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Abstract—In 2022, Rehman et al. established the concept of
bipolar complex fuzzy sets and proved the properties of bipolar
complex fuzzy ideals in semigroups. This research gives the
concept of bipolar complex fuzzy bi-ideals in semigroups. We
prove the basic properties of bipolar complex fuzzy bi-ideals
and study the relationship between bipolar complex fuzzy ideals
and bipolar complex fuzzy bi-ideals in semigroups. Finally, we
characterize a regular and an intra-regular semigroup in terms
of bipolar complex fuzzy bi-ideals.

Index Terms—BCF sets, BCF ideals, BCF bi-ideals, regular,
intra-regular

I. INTRODUCTION

THEORY of semigroups is an algebraic structure that
was applied in computer science, coding theory, graph

theory, medical science, formal languages, and many more.
The bi-ideal in semigroups studied in 1952 by Good and
Hughes [1]. The theory of bipolar complex fuzzy sets is an
extension of bipolar fuzzy sets. It is studied in the structure
of real numbers positive, negative, and imaginary numbers
positive, and negative with generalizations of bipolar fuzzy
set.

The concept of fuzzy sets by Zadeh in 1975, [2]. After that,
it has applications in several areas like medical science, im-
age processing, decision-making methods, etc. After, Kuroki
[3] studied fuzzy subsemigroups and types of fuzzy ideals in
semigroups. Jun and Song [4] present fuzzy interior ideals in
semigroups. In 1994 Zhang [5] developed the notion of fuzzy
set go to bipolar fuzzy sets whose membership degree range
is enlarged from the interval [0, 1] to [−1, 1], and used them
for modeling and decision analysis. In 2000, Lee [6] used
the term bipolar valued fuzzy sets and applied it to algebraic
structures. The theory of complex fuzzy sets is interesting by
Ramot et al. [7]. It is a tool for dealing with uncertainty and
complex information. Tamir et al. [8] studied the complex
fuzzy set in structure cartesian by transforming the range
from the unit circle to the complex plane. Al-Husban [9]
discussed complex fuzzy groups. Hu et al. [10] developed the
complex fuzzy set in orthogonality and application to signal
detection. The complex intuitionistic fuzzy soft sets intro-
duced by Kumar and Bajaj [11]. Moreover, research in types
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bipolar fuzzy ideals, such as Kang [12], studied bipolar fuzzy
subsemigroups in semigroups. Chinnadurau and Arulmozhi
[13] discussed the bipolar fuzzy ideal in order Γ-semigroups,
and Khamrot and Siripitukdet [14] explained generalized
bipolar fuzzy subsemigroups in semigroups. Gaketem and
Khamrot [15] studied bipolar weakly interior ideals in semi-
groups. Mahmood [16] introduced bipolar soft set. Gaketem
et al. [17] expand cubic bipolar fuzzy subsemigroups and
ideals in semigroups. In the same year, Rehman et al. [18]
presented bipolar complex fuzzy sets and bipolar complex
fuzzy ideals in semigroups. Recently, Khamrot et al. [19]
presented the concept of bipolar complex fuzzy interior ideals
and we prove relations between bipolar complex ideals and
bipolar complex interior ideals in semigroups.

In this study, we give details of bipolar complex fuzzy
bi-ideals in semigroups and discuss the properties of bipolar
complex fuzzy bi-ideals in semigroups. The remainder of this
paper is organized in the following. In Section 3, we study the
connection biploar complex fuzzy ideals and bipolar complex
fuzzy bi-ideals in semigroups. In Section 4, we characterize
a regular and an intra-regular semigroup in terms of bipolar
complex fuzzy bi-ideals. The conclusions are presented in
Section 5.

II. PRELIMINARIES

In this topic, we will survey some basic definitions and
theorems of semigroups, fuzzy sets, bipolar fuzzy sets, and
bipolar complex fuzzy sets, which will be helpful in the next
topic. This paper will denote a semigroup (SG) by X.

By a subsemigroup (SSG) of X we mean a non-empty
subset M of X such that M2 ⊆ M.
A non-empty subset M of X is called a left ideal [LID] (right
ideal [RID]) of X if XM ⊆ M (MX ⊆ M). By an ideal (ID)
M of X we mean a LID and a RID of X. A generalized bi-
ideal (GBID) of M is a non-empty subset of X such that
MXM ⊆ M. An SSG M of X is called an bi-ideal (BID)
of X if MXM ⊆ M. A regular of X if for each k ∈ X,
there exists r ∈ X such that k = krk. A left (right) regular
of X if for each k ∈ X, there exists r ∈ X such that k = rk2

(k = k2r). An intra-regular of X if for each k ∈ X, there
exist r, j ∈ X such that k = rt2j.

For any ki ∈ [0, 1], i ∈ J , define

∨
i∈J

ki := sup
i∈J

{ki} and ∧
i∈J

ki := inf
i∈J

{ki}.

We see that for any k1, k2 ∈ [0, 1], we have

k1 ∨ k2 = max{k1, k2} and h1 ∧ k2 = min{k1, k2}.
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A fuzzy set Υ of a non-empty set T is a function Υ : T →
[0, 1].

Definition 2.1. A bipolar fuzzy set (shortly, BF set) Υ on T
is an object having the form

Υ := {(T, ΥP (k), ΥN (k)) | k ∈ T},

where ΥP : T → [0, 1] and ΥN : T → [−1, 0].

Remark 2.2. For the sake of simplicity we shall use
the symbol Υ = (X;ΥP , ΥN ) for the BF set Υ =
{(X, ΥP (k), ΥN (k)) | k ∈ X}.

Definition 2.3. [20] A BF set Υ = (X;ΥP , ΥN ) on X is
called a
(1) BF subsemigroup (BFSSG) on X if ΥP (k1k2) ≥

ΥP (k1) ∧ ΥP (k2) and ΥN (k1k2) ≤ ΥN (k1) ∨ Υn(k2)
for all k1, k2 ∈ X.

(2) BF left ideal (BF LID) on X if ΥP (k1k2) ≥ ΥP (k2) and
ΥN (k1k2) ≤ ΥN (k2) for all k1, k2 ∈ X.

(3) BF right ideal on X if ΥP (k1k2) ≥ ΥP (k1) and
ΥN (k1k2) ≤ ΥN (k1) for all k1, k2 ∈ X.

(4) A BF set Υ = (X;ΥP , ΥN ) on X is called a BF ideal
(BF ID) on X if it is both a BF LID and a BF RID on
X.

(5) BF interior ideal (BF IID) on X if Υ = (X;ΥP , ΥN )
is a BF subsemigroup on X, ΥP (k1k2k3) ≥ ΥP (k2) and
ΥN (k1k2k3) ≤ ΥN (k2) for all k1, k2, k3 ∈ X.

(6) BF bi-ideal (BF BID) on X if Υ = (X;ΥP , ΥN ) is a BF
subsemigroup on X, ΥP (k1k2k3) ≥ ΥP (k1)∧ΥP (k3) and
ΥN (k1k2k3) ≤ ΥN (k1) ∨ ΥP (k3) for all k1, k2, k3 ∈ X.

Definition 2.4. [18] A bipolar complex fuzzy set (shortly,
BCF set) ΥRI on X is an object having the form
ΥRI := {(X, ΥP (k) = ΥRP (k) + ιΥ IP (k), ΥN (k) =
ΥRN (k)+ιΥ IN (k)) | k ∈ X}, is called the positive supportive
grade and negative supportive grade respectively, where
ΥRP , Υ IP : X → [0, 1], and ΥRN , Υ IN : X → [−1, 0].

Remark 2.5. For the sake of simplicity we shall use the sym-
bol ΥRI = (X;ΥP , ΥN ) = (X;ΥRP + ιΥ IP , ΥRN + ιΥ IN )
for the BCF set ΥRI = {(X, ΥRP (k) + ιΥ IP (k), ΥRN (k) +
ιΥ IN (k)) | k ∈ X}.

