gap exists
between GATKR and KGAT, with Recall@20 and
NDCG@20 decreasing by 0.9% and 2%, respectively. These
results suggest that our knowledge graph embedding method
may diminish in effectiveness as the number of triplets in-
creases significantly. Additionally, entity representation is bi-
ased when the number of neighbors is too large for attention
propagation, causing the filter to exclude important neighbors.

(3) In top-k recommendation, the recall improves signifi-
cantly with increasing k in Yelp2018 dataset. The perfor-
mance of GATKR compared with KGAT proves the effec-
tiveness of the filter in filtering out useless information. The
effectiveness of graph attention in aggregating neighbor in-
formation is demonstrated by the results when compared to
KGNN-LS.

(4) The performance of KGNN-LS in Figure 4(a) is com-
parable to that of the other models, yet it experiences a nota-
ble decline in Figure 4(b). This suggests that the Yelp2018
dataset may have a higher degree of irrelevant information,
which KGNN-LS is unable to filter out effectively. Conse-
quently, this irrelevant information negatively impacts the
recommendation performance.

(5) CKE and CFKG are also embedding-based models.
Notably, CFKG exhibits poorer performance compared to
MF when the knowledge graph is not utilized effectively.
This observation suggests that inadequate integration of the
knowledge graph in embedding-based models can negatively
impact recommendation performance.

(6) RippleNet is a path-based model. In the implementation
method, interest diffusion is similar to the message passing of
GNN. Therefore, RippleNet performs similarly to models
based on GNN.

(7) GATKR improves the most on the Yelp2018 and
Alibaba datasets, and the statistics from the two datasets show
that their knowledge graphs have more complex relationships,
and GATKR's embedding module is better at handling com-
plex relationships and thus has better performance.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 4, April 2025, Pages 754-762

__

(8) The superior performance of models based on graph
neural networks (KGCN, KGNN-LS, CKAN, KGAT) com-
pared to other models across four datasets suggests the sig-
nificance of graph neural networks messaging mechanism in
enhancing knowledge graph-based recommendations.

F. Ablation Experiment

In order to assess the impact of various components in
GATKR on the recommendation effect, an experimental de-
sign was developed for comparison. The experiments were
carried out by varying the number of graph attention network
layers, using different aggregation functions, and deciding
whether to use knowledge graph embedding and graph atten-
tion network, respectively.

Number of Graph Attention Network Layers. The num-
ber of layers in the GAT was adjusted in the range of {1,2,3,4}.
Table Ⅲ shows the effect of different layers on the recom-
mendation.

(1) As the number of layers in the graph attention net-
work increases, the quality of recommendations improves,
particularly when the number of layers is 2 or 3. However,
when the layer count reaches 4, the effectiveness of the rec-
ommendations begins to decline, exhibiting a performance
that is even lower than that of a network with only 1 layer.
This observation indicates that the augmentation of layers in
a graph attention network may potentially result in the loss of
salient features, thereby compromising the efficacy of the
model.

(2) Upon jointly analyzing Tables Ⅱ and Ⅲ, it is evident
that the GATKR recommendation outperforms most baseline
models even when the number of layers in the GAT is 1.

TABLE Ⅲ
EFFECT OF DIFFERENT GRAPH ATTENTION NETWORK LAYERS.

Number
of GAT
layers

Amazon-Book Yelp2018 Last-FM
recall ndcg recall ndcg recall ndcg

1 0.1387 0.0729 0.0677 0.0438 0.0837 0.0710
2 0.1389 0.0735 0.0687 0.0444 0.0841 0.0716
3 0.1391 0.0728 0.0682 0.0441 0.0847 0.0721
4 0.1384 0.0729 0.0664 0.0426 0.0827 0.0706

Aggregation Functions in Attention Propagation Layer.

Comparative experiments were conducted on three aggrega-
tors, GCN, GraphSage, and Bi-Interaction, with a single layer
of GAT. The effects of selecting different aggregators are doc-
umented in Table Ⅳ.

