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Spatiotemporal Dynamics of a Nonautonomous
Reaction-Diffusive 4-species Ratio-Dependent
Predator-Prey Model

Changyou Wang, Qi Shang, and Lili Jia

Abstract—This article delves into the global stability of a
4-species ratio-dependent predator-prey model (RDPPM) with
time-varying coefficients in a reaction-diffusion system. Firstly,
employing the comparison principle of differential equations
alongside the fixed point theory, we obtained some sufficient
conditions for the existence of positive periodic solution in the
degenerate model, deriving corresponding conditions for the
existence of strictly positive space homogeneous periodic
solution (SHPS) in the model being studied. Secondly, we
apply the method of upper and lower solutions (UALS) for
PDEs and Lyapunov stability theory to formulate additional
sufficient conditions that ensure the global stability of the
strictly positive SHPS. Finally, to validate the theoretical
framework presented in this article, we offer two numerical
examples that illustrate the practical application and veracity
of our findings.

Index Terms—Time-varying coefficients; Predators-prey
model; Ratio-dependent; Periodic solution; Stability

I. INTRODUCTION

his article investigates the following non-autonomous
reaction-diffusion 4-species RDPPM
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with the boundary and initial conditions
ov,(x,t)/0n=0,(x,t1) € 0QxR",
v.(x,0)=v,(x)>0,xeQ,i=12,3,4,

where A is a Laplace operator on ), 0/0n represents
the outward normal derivation on OC) , Q is a smooth

bounded domain in R" with the boundary 0Q2 , v,(x,?)

denotes the density of i-th species at point x=(x,,"*X,)

(1.2)

and the time of 7. As evident from Table I, the biological
importance of the parameters in model (1.1) becomes
apparent.

All coefficients in model (1.1) are continuous, positive,

and periodic functions. Since Lotka [1] and Volterra [2]
introduced the classic Lotka-Volterra model in the 1920s,
many scholars have delved into extensive research on this
topic [3-12]. The functional response, which characterizes
the rate at which predators consume prey, is regarded as the
core issue of the Lotka-Volterra predator-prey model. The
incorporation of predator dependence into functional
responses, with the response function being treated as
ratio-dependent, was carried out by Arditi and Ginzburg in
1989 [13]. Subsequently, in 1999, Conser et al. [14]
demonstrated that a predator-prey model incorp- orating a
ratio-dependent function aligns more closely with practical
scenarios. In 2000, the author applied Lyapunov stability
theory to investigate an autonomous RDPPM without
diffusion [15], deriving sufficient conditions for the
persistence and extinction of solutions within the model. In
2009, M. Haque [16] established sufficient conditions for
the global stability of solutions in a 2-species autonomous
RDPPM that incorporated chemotaxis. In 2012, Bairagi et
al. [17] studied a RDPPM with M-M harvesting rate, and
obtained some sufficient conditions for the existence of
heteroclinic bifurcations. In 2013, Gao and Li [18] studied
a RDPPM with a strong Allee effect and show that the
system exhibited a Bogdanov-Takens bifurcation. In 2015,
Agrawal and Saleem [19] considered a 3-species RDPPM
and obtained sufficient conditions for the existence of a
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chaotic attractor for the model. In 2018, Mandal [20]
conducted a study on a stochastic forced RDPPM incor-
porating a strong Allee effect, revealing that the model
exhibits either a stable equilibrium point or a limit cycle
with two coexisting populations. In 2020, Wang et al. [21]
studied the qualitative behavior of a RDPPM with feedback
controls, and obtained sufficient conditions for the global
stability for the periodic solution of the model. In 2021,
Arancibia- Ibarra et al. [22] studied a RDPPM with
predator intra- specific interactions and proved the
existence and stability of two interior equilibrium points. In
2023, Yu et al. [23] studied a novel RDPPM with
additional prey supply and obtained rich dynamic charac-
teristics of the model. The above literature fully demons-
trates the important application value of studying RDPPM.
For more related work, please refer to references [24-28]. It
is noteworthy that the RDPPM examined in the aforem-
entioned literature lacks diffusion terms. Since animals
instinctively gravitate towards food and water sources,
incorporating diffusion terms into the RDPPM provides a
more precise representation of population interaction
dynamics. However, the methodologies presented in the
previous literature are not immediately applicable to this
newly formulated model.