Definition 2.6. [18] A BCF set ΥRI = (X;ΥP , ΥN ) =
(X;ΥRP + ιΥ IP , ΥRN + ιΥ IN ) on X is called a BCF
subsemigroup (BCF SSG) on X if for all k1, k2 ∈ X,
(1) ΥP (k1k2) ≥ ΥP (k1) ∧ ΥP (k2) ⇒ ΥRP (k1k2) ≥

ΥRP (k1) ∧ ΥRP (k2) and Υ IP (k1k2) ≥ Υ IP (k1) ∧
Υ IP (k2)

(2) ΥN (k1k2) ≤ ΥN (k1) ∨ ΥN (k2) ⇒ ΥRN (k1k2) ≤
ΥRN (k1) ∨ ΥRN (k2) and Υ IN (k1k2) ≤ Υ IN (k1) ∨
Υ IN (k2) .

Definition 2.7. [18] A BCF set ΥRI = (X;ΥP , ΥN ) =
(X;ΥRP + ιΥ IP , ΥRN + ιΥ IN ) on X is called a BCF left
ideal (BCF LID) on X if for all k1, k2 ∈ X,
(1) ΥP (k1k2) ≥ ΥP (k2) ⇒ ΥRP (k1k2) ≥ ΥRP (k2)
(2) ΥN (k1k2) ≤ ΥN (k2) ⇒ ΥRN (k1k2) ≤ ΥRN (k2) and

Υ IN (k1k2) ≤ Υ IN (k2).

Definition 2.8. [18] A BCF set ΥRI = (X;ΥP , ΥN ) =
(X;ΥRP + ιΥ IP , ΥRN + ιΥ IN ) on X is called a BCF right
ideal (BCF RID) on X if for all k1, k2 ∈ X,

(1) ΥP (k1k2) ≥ ΥP (k1) ⇒ ΥRP (k1k2) ≥ ΥRP (k1)
and Υ IP (k1k2) ≥ Υ IP (k1)

(2) ΥN (k1k2) ≥ ΥN (k1) ⇒ ΥRN (k1k2) ≥ ΥRN (k1)) and
Υ IN (k1k2) ≥ Υ IN (k1).

A BCF set ΥRI = (X;ΥP , ΥN ) = (X;ΥRP +
ιΥ IP , ΥRN + ιΥ IN ) on X is called a BCF ID on X if it
is both a BCF LID and a BCF BCF RID on X.

Definition 2.9. [19] A BCF subsemigroup ΥRI =
(X;ΥP , ΥN ) = (X;ΥRP + ιΥ IP , ΥRN + ιΥ IN ) on X is
called a BCF interior ideal (BCF IID) on X if for all
k1, k2, k3 ∈ X,

(1) ΥP (k1k2k3) ≥ ΥP (k2) ⇒ ΥRP (k1k2k3) ≥ ΥRP (k2) and
Υ IP (k1k2k3) ≥ Υ IP (k2)

(2) ΥN (k1k2k3) ≤ ΥN (k2) ⇒ ΥRN (k1k2k3) ≤ ΥRN (k2)
and Υ IN (k1k2k3) ≤ Υ IN (k2).

Next, we review the definition of the characteristic bipolar
complex fuzzy function.

Let M be a non-empty subset of X. The characteristic
bipolar complex fuzzy set (shortly, CBCF set) χRI

M =
(X;χP

M, χ
N
K ) = (X;χRP

M + ιχIP
M , χRN

M + ιχIN
M ) is defined

as follows:

χRP
M + ιχIP

M (k) =

{
1 + ι1 if k ∈ M

0 + ι0 if k /∈ M,

χRN
M + ιχIN

M (k) =

{
−1− ι1 if k ∈ M

0 + ι0 if k /∈ M.

for all k ∈ X and χRI
M is a characteristic bipolar complex

fuzzy set.
In the following theorem, we give a relationship between

a subsemigroup (left ideal, right ideal, ideal) and the BCF
function which is proved easily.

Theorem 2.10. [18] Let M be a non-empty subset on X.
Then M is a SSG (LID, RID, ID) of X if and only if χRI

M =
(X;χP

K , χ
N
M) = (X;χRP

M + ιχIP
M , χRN

M + ιχIN
M ) is a BCF

SSG (LID, RID, ID) on X.

Definition 2.11. [18] A BCF set ΥRI = (X;ΥP , ΥN ) =
(X;ΥRP + ιΥ IP , ΥRN + ιΥ IN ) on X with π, η ∈ [0, 1] and
ϱ, σ ∈ [−1, 0]. Define the set

(1) P(ΥRP + ιΥ IP , (π, η)) = {k ∈ X | ΥRP (k) ≥
π, Υ IP (k) ≥ η} is called positive (π, η)-cut of a CBF
set of X.

(2) N (ΥRN + ιΥ IN , (ϱ, σ)) = {h ∈ X | ΥRN (k) ≤
ϱ, Υ IN (k) ≤ σ} is called negative (ϱ, σ)-cut of a CBF
set of X.

(3) PN ((ΥRP + ιΥ IP , (ϖ, η)), (ΥRN + ιΥ IN , (ϱ, σ))) =
P(ΥRP + ιΥ IP , (π, η)) ∩ N (ΥRN + ιΥ IN , (ϱ, σ)) is
called ((ϖ, η), (ϱ, σ))-cut of a CBF set on X.

In the following theorems, we give a relationship between
a SSG (LID, RID, ID) and the ((π, η), (ϱ, σ))-cut of a BCF
set which proved easily.

Theorem 2.12. [18] A BCF set ΥRI = (X;ΥP , ΥN ) =
(X;ΥRP + ιΥ IP , ΥRN + ιΥ IN ) is a BCF subsemigroup (left
ideal, right ideal, ideal) of a semigroup X if and only if
the non-empty subset PN ((ΥRP + ιΥ IP , (π, η)), (ΥRN +
ιΥ IN , (ϱ, σ))) is a SSG (LID, RID, ID) on X for all π, η ∈
[0, 1] and ϱ, σ ∈ [−1, 0].
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Next, we study intersection and product of BCF sets as
define.
Let ΥRI = (X;ΥP , ΥN ) = (X;ΥRP + ιΥ IP , ΥRN + ιΥ IN )
and ψRI = (X;ψP , ψN ) = (X;ψRP + ιψIP , ψRN + ιψIN )
are BCF sets of X. Define
(1) (ΥRI ∩ψRI)(k) = ΥRP (h)∧ψRP (k), Υ IP (k)∧ψIP (k)

and ΥRN (k)∨ψRN (h), Υ IN (k)∨ψIN (k) for all k ∈ X.
(2) ΥRI(k) ≾ ψRI(k) = ΥRP (k) ≤ ψRP (k), Υ IP (k) ≤

ψIP (k) and ΥRN (h) ≥ ψRN (h),
Υ IN (h) ≥ ψIN (k) for all k ∈ X.

(3) ΥRI ⊚ ψRI = (X;ΥP ◦ ψP , ΥN ◦ ψN ) =
(X;ΥRP ◦ψRP +ιΥ IP ◦ψIP , ΥRN ◦ψRN+ιΥ IN ◦ψIN )
where; (ΥRP ◦ ψRP )(k) =

∨
(s,t)∈Ak

{ΥRP (s) ∧ ψRP (t)} if Ak ̸= ∅

0 if Ak = ∅,
(Υ IP ◦

ψIP )(k) =


∨

(s,t)∈Ak

{Υ IP (s) ∧ ψIP (t)} if Ak ̸= ∅

0 if Ak = ∅,
(ΥRN ◦ ψRN )(k) =

∧
(s,t)∈Ak

{ΥRN (s) ∨ ψRN (t)} if Ak ̸= ∅

0 if Ak = ∅,
(Υ IN ◦

ψIN )(k) =


∧

(s,t)∈Ak

{Υ IN (s) ∨ ψIN (t)} if Ak ̸= ∅

0 if Ak = ∅.
Obviously, the operation ⊚ is associative [18]. For k ∈ X,
define Ak := {(s, t) ∈ X× X | k = st}.

Next, we study equivalent conditions are important proper-
ties for BCF subsemigroups of semigroups which are shown
in the following theorems.

Theorem 2.13. [18] A BCF set ΥRI = (X;ΥP , ΥN ) =
(X;ΥRP + ιΥ IP , ΥRN + ιΥ IN ) is a BCF SSG of X if and
only if ΥRI ⊚ ΥRI ≾ ΥRI .