The Bi-Interaction aggregator has the best recommenda-
tion because it incorporates multimodal information. In con-
trast, the GCN and GraphSage aggregators aggregate infor-
mation in a single way, resulting in the loss of information
from other aspects.

TABLE Ⅳ

EFFECT OF DIFFERENT AGGREGATORS.

Aggregators Amazon-Book Yelp2018 Last-FM

recall ndcg recall ndcg recall ndcg
GCN 0.1358 0.0712 0.0669 0.0431 0.0825 0.0697

GraphSage 0.1358 0.0713 0.0670 0.0432 0.0834 0.0707
Bi-Interaction 0.1387 0.0729 0.0677 0.0438 0.0837 0.0710

Knowledge Graph Embedding and Graph Attention

Network. To evaluate the effectiveness of the knowledge

graph embeddings and graph attention networks we em-
ployed, we designed three cases: disabling the knowledge
graph embeddings, disabling the graph attention networks,
and disabling both simultaneously. The experimental results
are presented in Table Ⅴ.

(1) The impact on recommendation performance is more
pronounced when the graph attention network is disabled
compared to when the knowledge graph embedding is disa-
bled. This indicates the critical importance of enriching entity
information with neighborhood information. Without the
GAT, the model proposed in this paper reverts to a standard
knowledge embedding-based recommendation model.

(2) If knowledge graph embedding and GAT are disabled,
the model proposed in this paper becomes the same as the
traditional recommendation model. This model is unable to
process auxiliary information and can only make recommen-
dations based on historical interactions, resulting in a further
degradation of recommendation performance.

TABLE Ⅴ
IMPACT OF KNOWLEDGE GRAPH EMBEDDING AND GAT.

Disable

Components
Amazon-Book Yelp2018 Last-FM
recall ndcg recall ndcg recall ndcg

Embedding 0.1373 0.0715 0.0664 0.0420 0.0825 0.0695
GAT 0.1370 0.0712 0.0662 0.0419 0.0823 0.0693
E&G 0.1364 0.0706 0.0658 0.0412 0.0818 0.0688

G. Further Investigation on GATKR

Knowledge Graph Noise. To evaluate GATKR's filter-
ing ability in the face of noise, we add noise triples to the data
and compare it with existing knowledge graph recommenda-
tion models based on GNN. We tested the performance de-
crease of the model under the same measurement set by add-
ing 10% of noise triples to the KG. The experimental results
are shown in Figure 5.

Sparse Item Interaction Data. To evaluate the recom-
mendation ability of GATKR in long-tail items, we divided
all the items into five groups according to the interaction den-
sity, and the interaction density increased in order. The exper-
imental results are shown in Figure 6.

(1) Compared to knowledge graph recommendation mod-
els that rely on graph neural networks, GATKR demonstrates
robust performance in the presence of noise in the knowledge
graph. This robustness is primarily attributed to the filter in-
corporated in the GAT, which effectively eliminates invalid
triples. As shown in Figure 5, the recall and ndcg performance
of GATKR decreases the least in both datasets.

(2) The sparsity of item interaction data frequently gives
rise to long-tail effects. GATKR, however, has been shown to
exhibit superior resilience in such contexts. In contrast,
KGAT and CKAN exhibit a heightened susceptibility to in-
terference from irrelevant interactions when confronted with
sparse data, resulting in recommendations that are subject to
bias. This bias can be effectively mitigated by the high-qual-
ity vector representations extracted through our model.

H. Case Study

Our case study on Amazon Book, which is seen in Fig-
ure 7, demonstrates how noise filtering and graph attention
propagation work. We randomly select user 𝑢ଶ଴଴ and item
𝑖଺ଷଵ (unseen in the training set) for the demonstration. 𝑢ଶ଴଴

IAENG International Journal of Applied Mathematics

Volume 55, Issue 4, April 2025, Pages 754-762

__

(a) relative recall

(b) relative ndcg

Fig. 5. Performance in alleviating KG noise.