In recent years, RDPPM with diffusion have garnered
increasing attention. In 2013, Ko and Ahn [29-30] studied a
3-species reaction-diffusion RDPPM with two competing
predators and a prey. They derived sufficient conditions
that guarantee the persistence and global attractiveness of
the model's solutions. Yang et al. [31] conducted a study in
2015 on a reaction-diffusion RDPPM, employing an L-G
function response in their analysis. Utilizing the fixed point
theory, they derived sufficient conditions for ensuring the
existence of an attractor in the model. In 2017, Wang [32]
investigated the dynamical characteristics of a predator-
prey diffusion model that was subject to Neumann boun-
dary conditions and characterized by a Holling Type III
functional response. Employing coincidence theory and
bifurcation methods, Wang obtained sufficient conditions
that guarantee the existence of non- constant equilibrium
solutions and periodic orbits within this model. Wu and
Zhao [33] conducted an investigation in 2020 into a
predator-prey diffusion model incorporating the Allee
effect and threshold hunting, utilizing a Jacobian matrix to
analyze the asymptotic stability of the model's equilibrium
point. Subsequently, in 2022, Yan and Zhang [34] studied a
predator-prey diffusion model characterized by a B-D
functional response, deriving criteria for both the stability
and instability of its positive constant equilibrium point. In
2023, Chen and Wu [35] used the Leray-Schauder degree
theory and Poincare inequality to study the spatiotemporal
behavior of a predator-prey diffusion model with a B-D
response function. It is worth noting that the above models

are autonomous reaction-diffusion RDPPM. Given that
birth rates, death rates, and inter-population interactions are
not static, non-autonomous reaction-diffusion RDPPM
offer a more accurate simulation of species interactions in
predator-prey systems. However, the methodologies emplo-
yed in the above literature face significant challenges when
applied to multi-species non-autonomous reaction-diffusion
predator-prey models, and these difficulties are further
compounded when studying non-autonomous reaction-
diffusion RDPPM. Undoubtedly, the stability analysis of
non-autonomous multi-species reaction-diffusion RDPPM
is extremely challenging due to the intricate interactions
among multiple species. Consequently, research findings in
this area are scarce and infrequently published.

Drawing inspiration from the previous works mentioned,
this article delves into the study of the global stability of a
nonautonomous reaction-diffusion RDPPM with 4-species,
as described by equations (1.1) and (1.2). The structure of
the article is outlined as follows: In Section 2, we will
outline some essential definitions and preliminary findings.
Section 3 will focus on exploring the existence of strictly
positive SHPS for the nonautonomous reaction-diffusion
RDPPM. Subsequently, Section 4 will examine the global
asymptotic stability of these strictly positive SHPS. In
Section 5, we will present two numerical examples to
substantiate the theoretical approach put forth in this article.
Lastly, we will conclude by summarizing the main contrib-
utions of this work.

Remark 1.1: The article boasts the following innovat-
ions and accomplishments: (1) By integrating ratio-
dependent functions and variable coefficients into prevalent
population models, we have formulated a non-autonomous
reaction-diffusion RDPPM that provides a more accurate
portrayal of the complex population interactions observed
in natural environments. (2) Using the comparison principle
of differential equations, fixed point theory, and inequality
techniques, we establish sufficient conditions for the
existence of strictly positive SHPS for our model. (3) To
address the issue of global asymptotic stability of the
strictly positive SHPS, we construct a novel Lyapunov
functional tailored to the specific characteristics of our
model. Furthermore, by employing the method of UALS
for parabolic PDEs, we derive sufficient conditions that
ensure the global stability of the SHPS. (4) In comparison
to the findings reported in references [29-34], the results
obtained in this article offer broader applicability and
facilitate the further utilization of the Lotka-Volterra
predator-prey model.

1I. PRELIMINARY

In this section, we present some preliminary results along
with the definition of UALS. For the definitions of SHPS
and its globally asymptotically stable properties, please
refer to reference [36].
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TABLE |
THE BIOLOGICAL SIGNIFICANCE OF THE PARAMETERS IN MODEL (1.1)

Parameter Definition Parameter Definition
d ().(i=1.2.3.4) The diffusivity rates a,(0).(i=12,j=3.4) The capturing rates of the predators
r(£).(i=12) The intrinsic growth rate ~ a,,(#).(i = 1,2) The interaction within prey species

r().(j=3,4) The death rates

a,(?),(i=12,7=3.4) The cinversion rates

a, (7). a, (7). @y, (1), a;(7)

b(1).(i=12.j=3.4)