III. BIPOLAR COMPLEX FUZZY BI-IDEALS

In this part, we give the concepts of bipolar complex fuzzy
bi-ideals in semigroups and we study important properties of
bipolar complex fuzzy bi-ideals in semigroups.

Definition 3.1. A BCF SSG ΥRI = (X;ΥP , ΥN ) =
(X;ΥRP+ιΥ IP , ΥRN+ιΥ IN ) on X is called a BCF bi-ideal
(BCF BID) on X if for all k1, k2, k3 ∈ X,
(1) ΥP (k1k2k3) ≥ ΥP (k1) ∧ ΥP (k3) ⇒ ΥRP (k1k2k3) ≥

ΥRP (k1)∧ΥP (k3) and Υ IP (k1k2k3) ≥ Υ IP (k1)∧ΥP (k3)
(2) ΥN (k1k2k3) ≤ ΥN (k1) ∨ ΥP (k3) ⇒ ΥRN (k1k2k3) ≤

ΥRN (k1) ∨ ΥP (k3) and Υ IN (k1k2k3) ≤ Υ IN (k1) ∨
ΥP (k3).

The following example is a BCF BID of a semigroup.

Example 3.2. Consider a semigroup (X, ·) defined by the
following table:

· a b c d
a a a a d
b a a a a
c b a a a
d d a a a

A BCF set ΥRI = (X;ΥP , ΥN ) = (X;ΥRP +
ιΥ IP , ΥRN + ιΥ IN ) in X as follows:

ΥRP + ιΥ IP , ΥRN + ιΥ IN = {(a, (0.8 + ι0.8,−0.6 −
ι0.6)), (b, (0.5 + ι0.5,−0.5 − ι0.5)), (c, (0.6 + ι0.6,−0.7 −
ι0.7)), ((d, 0.3+ι0.3,−0.1−ι0.1))}. By routine calculation,
ΥRI = (X;ΥP , ΥN ) = (X;ΥRP + ιΥ IP , ΥRN + ιΥ IN ) is a
BCF BID of X .

Definition 3.3. A BCF set ΥRI = (X;ΥP , ΥN ) =
(X;ΥRP + ιΥ IP , ΥRN + ιΥ IN ) on X is called a BCF
gneralized bi-ideal (BCF GBID) on X if for all k1, k2, k3 ∈ X,
(1) ΥP (k1k2k3) ≥ ΥP (k1) ∧ ΥP (k3) ⇒ ΥRP (k1k2k3) ≥

ΥRP (k1)∧ΥP (k3) and Υ IP (k1k2k3) ≥ Υ IP (k1)∧ΥP (k3)
(2) ΥN (k1k2k3) ≤ ΥN (k1) ∨ ΥP (k3) ⇒ ΥRN (k1k2k3) ≤

ΥRN (k1) ∨ ΥP (k3) and Υ IN (k1k2k3) ≤ Υ IN (k1) ∨
ΥP (k3).

It is clearly every BCF BID is a BCF GBID in semigroups.
The following example is a BCF GBID of a semigroup.

Example 3.4. Consider a semigroup (X, ·) defined by the
following table:

· a b c d
a a a a a
b a a a a
c a a b a
d a a b b

A BCF set ΥRI = (X;ΥP , ΥN ) = (X;ΥRP +
ιΥ IP , ΥRN + ιΥ IN ) in X as follows:
ΥRP + ιΥ IP , ΥRN + ιΥ IN = {(a, (0.8 + ι0.8,−0.8 −
ι0.8)), (b, (0 + ι0,−0.1 − ι0.1)), (c, (0.7 + ι0.7,−0.7 −
ι0.7)), ((d, 0.4+ι0.4,−0.4−ι0.4))}. By routine calculation,
ΥRI = (X;ΥP , ΥN ) = (X;ΥRP + ιΥ IP , ΥRN + ιΥ IN )
is a BCF GBID of X. But it is not a BCF BID of X,
since ΥRP + ιΥ IP (c2) = ΥRP + ιΥ IP (b) = 0 + ι0 ≱
0.6 + ι0.6 = ΥRP + ιΥ IP (c) ∧ ΥRP + ιΥ IP (c) and
ΥRN + ιΥ IN (ca) = ΥRN + ιΥ IN (b) = −0.4 − ι0.4 ≰
−0.7− ι0.7 = ΥRN + ιΥ IN (c) ∨ ΥRN + ιΥ IN (a). Then,
(1) ΥP (c2) = ΥP (b) = 0 ≱ 0.6 = ΥP (c)∧ = ΥP (c) ⇒

ΥRP (c2) = ΥRP (b) = 0 ≱ 0.6 = ΥRP (c) ∧ ΥRP (c)
and Υ IP (c2) = Υ IP (b) = 0 ≱ 0.6 = Υ IP (c) ∧ Υ IP (c).

(2) ΥN (ca) = ΥN (b) = −0.4 ≰ −0.7 = ΥN (c)∧ΥN (a) ⇒
ΥRN (ca) = ΥRN (b) = −0.4 ≰ −0.7 = ΥRN (c) ∨
ΥRN (a) and Υ IN (ca) = Υ IN (b) = −0.4 ≰ −0.7 =
Υ IN (c) ∨ Υ IN (a).

Thus, ΥRI = (X;ΥP , ΥN ) = (X;ΥRP+ιΥ IP , ΥRN+ιΥ IN )
is not a BCF SSG of X. By Definition 3.1, it is not a BCF
BID of X.

Theorem 3.5. In regular and intra-regular of X, the BCF
BIDs and BCF GBIDs coincide.

Proof: Let ΥRI = (X;ΥP , ΥN ) = (X;ΥRP +
ιΥ IP , ΥRN + ιΥ IN ) be a BCF BID of a regular of X and
let k1, k2 ∈ X. Since X is regular, we see that there exists
h ∈ X such that k2 = k2hk2. Thus,
(1) ΥP (k1k2) = ΥP (k1(k2hk2)) = ΥP (k1(k2h)k2) ≥

ΥP (k1) ∧ ΥP (k2) ⇒ ΥRP (k1k2) = ΥRP (k1(k2hk2)) =
ΥRP (k1(k2h)k2) ≥ ΥRP (k1) ∧ ΥRP (k2) and
Υ IP (k1k2) = Υ IP (k1(k2hk2)) = Υ IP (k1(k2h)k2) ≥
Υ IP (k1) ∧ Υ IP (k2)

(2) ΥN (k1k2) = ΥN (k1(k2hk2)) = ΥN (k1(k2h)k2) ≤
ΥN (k1) ∨ ΥN (k2) ⇒ ΥRN (k1k2) = ΥRN (k1(k2hk2)) =
ΥRN (k1(k2h)k2) ≤ ΥRN (k1) ∨ ΥRN (k2) and
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Υ IN (k1k2) = Υ IN (k1(k2hk2)) = Υ IN (k1(k2h)k2) ≤
Υ IN (k1) ∨ Υ IN (k2).

Hence, ΥRI = (X;ΥP , ΥN ) = (X;ΥRP + ιΥ IP , ΥRN +
ιΥ IN ) is a BCF SSG of X. By Definition 3.1, ΥRI =
(X;ΥP , ΥN ) = (X;ΥRP + ιΥ IP , ΥRN + ιΥ IN ) is a BCF
BID of X.

Similarly, we can prove the other cases also.

Theorem 3.6. Every BCF ID of X is a BCF BID of X.

Proof: Let ΥRI = (X;ΥP , ΥN ) = (X;ΥRP +
ιΥ IP , ΥRN + ιΥ IN ) be a BCF ID of X and
let k1, k2 ∈ X. Then Υ = (X;ΥRP + ιΥ IP , ΥRN + ιΥ IN ) is
a BCF LID and BCF RID of X. Thus,
(1) ΥP (k1k2) ≥ ΥP (k2) ⇒ ΥRP (k1k2) ≥ ΥRP (k2) and

Υ IP (k1k2) ≥ Υ IP (k2),
(2) ΥN (k1k2) ≤ ΥN (k2) ⇒ ΥRN (k1k2) ≤ ΥRN (k2) and

Υ IN (k1k2) ≤ Υ IN (k2).
Hence,
(1) ΥP (k1k2) ≥ ΥP (k1) ∧ ΥP (k2) ⇒ ΥRP (k1k2) ≥

ΥRP (k1) ∧ ΥRP (k2)
and Υ IP (k1k2) ≥ Υ IP (k1) ∧ Υ IP (k2),

(2) ΥN (k1k2) ≤ ΥN (k1) ∨ ΥN (k2) ⇒ ΥRN (k1k2) ≤
ΥRN (k1) ∨ ΥRN (k2) and
Υ IN (k1k2) ≤ Υ IN (k1) ∨ Υ IN (k2).