(a) Amazon-Book

(b)Yelp2018

Fig. 6. Performance in different data sparsity degrees.

has interacted with Harry Potter and Pride and Prejudice,
and the knowledge graph provides relevant information about

these two books, not all of which are useful. By filtering the
unnecessary information, we can get the path to recommend
𝑖଺ଷଵ to 𝑢ଶ଴଴, it has the highest attention score and is the solid
line in Figure 7. We know that the reason for recommending
The Lord of the Rings to 𝑢ଶ଴଴ is that the user has read Harry
Potter, which is also a magic book, and the user prefers magic
books.

VI. CONCLUSION

This paper proposes a filter-based attention mechanism
knowledge graph recommendation algorithm (GATKR). The
algorithm consists of three layers: prediction, attention prop-
agation and embedding representation. The attention propa-
gation layer filters the features obtained from GAT using fil-
ters to pay more attention to the features that account for a
large proportion and capture the entity's main features. Com-
parative experiments on four datasets and ablation experi-
ments demonstrate the effectiveness of our proposed algo-
rithm. The algorithm successfully improves the representa-
tion of entity features on GAT. In addition, the algorithm ef-
fectively mitigates the effect of knowledge graph noise.

Fig. 7. Real example from Amazon-Book dataset.

REFERENCE
[1] X. He, L. Liao, H. Zhang, L. Nie, and T.S. Chua, "Neural collaborative

filtering" in World Wide Web Conferences, Perth, Australia, pp. 173-
182, 2017.

[2] X. Wang, X. He, M. Wang, F. Feng, T.S. Chua, "Neural Graph Collab-
orative Filtering" in Special Interest Group on Information Retrieval,
Paris, France, 2019.

[3] Y. Cao, H. Lei, J. Li, and Z. Liu, "Neural Collective Entity Linking" in
COLING, Santa Fe, USA, pp. 675–686, 2018.

[4] Y. Cao, L. Hou, J. Li, Z. Liu, and T. Dong, "Joint Representation Learn-
ing of Cross-lingual Words and Entities via Attentive Distant Supervi-
sion" in Empirical Methods in Natural Language Processing, Brussels,
Belgium, pp. 227–237, 2018.

[5] C. Huang, and Y. Zhong, "A Novel Approach for Representing Tem-
poral Knowledge Graphs," IAENG International Journal of Computer
Science, vol. 51, no. 6, pp. 694-702, 2024.

[6] X. Wang, X.N. He, Y.X. Cao, M. Liu, and T.S. Chua, "KGAT:
Knowledge Graph Attention Network for Recommendation" in
Knowledge Discovery and Data Mining. San Francisco, USA, pp. 950–
958, 2019.

[7] DQ. Nguyen, T.D. Nguyen, D.Q. Nguyen, and D. Phung, "A Novel
Embedding Model for Knowledge Base Completion Based on Convo-
lutional Neural Network," in 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, New Orleans, pp.327-333, 2018.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 4, April 2025, Pages 754-762

__

[8] Q. Wang, and W. Zhang, "Session-based Recommendation Algorithm
Based on Heterogeneous Graph Transformer," IAENG International
Journal of Computer Science, vol. 50, no.4, pp. 1347-1353, 2023.

[9] F. Zhang, N.J. Yuan, D. Lian, X. Xie, and WY Ma, "Collaborative
Knowledge Base Embedding for Recommender Systems" in
Knowledge Discovery and Data Mining, San Francisco, USA, pp. 353–
362, 2016.

[10] Y.K. Lin, Z.Y. Liu, MS Sun, Y. Liu, and X. Zhu, "Learning Entity and
Relation Embeddings for Knowledge Graph Completion" in American
Association for Artificial Intelligence, California, USA, pp. 2181–2187,
2015.