The interference between two species

The interference within predator species

Definition 2.1. Assume that V()= BENBMD) ,(060), Ka)=0iAu@0RAREDI), if V)=V x!)

and for (x,) eQxR"

W 61) DT ) 2T O~ O 050) o On0) (tivzgf)(f;(x’t) ; (;ngf)(fv—?(x,z)’
0, (5, ) | @t —dy (£)AF, (3%, ) 2 7, (5, D)1, (6) — oy (67, (35, ) — iy, ()0 (3, ) bB(t;’;zgf)(fé)(x,t) b24(t;l;:81;3(f§?(x,t)°
e (t§E2?>(i’%)(x,t) " (I;’;ﬂﬁ“’s@,ﬂ—a34<t)mx,t>],

W) U= 05, () 2T 5O )+ (t;l;i 8‘_’;)(1‘;1 )(x’ ey (t;?’j gc)v;) (j_‘;z )(x, S50

N0 B 5) SO~ (06~ O 50— (;%ﬁ,vf)(f;(x,;) ; (t;‘;:gf;)(ff(x’t),
R0 D50 5 50~ O0050) s O ) (tféjﬁifé(f_f(x,t) 5 (t;l;ﬁ%(ff(x,t),
W50 ) <50+ (tggf)(f;(x,t) " (tizng)gf(x,t)“’34(”@(“)]’

v, (60) 21— (), () <, (e )y 1)+ s D) WOROD 050

b14 (t)YA ()C, t) +l/1 (X, t) b24 (t)YA (x> t) +l}2 (xa t)

ov.(x,t)/ 0n=>0,0v,(x,t)/ On<0,(x,t) € 0QxR",

and

V.(x,0) 2V, (x),v,(x,0) <V, (x),x € Q,i=1,23,4,
we called ¥V (x,t), V(x,t) are a pair of ordered UALS for models (1.1)~(1.2).

Lemma 2.1 ([37]). Assume that V(x,t),V(x,t) are a
pair of ordered UALS of models (1.1)-(2.2), then there
exists a unique solution V(x,f) of models (1.1)-(1.2) such

that V(x,0)>V(x,1) > V(7).
Lemma 2.2 ([38]). If the function f(¢):R —R is
uniformly continuous, and the limit hmJ.; f(s)ds exists
1—x0
and is finite, then lim f(¢)=0.
t—+0
Lemma 2.3 ([39]). Suppose that § < R, be convex

and compact and mapping 7 : S — § is continuous, then

there exists X €S suchthat T(x )=x".

III. EXISTENCE OF THE SHPS

Given the biological interpretation of the model (1.1), it
is logical to focus solely on its positive solutions. Suppose

that @(x) is @ - periodic functionin R", we denote

" =sup{p(x),xe R}, = inf{qo(x),x € R*}.

Subsequently, to prove our main results, we first study
the following ordinary differential equation (ODE) that
corresponds to model (1.1)

(O =V (O[1O) —a, (W (0) —a, (v, () -

T (v, (1)
INOAGERAON

a,(Hvs(t)
b3 (O)v5() + v, (2)

Volume S5, Issue 4, April 2025, Pages 791-808



TAENG International Journal of Applied Mathematics

5,0 = 9, (O () — @ (O, (D) — 3, (O, (1) —%

Ay (Dv, (1)
b24 (0"40) + Vz(t) ,

- _ _ as, (O, (1) a, (v, (1)

B = O O O+ B+,
—ay, (O, (1)

. _ _ a, (v (t) a, (v, (1)

P O 4@ B () 420
—a,(Ovy(1)].

3.1)

For the ODE (3.1), we set

m m m m 1
R « T o M (a5 +ay,—1)
M=l oy =Ly S T )
1 1 2 / 3 ( I m)bl
1 ay I3 —dy )0,

/
4 = / m bl
(r _a42) 14

IFNEN gl
« 1 bsby, —a,M,bb,

>

I !
—apih, —aib;s

"= o b ’
;1013014
120 1.1 Y / !
« _ nbiby, —ayM byb), —ayb, —ayb,
2 ! 1 )
aybyb,

v dym =" +agM)m,
(1" + a5, M )by
_ aym, — (1" +apMi)m,
! (" + a43M )b, ’
M, (al +al 1)
(r £ _a31)bé3
M (a41 + a42 41)
( 4 41)bé4
" = am, —(r" +anM; ym,
(" +ayM, : )b

M =

>

2+ _
M,

E)

e = ayym, — (1" +ap M )m, .
(" +as M),
Definition 3.1. Suppose that there exist eight positive
real numbers Q,, g, (i =1,2,3,4) and T, such that g, <v,(t)

<Q,, as t>T for each positive solution (v,(¢),V,(?),

v,(1),v,(t)) of the ODE (3.1) subject to the positive initial

values, then ODE (3.1) is called permanent.