This show that ΥRI = (X;ΥP , ΥN ) = (X;ΥRP +
ιΥ IP , ΥRN + ιΥ IN ) is a BCF SSG of X.

Let k1, k2, k3 ∈ X. Then,
(1) ΥP (k1k2k3) = ΥP ((k1k2)k3) ≥ ΥP (k3) ⇒

ΥRP (k1k2k3) = ΥRP ((k1k2)k3) ≥ ΥRP (k3) and
Υ IP (k1k2k3) = Υ IP ((k1k2)k3) ≥ Υ IP (k3),

(2) ΥN (k1k2k3) = ΥN ((k1k2)k3) ≤ ΥN (k3) ⇒
ΥRN (k1k2k3) = ΥRN ((k1k2)k3) ≤ ΥRN (k3) and
Υ IN (k1k2k3) = Υ IN ((k1k2)k3) ≤ Υ IN (k3).

Thus,
(1) ΥP (k1k2k3) ≥ ΥP (k3) ≥ ΥP (k1) ∧ ΥP (k3) ⇒

ΥRP (k1k2k3) ≥ ΥRP (k1)∧ΥRP (k3) and Υ IP (k1k2k3) ≥
Υ IP (k1) ∧ Υ IP (k3),

(2) ΥN (k1k2k3) ≤ ΥN (k1) ∨ ΥN (k3) ⇒ ΥRN (k1k2k3) ≤
ΥRN (k1) ∨ ΥRN (k3) and
Υ IN (k1k2k3) ≤ Υ IN (k1) ∨ Υ IN (k3).

Therefore, ΥRI = (X;ΥP , ΥN ) = (X;ΥRP + ιΥ IP , ΥRN +
ιΥ IN ) is a BCF BID of X.

Corollary 3.7. Every BCF ID of X is a BCF GID of X

Remark 3.8. In example 3.2 we can show that the converse
of the above theorem is not true in general.
Consider ΥRP +ιΥ IP (ca) = ΥRP +ιΥ IP (b) = 0.5+ι0.5 ≱
0.8+ι0.8 = ΥRP+ιΥ IP (a) and ΥRN+ιΥ IN (ca) = ΥRN+
ιΥ IN (b) = −0.5 − ι0.5 ≰ 0.6 − ι0.6 = ΥRN + ιΥ IN (a).
Then,

(1) ΥP (ca) = ΥP (b) = 0.5 ≱ 0.8 = ΥP (a) ⇒ ΥRP (ca) =
ΥRP (b) = 0.5 ≱ 0.8 = ΥRP (a) and Υ IP (ca) =
Υ IP (b) = 0.5 ≱ 0.8 = Υ IP (a).

(2) ΥN (ca) = ΥN (b) = −0.5 ≰ −0.6 = ΥN (a) ⇒
ΥRN (ca) = ΥRN (b) = −0.5 ≰ −0.6 = ΥRN (a) and
Υ IN (ca) = Υ IN (b) = −0.5 ≰ −0.6 = Υ IN (a).

Thus, ΥRI = (X;ΥP , ΥN ) = (X;ΥRP+ιΥ IP , ΥRN+ιΥ IN )
is not a BCF ID of X.

The following theorem shows that the BCF BIDs and BCF
IDs coincide for some types of semigroups.

Theorem 3.9. In regular of X, the BCF BIDs and BCF IDs
coincide.

Proof: Let ΥRI = (X;ΥP , ΥN ) = (X;ΥRP +
ιΥ IP , ΥRN + ιΥ IN ) be a BCF BID of a regular of X and let
k1, k2 ∈ X. Since X is regular, we have k1k2 ∈ (k1Xk1)X ⊆
k1Xk1 which that k1k2 = k1hk1 for some h ∈ X. Thus,
(1) ΥP (k1k2) = ΥP (k1hk1) ≥ ΥP (k1) ∧ ΥP (k1) ⇒

ΥRP (k1k2) = ΥRP (k1hk1) ≥ ΥRP (k1) ∧ ΥRP (k1) and
Υ IP (k1k2) = Υ IP (k1hk1) ≥ Υ IP (k1) ∧ Υ IP (k1)

(2) ΥN (k1k2) = ΥN (k1hk1) ≤ ΥN (k1) ∨ ΥN (k1) ⇒
ΥRN (k1k2) = ΥRN (k1hk1) ≤ ΥRN (k1) ∨ ΥRN (k1) and
Υ IN (k1k2) = Υ IN (k1hk1) ≤ Υ IN (k1) ∨ Υ IN (k1).

Hence, ΥRI = (X;ΥP , ΥN ) = (X;ΥRP + ιΥ IP , ΥRN +
ιΥ IN ) is a BCF RID of X. Similarly, we can prove that
ΥRI = (X;ΥP , ΥN ) = (X;ΥRP + ιΥ IP , ΥRN + ιΥ IN ) is a
BCF LID of X. Thus, ΥRI = (X;ΥRP+ιΥ IP , ΥRN+ιΥ IN )
is a BCF ID of X.

Corollary 3.10. In regular of X, the BCF GBIDs and BCF
IDs coincide.

The following theorems are basic properties.

Theorem 3.11. Let M be a non-empty subset on X. Then
M is a GBID of X if and only if χRI

M = (X;χP
M, χ

N
M) =

(X;χRP
M + ιχIP

M , χRN
M + ιχIN

M ) is a BCF GBID of X.

Proof: Suppose that M is a GBID on X and let
k1, k2, k3 ∈ X.

If k1, k3 ∈ K, then k1k2k3 ∈ K. Thus, 1+ ι1 = χRP
K (k1) =

χRP
K (k3) = χIP

K (k2) = χIP
K (k3) = χRP

K (k1k2k3) =
χIP
K (k1k2k3) and −1 − ι1 = χRN

K (k1) = χRN
K (k3) =

χIN
K (k1) = χIN

K (k3) = χRN
K (k1k2k3) = χIN

K (k1k2k3). Hence,
(1) χP

K (k1k2k3) ≥ χP
K (k1) ∧ χP

K (k3) ⇒ χRP
K (k1k2k3) ≥

χRP
K (k1) ∧ χRP

K (k3) and χIP
K (k1k2k3) ≥ χIP

K (k1) ∧
χIP
K (k3),

(2) χN
K (k1k2k3) ≤ χN

K (k2) ∨ χN
K (k3) ⇒ χRN

K (k1k2k3) ≤
χRN
K (k1) ∨ χRN

K (k3) and χIN
K (k1k2k3) ≤ χIN

K (k1) ∨
χIN
K (k3).

If k1 /∈ K or k3 /∈ K, then 0 + ι0 = χP
K (k1) = χP

K (k3) and
0 + ι0 = χN

K (k1) = χN
K (k3). Thus,

(1) χP
K (k1k2k3) ≥ χP

K (k1) ∧ χP
K (k3) ⇒ χRP

K (k1k2k3) ≥
χRP
K (k1) ∧ χRP

K (k3) and χIP
K (k1k2k3) ≥ χIP

K (k1) ∧
χIP
K (k3),

(2) χN
K (k1k2k3) ≤ χN

K (k2) ∨ χN
K (k3) ⇒ χRN

K (k1k2k3) ≤
χRN
K (k1) ∨ χRN

K (k3) and χIN
K (k1k2k3) ≤ χIN

K (k1) ∨
χIN
K (k3).