[11] H. Wang, F. Zhang, and M. Zhao, "Multi-task feature learning for
knowledge graph enhanced recommendation" in World Wide Web
Conferences, San Francisco, USA, pp. 2000-2010, 2019.

[12] K.Y.L. Xu, C.T. Li, YL Tian, and T. Sonobe, "Representation Learning
on Graphs with Jumping Knowledge Networks" in International Con-
ference on Machine Learning, Stockholm, Sweden, Vol. 80, pp. 5449–
5458, 2018.

[13] Y. Teng, and K. Yang, "Research on Enhanced Multi-head Self-Atten-
tion Social Recommendation Algorithm Based on Graph Neural Net-
work" IAENG International Journal of Computer Science, vol. 51, no.
7, pp. 754-764, 2024.

[14] H. Wang, M. Zhao, X. Xie, W. Li, and M. Guo, "Knowledge graph
convolutional networks for recommender systems", https://doi.org/
10.48550/ arXiv.1412.6980, 2019.

[15] X. Sha, Z. Sun, and J. Zhang, "Attentive Knowledge Graph Embedd-
ing for Personalised Recommendation", https://doi.org/10.48550/arXiv.
1811.10776, 2019.

[16] Y. X. Geng, L. Wang, Z. Y. Wang and Y. G. Wang, "Central Attention
Mechanism for Convolutional Neural Networks," IAENG Interna-
tional Journal of Computer Science, vol. 51, no. 10, pp. 1642-1648,
2024.

[17] N. Thomas, Kipf, and M. Welling, "Semi-Supervised Classification
with Graph Convolutional Networks" in International Conference on
Learning Representations. Toulon, France, 2017.

[18] W.L. Hamilton, R. Ying, and J. Leskovec, "Inductive Representation
Learning on Large Graphs". in Conference and Workshop on Neural
Information Processing Systems, pp. 1025–1035, 2017.

[19] He X., and Chua T.S., (2017), "Neural Factorization Machines for
Sparse Predictive Analytics" in Special Interest Group on Information
Retrieval, Tokyo, Japan, pp. 355-364, 2017.

[20] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, "BPR:
Bayesian Personalized Ranking from Implicit Feedback" in Twenty-
Fifth Conference on Uncertainty in Artificial Intelligence, Montreal,
Canada, June 18-21, pp. 452–461, 2009.

[21] PK Diederik, and B. Jimmy, "Adam: A Method for Stochastic Optimi-
zation", https://doi.org/10.48550/arXiv.1811.10776, 2014.

[22] Y. Koren, R. Bell, and C. Volinsky, "MATRIX FACTORIZATION
TECHNIQUES FOR RECOMMENDER SYSTEMS" in IEEE, pp.30-
37, 2009.

[23] QY Ai, V. Azizi, X. Chen, and Y.F. Zhang, "Learning Heterogeneous
Knowledge Base Embeddings for Explainable Recommendation". Al-
gorithms, Vol.11 No.9, pp. 137, 2018.

[24] H. Wang, F. Zhang, J. Wang, M. Zhao, and M. Guo, "RippleNet: Prop-
agating User Preferences on the Knowledge Graph for Recommender
Systems" in Conference on Information and Knowledge Management,
Turin, Italy, pp. 417–426, 2018.

[25] H. Wang, F. Zhang, M. Zhang, and J. Leskovec, "Knowledge-aware
Graph Neural Networks with Label Smoothness Regularization for
Recommender Systems" in Knowledge Discovery and Data Mining,
San Francisco, USA, pp. 968–977, 2019.

[26] Z. Wang, G.Y. Lin, H.B. Tan, Q.H. Chen, and X.Y. Liu, "CKAN: Col-
laborative Knowledge-aware Attentive Network for Recommender
Systems" in Special Interest Group on Information Retrieval, Xi" an
China, pp. 219–228, 2020.

IAENG International Journal of Applied Mathematics

Volume 55, Issue 4, April 2025, Pages 754-762

__