Hence, χRI
K = (X;χP

K , χ
N
K ) = (X;χRP

K +ιχIP
K , χRN

K +ιχIN
K )

is a BCF GBID of X.
Conversely, suppose that χRI

K = (X;χP
K , χ

N
K ) =

(X;χRP
K + ιχIP

K , χRN
K + ιχIN

K ) is a BCF GBID of X. Let
k1, k2, k3 ∈ X and k1, k3 ∈ K. Then 1 + ι1 = χRP

K (k1) =
χRP
K (k3) = χIP

K (k2) = χIP
K (k3) and −1 − ι1 = χRN

K (k1) =
χRN
K (k3) = χIN

K (k1) = χIN
K (k3). By assumption,

(1) χP
K (k1k2k3) ≥ χP

K (k1) ∧ χP
K (k3) ⇒ χRP

K (k1k2k3) ≥
χRP
K (k1) ∧ χRP

K (k3) and χIP
K (k1k2k3) ≥ χIP

K (k1) ∧
χIP
K (k3)

(2) χN
K (k1k2k3) ≤ χN

K (k1) ∨ χN
K (k3) ⇒ χRN

K (k1k2k3) ≤
χRN
K (k1) ∨ χRN

K (k3) and χIN
K (k1k2k3) ≤ χIN

K (k1) ∨
χIN
K (k3).
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Thus, k1k2k3 ∈ K. Therefore, K is a GBID on X.

Corollary 3.12. Let M be a non-empty subset on X. Then
M is a bi-ideal of X if and only if χRI

M = (X;χP
M, χ

N
M) =

(X;χRP
M + ιχIP

M , χRN
M + ιχIN

M ) is a BCF BID of X.

Proof: It follows from Theorems 2.10 and 3.11.

Theorem 3.13. A BCF set ΥRI = (X;ΥP , ΥN ) =
(X;ΥRP + ιΥ IP , ΥRN + ιΥ IN ) is a BCF GBID of
X if and only if the non-empty subset PN ((ΥRP +
ιΥ IP , (π, η)), (ΥRN + ιΥ IN , (ϱ, σ))) is a GBID of X for
all π, η ∈ [0, 1] and ϱ, σ ∈ [−1, 0].

Proof: Let ΥRI = (X;ΥP , ΥN ) = (X;ΥRP +
ιΥ IP , ΥRN + ιΥ IN ) is a BCF GBID of X. Then ΥRI =
(X;ΥP , ΥN ) = (X;ΥRP + ιΥ IP , ΥRN + ιΥ IN ) is a
BCF SSG of X. Thus by Theorem 2.12, PN ((ΥRP +
ιΥ IP , (π, η)), (ΥRN + ιΥ IN , (ϱ, σ))) is a SSGs of X.
Let k1, k2, k3 ∈ X, π, η ∈ [0, 1] and ϱ, σ ∈ [−1, 0].

If k1 ∈ PN ((ΥRP + ιΥ IP , (π, η)), (ΥRN + ιΥ IN , (ϱ, σ)))
and k3 ∈ PN ((ΥRP +ιΥ IP , (π, η)), (ΥRN +ιΥ IN , (ϱ, σ))),
then ΥRP (k1) ∧ ΥRP (k3) ≥ π, Υ IP (k1) ∧ Υ IP (k3) ≥ η and
ΥRN (k1) ∨ ΥRN (k3) ≤ ϱ, Υ IN (k1) ∨ Υ IN (k3) ≤ σ. By
assumption,
(1) ΥP (k1k2k3) ≥ ΥP (k1) ∧ ΥP (k3) ⇒ ΥRP (k1k2k3) ≥

ΥRP (k1) ∧ ΥRP (k3) and Υ IP (k1k2k3) ≥ Υ IP (k2) ∧
Υ IP (k3)

(2) ΥN (k1k2k3) ≤ ΥN (k1) ∨ ΥN (k3) ⇒ ΥRN (k1k2k3) ≤
ΥRN (k1) ∨ ΥRN (k3) and Υ IN (k1k2k3) ≤ Υ IN (k1) ∨
Υ IN (k3).

Thus, k1k2k3 is an element of PN ((ΥRP +
ιΥ IP , (π, η)), (ΥRN + ιΥ IN , (ϱ, σ))).

If k1 /∈ PN ((ΥRP + ιΥ IP , (π, η)), (ΥRN + ιΥ IN , (ϱ, σ)))
or k3 /∈ PN ((ΥRP + ιΥ IP , (π, η)), (ΥRN + ιΥ IN , (ϱ, σ))),
(1) ΥP (k1k2k3) ≥ ΥP (k1) ∧ ΥP (k3) ⇒ ΥRP (k1k2k3) ≥

ΥRP (k2) ∧ ΥRP (k3) and Υ IP (k1k2k3) ≥ Υ IP (k2) ∧
Υ IP (k3)

(2) ΥN (k1k2k3) ≤ ΥN (k1) ∨ ΥN (k3) ⇒ ΥRN (k1k2k3) ≤
ΥRN (k1) ∨ ΥRN (k3) and Υ IN (k1k2k3) ≤ Υ IN (k1) ∨
Υ IN (k3).

Thus, k1k2k3 is an element of PN ((ΥRP +
ιΥ IP , (π, η)), (ΥRN + ιΥ IN , (ϱ, σ))).
Hence, PN ((ΥRP + ιΥ IP , (π, η)), (ΥRN + ιΥ IN , (ϱ, σ)))
is a genrelized bi-ideal of X.

Conversely, suppose that PN ((ΥRP +
ιΥ IP , (π, η)), (ΥRN + ιΥ IN , (ϱ, σ))) is a GBID of X.
By assumption, PN ((ΥRP + ιΥ IP , (π, η)), (ΥRN +
ιΥ IN , (ϱ, σ))) is a SSGs of X. Thus by Theorem
2.12, ΥRI = (X;ΥRP + ιΥ IP , ΥRN + ιΥ IN ) is
a BCF SSG of X. Let k1, k3 ∈ X, π, η ∈ [0, 1]
and ϱ, σ ∈ [−1, 0]. By assumption, k1k2k3 is an
element of ΥRI = (X;ΥRP + ιΥ IP , ΥRN + ιΥ IN ).
Thus, ΥRP (k1k2k3) ≥ π = ΥRP (k1) ∧ ΥRP (k3),
Υ IP (k1k2k3) ≥ η = ΥRP (k1) ∧ ΥRP (k3),
ΥRN (k1k2k3) ≤ ϱ = ΥRN (k1) ∨ ΥRN (k3) and
Υ IN (k1k2k3) ≤ σ = Υ IN (k1) ∨ Υ IN (k3). Hence,
ΥRI = (X;ΥP , ΥN ) = (X;ΥRP + ιΥ IP , ΥRN + ιΥ IN ) is
a BCF GBID of X.

Theorem 3.14. A BCF set ΥRI = (X;ΥP , ΥN ) =
(X;ΥRP+ιΥ IP , ΥRN+ιΥ IN ) is a BCF BID of X if and only

if the non-empty subset PN ((ΥRP + ιΥ IP , (π, η)), (ΥRN +
ιΥ IN , (ϱ, σ))) is a bi-ideal of X for all π, η ∈ [0, 1] and
ϱ, σ ∈ [−1, 0].

Proof: It follows from Theorems 2.12 and 3.13.
Some equivalent conditions are important properties for

a BCF BID of a of X which are shown in the following
theorem.

Theorem 3.15. A CBF set ΥRI = (X;ΥP , ΥN ) =
(X;ΥRP + ιΥ IP , ΥRN + ιΥ IN ) is a BCF GBID of X if
and only if ΥRI ⊚ XRI ⊚ ΥRI ≾ ΥRI where XRI =
(X;XP ,XN ) = (XRP + ιXIP ,XRN + ιXIN ) is a BCF set
of X.

Proof: Assume that ΥRI = (X;ΥP , ΥN ) = (X;ΥRP +
ιΥ IP , ΥRN + ιΥ IN ) is a BCF GBID of X. Let k ∈ X. Then
(ΥRI ⊚ XRI ⊚ ΥRI)(k) = ((XRI ◦ ΥRI) ◦ XRI)(k).

If Ak = ∅, then it is easy to verify that, (ΥRP ◦ XRP ) ◦
ΥRP (k) ≤ ΥRP (k), (Υ IP ◦ XIP ) ◦ Υ IP (k) ≤ Υ IP (k) and
(ΥRN ◦XRN )◦ΥRN (k) ≥ ΥRN (k), (Υ IN ◦XIN )◦Υ IN (k) ≥
Υ IN (k).

If Ak ̸= ∅, then

(ΥRP ◦ XRP ) ◦ ΥRP (k)
=

∨
(r,o)∈Ak

{(ΥRP ◦ XRP )(r) ∧ ΥRP (o)}

=
∨

(r,o)∈Ak

{
∨

(u,t)∈Ar

{ΥRP (u) ∧ XRP (t)} ∧ΥRP (o)}

=
∨

(r,o)∈Ak

{
∨

(u,t)∈Ar

{ΥRP (u) ∧ 1} ∧ ΥRP (o)}

=
∨

(r,o)∈Ak

{
∨

(u,t)∈Ar

{ΥRP (u)} ∧ ΥRP (o)}

=
∨

(r,o)∈Ak

∨
(u,t)∈Ar

{ΥRP (u) ∧ ΥRP (o)}

≤
∨

(r,o)∈Ak

{ΥRP (uto)}

= ΥRP (k).

Thus, (ΥRP ◦XRP ) ◦ ΥRP (k) ≤ ΥRP (k). Similarly, we can
show that (Υ IP ◦ XIP ) ◦ Υ IP (k) ≤ Υ IP (k). And

(ΥRN ◦ XRN ) ◦ ΥRN (k)
=

∧
(r,o)∈Ak

{(ΥRN ◦ XRN )(r) ∨ ΥRN (o)}

=
∧

(r,o)∈Ak

{
∧

(u,t)∈Ar

{ΥRN (u) ∨ XRN (o)} ∨ΥRN (o)}

=
∧

(r,o)∈Ak

{
∧

(u,t)∈Ar

{ΥRN (u) ∧ −1} ∨ ΥRN (o)}

=
∧

(r,o)∈Ak

{
∧

(u,t)∈Ar

{ΥRN (u)} ∨ ΥRN (o)}

=
∧

(r,o)∈Ak

∧
(u,t)∈Ar

{ΥRN (u) ∨ ΥRN (o)}

≥
∧

(r,o)∈Ak

{ΥRN (uto)}

= ΥRN (k).

Thus, (ΥRN ◦XRN ) ◦ ΥRN (k). Similarly, we can show that
(Υ IN ◦ XIN ) ◦ Υ IN (k). Hence, ΥRI ⊚ XRI ⊚ ΥRI ≾ ΥRI .

Conversely, suppose that ΥRI ⊚ XRI ⊚ ΥRI ≾ ΥRI .
Let k1, k2, k3 ∈ X. Then by assumption, (ΥRP ◦ XRP ) ◦
ΥRP (k1k2k3) ≤ ΥRP (k1k2k3), (Υ IP ◦XIP ) ◦Υ IP (k1k2k3) ≤
Υ IP (k1k2k3), (Υ

RN ◦XRN ) ◦ ΥRN (k1k2k3) ≥ ΥRN (k1k2k3)
and (Υ IN ◦ XIN ) ◦ Υ IN (k1k2k3) ≥ Υ IN (k1k2k3). Thus,

ΥRP (k1k2k3) ≥ (ΥRP ◦ XRP ) ◦ ΥRP (k1k2k3)
=

∨
(r,o)∈Ak1k2k3

{(ΥRP ◦ XRP (r)) ∧ ΥRP (o)}
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=
∨

(r,o)∈Ak1k2k3

{
∨

(u,t)∈Ar

{ΥRP (u) ∧ XRP (t)} ∧ΥRP (o)}

=
∨

(r,o)∈Ak1k2k3

{
∨

(u,t)∈Ar

{ΥRP (u) ∧ 1} ∧ ΥRP (t)}

=
∨

(r,o)∈Ak1k2k3

∨
(u,t)∈Ar

{ΥRP (u) ∧ ΥRP (t)}

≥ ΥRP (k1) ∧ ΥRP (k3).

Hence, ΥRP (k1k2k3) ≥ ΥRP (k1) ∧ ΥRP (k3). Similarly, we
can show that Υ IP (k1k2k3) ≥ Υ IP (k1) ∧ Υ IP (k3).
Therefore, ΥP (k1k2k3) ≥ ΥP (k1) ∧ ΥP (k3) ⇒
ΥRP (k1k2k3) ≥ ΥRP (k1) ∧ ΥRP (k3) and Υ IP (k1k2k3) ≥
Υ IP (k1) ∧ Υ IP (k3).

ΥRN (k1k2k3) ≤ (ΥRN ◦ XRN ) ◦ ΥRN (k1k2k3)
=

∧
(r,o)∈Ak1k2k3

{(ΥRN ◦ XRN (r)) ∨ ΥRN (o)}

=
∧

(r,o)∈Ak1k2k3

{
∧

(u,t)∈Ar

{ΥRN (u) ∨ XRN (t)} ∨ΥRN (o)}

=
∧

(r,o)∈Ak1k2k3

{
∧

(u,t)∈Ar

{ΥRN (u) ∨ −1} ∨ ΥRN (t)}

=
∧

(r,o)∈Ak1k2k3

∧
(u,t)∈Ar

{ΥRN (u) ∨ ΥRN (t)}

≤ ΥRN (k1) ∨ ΥRN (k3).

Hence, ΥRN (k1k2k3) ≤ ΥRN (k1) ∨ ΥRN (k3). Similarly, we
can show that Υ IN (k1k2k3) ≤ Υ IN (k1) ∨ Υ IN (k3).
Therefore, ΥN (k1k2k3) ≤ ΥN (k1) ∨ ΥN (k3) ⇒
ΥRN (k1k2k3) ≤ ΥRN (k1) ∨ ΥRN (k3) and
Υ IN (k1k2k3) ≤ Υ IN (k1) ∨ Υ IN (k3).

Consequently, ΥRI = (X;ΥP , ΥN ) = (X;ΥRP +
ιΥ IP , ΥRN + ιΥ IN ) is a BCF GBID of X.

Theorem 3.16. A CBF set ΥRI = (X;ΥP , ΥN ) =
(X;ΥRP + ιΥ IP , ΥRN + ιΥ IN ) is a BCF BID of X if and
only if ΥRI ⊚ ΥRI ≾ ΥRI and ΥRI ⊚ XRI ⊚ ΥRI ≾ ΥRI

where XRI = (X;XP ,XN ) = (XRP + ιXIP ,XRN + ιXIN )
is a BCF set of X.

Proof: It follows from Theorems 2.13 and 3.15.

IV. CHARACTERIZATIONS OF REGULAR AND
INTRA-REGULAR SEMIGROUPS.

In this topic, we will characterize a regular and intra-
regular of X using in terms of BCF bi-ideals and BCF ideals.

This lemmas is a tool of characterization a regular and
intra-regular of X in terms of BCF BIDs.

Lemma 4.1. [18] If ΥRI = (X;ΥP , ΥN ) = (X;ΥRP +
ιΥ IP , ΥRN + ιΥ IN ) is a BCF RID and ψRI =
(X;ψP , ψN ) = (X;ψRP + ιψIP , ψRN + ιψIN ) is a BCF
LID of X, then ΥRI ⊚ ψRI ≾ ΥRI ∩ ψRI .

Lemma 4.2. [18] Let K and L be a non-empty subsets of
X. Then
(1) χRI

K ⊚ χRI
L = χRI

KL.
(2) χRI

K ∩ χRI
L = χRI

K∩L.

The following theorem shows an equivalent conditional
statement for an intra-regular of X.

Theorem 4.3. Let X be a SG. Then the following are
equivalent:
(1) X is intra-regular,
(2) ΥRI ∩ ψRI ≾ ΥRI ⊚ ψRI , for every BCF LID ΥRI =

(X;ΥP , ΥN ) = (X;ΥRP + ιΥ IP , ΥRN + ιΥ IN ) of X

and every BCF RID ψRI = (X;ψP , ψN ) = (X;ψRP +
ιψIP , ψRN + ιψIN ) of X.

Theorem 4.4. Let X be a SG. Then the following are
equivalent:

(1) X is intra-regular,
(2) ΥRI ∩ ψRI ≾ ΥRI ⊚ ψRI ⊚XRI , for every BCF GBID

ΥRI = (X;ΥP , ΥN ) = (X;ΥRP + ιΥ IP , ΥRN + ιΥ IN )
of X and every BCF LID ψRI = (X;ψP , ψN ) =
(X;ψRP + ιψIP , ψRN + ιψIN ) of X,

(3) ΥRI ∩ ψRI ≾ ΥRI ⊚ ψRI ⊚ XRI , for every BCF BID
ΥRI = (X;ΥP , ΥN ) = (X;ΥRP + ιΥ IP , ΥRN + ιΥ IN )
of X and every BCF LID ψRI = (X;ψP , ψN ) =
(X;ψRP + ιψIP , ψRN + ιψIN ) of X.

Proof: (1) ⇒ (2) Let ΥRI = (X;ΥP , ΥN ) =
(X;ΥRP + ιΥ IP , ΥRN + ιΥ IN ) and ψRI = (X;ψP , ψN ) =
(X;ψRP + ιψIP , ψRN + ιψIN ) be a BCF GBID and a BCF
LID of X respectively. Let k ∈ X. Then there exist r, e ∈ X
such that k = rk2e. Also, k = rk2e = r(rk2e)ke = (r2k)(keke).
Thus,

(ΥRP ◦ ψRP ◦ XRP )(k)
=

∨
(u,o)∈Ak

{ΥRP (u) ∧ (ψRP ◦ XRP )(o)}

≥
∨

(u,o)∈Ak

{ΥRP (rk2e) ∧ (ψRP ◦ XRP )(keke)}

=
∨

(u,o)∈Ak

{ΥRP (rk2e) ∧
∨

(w,c)∈Akeke

(ψRP (w) ∧ XRP )(c)}

≥ ΥRP (k) ∧ (ψRP (kek) ∧ XRP (e))
= ΥRP (k) ∧ (ψRP (kek) ∧ 1) = ΥRP (k) ∧ ψRP (kek)
≥ ΥRP (k) ∧ (ψRP (k) ∧ ψRP (k)) ≥ ΥRP (k) ∧ ψRP (k)
= (ΥRP ∧ ψRP )(k).

Hence, (ΥRP ◦ ψRP ◦ XRP )(k) ≥ (ΥRP ∧ ψRP )(k).
Similarly, we can show that (Υ IP ◦ ψIP ◦ XIP )(k) ≥
(Υ IP ∧ ψIP )(k). And

(ΥRN ◦ ψRN ◦ XRN )(k)
=

∧
(u,o)∈Ak

{ΥRN (u) ∧ (ψRN ◦ XRN )(o)}

≤
∧

(u,o)∈Ak

{ΥRP (rk2e) ∨ (ψRN ◦ XRN )(keke)}

=
∧

(u,o)∈Ak

{ΥRN (rk2e) ∨
∧

(w,c)∈Akeke

(ψRN (w) ∨ XRN )(c)}

≤ ΥRN (k) ∨ (ψRN (kek) ∨ XRN (e))
= ΥRN (k) ∨ (ψRN (kek) ∨ −1) = ΥRN (k) ∨ ψRN (kek)
≤ ΥRN (k) ∨ (ψRN (k) ∨ ψRN (k)) ≤ ΥRN (k) ∨ ψRN (k)
= (ΥRN ∨ ψRN )(k).

Hence, (ΥRN ◦ ψRN ◦ XRN )(k) ≤ (ΥRN ∨ ψRN )(k).
Similarly, we can show that (Υ IN ◦ ψIN ◦ XIN )(k) ≤
(Υ IN∨ψIN )(k). Therefore, ΥRI∩ψRI ≾ ΥRI⊚ψRI⊚XRI .
(2) ⇒ (3) Since every BCF GBID is BCF BID in of X.
(3) ⇒ (1) Let ΥRI = (X;ΥP , ΥN ) = (X;ΥRP +

ιΥ IP , ΥRN + ιΥ IN ) and ψRI = (X;ψP , ψN ) = (X;ψRP +
ιψIP , ψRN + ιψIN ) be a BCF GBID and a BCF LID of
X respectively. Since every BCF RID of X is a BCF BID,
we have ψRI is also a BFC BID of X. Thus, by hypothesis
ΥRI∩ψRI ≾ ΥRI⊚(ψRI⊚XRI) ≾ ΥRI⊚ψRI . By Theorem
4.3, X is intra-regular.

Theorem 4.5. Let X be a SG. Then the following are
equivalent:

(1) X is intra-regular,
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(2) ΥRI ∩ ψRI ≾ XRI ⊚ ΥRI ⊚ ψRI , for every BCF GBID
ΥRI = (X;ΥP , ΥN ) = (X;ΥRP + ιΥ IP , ΥRN + ιΥ IN )
of X and every BCF RID ψRI = (X;ψP , ψN ) =
(X;ψRP + ιψIP , ψRN + ιψIN ) of X,

(3) ΥRI ∩ ψRI ≾ XRI ⊚ ΥRI ⊚ ψRI , for every BCF BID
ΥRI = (X;ΥP , ΥN ) = (X;ΥRP + ιΥ IP , ΥRN + ιΥ IN )
of X and every BCF RID ψRI = (X;ψP , ψN ) =
(X;ψRP + ιψIP , ψRN + ιψIN ) of X.

Proof: (1) ⇒ (2) Let ΥRI = (X;ΥP , ΥN ) =
(X;ΥRP + ιΥ IP , ΥRN + ιΥ IN ) and ψRI = (X;ψP , ψN ) =
(X;ψRP + ιψIP , ψRN + ιψIN ) be a BCF GBID and a BCF
RID of X respectively. Let k ∈ X. Then there exist r, e ∈ X
such that k = rk2e. Also, k = rk2e = rk(rk2e)e = (rkrk)(ke2).
Thus,

(XRP ◦ ΥRP ◦ ψRP )(k)
=

∨
(u,o)∈Ak

{(XRP ◦ ΥRP )(u) ∧ ψRP (o)}

≥
∨

(u,o)∈Ak

{(XRP ◦ ΥRP )(rkrk) ∧ ψRP (ke2)}

=
∨

(u,o)∈Ak

{
∨

(w,c)∈Arkrk

(XRP (w) ∧ ΥRP (c)) ∧ ψRP (ke2)

≥ (XRP (r) ∧ ΥRP (krk)) ∧ ψRP (k)
= (1 ∧ ΥRP (krk)) ∧ ψRP (k) = ΥRP (krk) ∧ ψRP (k)
≥ (ΥRP (k) ∧ ΥRP (k)) ∧ ψRP (k) = ΥRP (k) ∧ ψRP (k)
= (ΥRP ∧ ψRP )(k).

Hence, (XRP ◦ ΥRP ◦ ψRP )(k) ≥ (ΥRP ∧ ψRP )(k).
Similarly, we can show that (XIP ◦ Υ IP ◦ ψIP )(k) ≥
(Υ IP ∧ ψIP )(k). And

(XRN ◦ ΥRN ◦ ψRN )(k)
=

∧
(u,o)∈Ak

{(XRN ◦ ΥRN )(u) ∨ ψRN (o)}

≤
∧

(u,o)∈Ak

{(XRN ◦ ΥRN )(rkrk) ∨ ψRN (ke2)}

=
∧

(u,o)∈Ak

{
∧

(w,c)∈Arkrk

(XRN (w) ∨ ΥRN (c)) ∨ ψRN (ke2)

≤ (XRN (r) ∨ ΥRN (krk)) ∨ ψRN (k)
= (0 ∧ ΥRN (krk)) ∨ ψRN (k) = ΥRN (krk) ∨ ψRN (k)
≤ (ΥRN (k) ∨ ΥRN (k)) ∨ ψRN (k) = ΥRN (k) ∨ ψRN (k)
= (ΥRN ∧ ψRN )(k).

Hence, (XRN ◦ ΥRN ◦ ψRN )(k) ≤ (ΥRN ∨ ψRN )(k).
Similarly, we can show that (XIN ◦ Υ IN ◦ ψIN )(k) ≤
(Υ IN∨ψIN )(k). Therefore, ΥRI∩ψRI ≾ XRI⊚ΥRI⊚ψRI .
(2) ⇒ (3) Since every BCF GBID is BCF BID of X.

(3) ⇒ (1) Let ΥRI = (X;ΥP , ΥN ) = (X;ΥRP +
ιΥ IP , ΥRN + ιΥ IN ) and ψRI = (X;ψP , ψN ) = (X;ψRP +
ιψIP , ψRN + ιψIN ) be a BCF GBID and a BCF RID of
X respectively. Since every BCF LID of X is a BCF BID,
we have ψRI is also a BFC BID of X. Thus, by hypothesis
ΥRI∩ψRI ≾ (XRI⊚ΥRI)⊚ψRI ≾ ΥRI⊚ψRI . By Theorem
4.3, X is intra-regular.

Lemma 4.6. [21] Let X be a SG. Then X is regular and
intra-regular if and only if B = B2 for every bi-ideal B of
X

Lemma 4.7. [18] For a SG X, the following conditions are
equivalent:

(1) X is regular and intra-regular,
(2) ΥRI∩ψRI ≾ (ΥRI⊚ψRI)∩(ψRI⊚ΥRI) for every BCF

LID ΥRI = (X;ΥP , ΥN ) = (X;ΥRP + ιΥ IP , ΥRN +

ιΥ IN ) and every BCF RID ψRI = (X;ψP , ψN ) =
(X;ψRP + ιψIP , ψRN + ιψIN ) of X.

Theorem 4.8. For a semigroup X, the following conditions
are equivalent:

(1) X is regular and intra-regular,
(2) B = B⊚B for every BCF BID B of X,
(3) ΥRI ∩ ψRI ≾ (ΥRI ⊚ ψRI) ∩ (ψRI ⊚ ΥRI) for

every BCF BIDs ΥRI = (X;ΥP , ΥN ) = (X;ΥRP +
ιΥ IP , ΥRN + ιΥ IN ) and ψRI = (X;ψP , ψN ) =
(X;ψRP + ιψIP , ψRN + ιψIN ) of X,

(4) ΥRI∩ψRI ≾ (ΥRI⊚ψRI)∩(ψRI⊚ΥRI) for every BCF
BID ΥRI = (X;ΥP , ΥN ) = (X;ΥRP + ιΥ IP , ΥRN +
ιΥ IN ) and every BCF LID ψRI = (X;ψP , ψN ) =
(X;ψRP + ιψIP , ψRN + ιψIN ) of X,

(5) ΥRI∩ψRI ≾ (ΥRI⊚ψRI)∩(ψRI⊚ΥRI) for every BCF
BID ΥRI = (X;ΥP , ΥN ) = (X;ΥRP + ιΥ IP , ΥRN +
ιΥ IN ) and every BCF RID ψRI = (X;ψP , ψN ) =
(X;ψRP + ιψIP , ψRN + ιψIN ) of X.

Proof: (1) ⇒ (3) Let ΥRI = (X;ΥP , ΥN ) =
(X;ΥRP + ιΥ IP , ΥRN + ιΥ IN ) and ψRI = (X;ψP , ψN ) =
(X;ψRP + ιψIP , ψRN + ιψIN ) be BCF BIDs and k ∈ X.
Then there exist r, e, t ∈ X such that k = krk and k = ek2t.
Also, k = krk = krkrk = rk(ek2t)rk = (krek)(ktrk). Thus,

(ΥRP ◦ ψRP )(k) =
∨

(u,o)∈Ak

{(ΥRP )(u) ∧ ψRP (o)}

≥ ΥRP (rkek) ∧ ψRP (ktrk)
≥ (ΥRP (k) ∧ ΥRP (k)) ∧ (ψRP (k) ∧ ψRP (k))
= ΥRP (k) ∧ ψRP (k) = (ΥRP ∧ ψRP )(k).

Hence, (ΥRP ◦ ψRP )(k) ≥ (ΥRP ∧ ψRP )(k). Similarly,
we can show that (Υ IP ◦ ψIP )(k) ≥ (Υ IP ∧ ψIP )(k). And

(ΥRN ◦ ψRN )(k) =
∧

(u,o)∈Ak

{(ΥRN )(u) ∨ ψRN (o)}

≤ ΥRN (rkek) ∨ ψRN (ktrk)
≤ (ΥRN (k) ∨ ΥRP (k)) ∨ (ψRN (k) ∨ ψRN (k))
= ΥRN (k) ∨ ψRN (k) = (ΥRN ∨ ψRN )(k).

Hence, (ΥRN◦ψRN )(k) ≤ (ΥRN∨ψRN )(k). Similarly, we
can show that (Υ IN ◦ψIN )(k) ≤ (Υ IN∨ψIN )(k). Therefore,
ΥRI ∩ ψRI ≾ ΥRI ⊚ ψRI . In the same way we can show
that ΥRI ∩ψRI ≾ ψRI ⊚ ΥRI . Thus, ΥRI ∩ψRI ≾ (ΥRI ⊚
ψRI) ∩ (ψRI ⊚ ΥRI).

(3) ⇒ (2)ΥRI = ΥRI ∩ ΥRI = (ΥRI ⊚ ΥRI) ∩ (ΥRI ⊚
ΥRI .

(3) ⇒ (4) Since every BCF LID is BCF BID in X.
(4) ⇒ (1) By Lemma 4.7.
(3) ⇒ (5) Since every BCF RID is BCF BID in X.
(5) ⇒ (1) By Lemma 4.7.
(2) ⇒ (1) Let B be a BID of X and k ∈ B. Then

by Corollary 3.12, χRI
M = (X;χP

B, χ
N
B) = (X;χRP

B +
ιχIP

B , χRN
B + ιχIN

B ) is a BCF BID of X. By hypothesis,
(χRP

B ⊚ χIP
B )(k) = 1 + ι1 and (χRN

B ⊚ χIN
B )(k) = −1− ι1.

Then∨
(u,o)∈Ak

{(ΥRP )(u) ∧ ψRP (o)} = (ΥRP ◦ ψRP )(k) = 1,

∨
(u,o)∈Ak

{(ΥRI)(u) ∧ ψRI(o)} = (Υ IP ◦ ψIP )(k) = ι1
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and∧
(u,o)∈Ak

{(ΥRN )(u) ∨ ψRN (o)} = (ΥRN ◦ ψRN )(k) = −1,

∧
(u,o)∈Ak

{(Υ IN )(u) ∨ ψIN (o)} = (Υ IN ◦ ψIN )(k) = −ι1.

Thus, k ∈ BB. Hence, B ⊆ BB. Clearly BB ⊆ B. By
Lemma 4.6 X is regular and intra-regular.

Corollary 4.9. For a SG X, the following conditions are
equivalent:
(1) X is regular and intra-regular,
(2) ΥRI ∩ ψRI ≾ (ΥRI ⊚ ψRI) ∩ (ψRI ⊚ ΥRI) for

every BCF GIDs ΥRI = (X;ΥP , ΥN ) = (X;ΥRP +
ιΥ IP , ΥRN + ιΥ IN ) and ψRI = (X;ψP , ψN ) =
(X;ψRP + ιψIP , ψRN + ιψIN ) of X,

(3) ΥRI∩ ψRI ≾ (ΥRI⊚ψRI)∩(ψRI⊚ΥRI) for every BCF
GBID ΥRI = (X;ΥP , ΥN ) = (X;ΥRP + ιΥ IP , ΥRN +
ιΥ IN ) and every BCF LID ψRI = (X;ψP , ψN ) =
(X;ψRP + ιψIP , ψRN + ιψIN ) of X,

(4) ΥRI∩ ψRI ≾ (ΥRI⊚ψRI)∩(ψRI⊚ΥRI) for every BCF
GBID ΥRI = (X;ΥP , ΥN ) = (X;ΥRP + ιΥ IP , ΥRN +
ιΥ IN ) and every BCF RID ψRI = (X;ψP , ψN ) =
(X;ψRP + ιψIP , ψRN + ιψIN ) of X.

V. CONCLUSION

This paper gives the concept of bipolar complex fuzzy
bi-ideals in semigroups. We investigate the properties of
bipolar complex fuzzy bi-ideals and between relation bi-
ideals and bipolar complex fuzzy bi-ideals. Additionally, we
find conditions bipolar complex fuzzy ideals and bipolar
complex fuzzy bi-ideals coincide and bipolar complex fuzzy
generalized bi-ideals and bipolar complex fuzzy bi-ideals
coincide. Finally, we characterize a regular and an intra-
regular semigroup in the bipolar complex fuzzy bi-ideal.
Further, we study bipolar complex fuzzy quasi-ideals in
semigroups or algebraic systems.
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