Theorem 3.1. If it holds that

! /
a. +ax, a, +d,
L >0, (H,) 4% "l g
3_a32 r —dy

(H,) ; :
(H,) 1;'bshi, —a,M,bib,

I !
—apb, —agb; >0,

(H,) 1, blby, —d,Mbyb,
(Hy) a31 >r +dM. 1’ (Hy) a41 > 7" +a43M

/ /
—dyby, —ayb; >0,

Then the ODE (3.1) is permanent.
Proof. When the ODE (3.1) satisfies the conditions

(H,)—(H,) , we can choose some appropriate positive
real numbers M, m, ]\/f1 m/,(z—l 2,j=3,4) such that
0<m <m <M, <M,0<m, <m;, <M; <M.

According to the first equation of ODE (3.1), it follows
that

V() <v(D[K(0) —a, (D (1)]

m

<O =a 3 (O] = O[0)+ 7]
a

11
! * !
=a v(O)[-v(O)+M]<a v(O)[-v@)+M, ]
Based on the comparison theorem of ODE, we can obtain
(1) When 0<v(f)) <M, ,if t=t,, then v,(t)<M,.

(2) When V,(t,) =M, for a enough large ?, one has
v, (£) S M| . Otherwise, if v,(¢) > M, then there exists
a >0 suchthat v (¢)> ]\/Il* + ¢ . Furthermore, one has

vi(0) W ()>M, v @) - all(t)vl(t)]
<a v (OIM

~w(O]1<~a an (1),
thus, it holds that v,(¢) < v,(¢,)exp(—aj,at) = 0 as
t—>+0. The above inequality contradicts v, (¢) > M, , so
we can choose a adequacy large T, 27, 20 such that

V() SM, as t>T,.

Similarly, according to the second equation of the ODE
(3.1), it holds that there exist a sufficiently large

T, >t, 20 such that
Vz(l‘)SM2 as t>T,.

Based on the third equation of the ODE (3.1), and using
(3.3) and (3.4), it follows that

: e SM
vy Svy ()7 + W) 2 M, +a]
=, =5 by, () +M, )]+ a M, +al (b, (£) + Ml)]
biv;(H)+M,
PN Gl M(a +ds—r!)
_V3()b113 3() M[ () (3_ 32)b113 ]
O M[ HO+M]
<V()(r —a)h; 3 (=, () + M)
’ b113 3() M1 ’ }
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Based on the comparison theorem and the preceding
analysis, we can conclude that

(3) When 0<v,(f,)<M,, if t=1,, then v,(t)< M),
(4) When v,(t,) =M 3] , for a enough large ¢, we have
v, (1)< M,.

Therefore, it follows that there exist a enough large
T,>t,>0 such that

V(1)< M) as t>T,.

Similarly, according to the fourth equation of the ODE
(3.1), and using (3.3) and (3.4), it follows that there exist a

enough large 7, >¢ >0 such that
v,()<SM, as t>T,.
Next, we prove that v, (¢ ), Vv, (t),v;(t),v,(¢) have positive

lower bound. According to the first equation of ODE (3.1),
it holds that

m m
d; Ay

. ! m m
v 2w —aw @) —apM, ——>——]
b; b,
110 1.1 m / g1 myl myl
" rb.b,—a M b.b,—ab,—ab
=y, ()" [-v, () + 19304 — 45 2»1121121 1394 — iy 13]
410304

Zvl(t)alr’;[_vl(t)—i_ml ] 2"1(0‘11”1[[_"10)"*"711]-
Based on the comparison theorem of ODE, it holds that
(5) When m, <v,(t,),if t>t,,then m, <v,(¢),
(6) When (< v, (tO) <m,, for a enough large ¢, we
have m, <, (t),Otherwise, if vi(H)<m,> then there exists

S >0 such that vy, < ml* — IB . Furthermore, we can

obtain
‘>1 (t) x (H)<my 2 alni‘ﬁ (t)[_vl (t) +m ] > a1m1ﬂV1 (t)a

thus, it holds that v, (¢) > v,(¢,) exp(a{'fﬂt) —> 400 as

t —> +oo.

The above inequality contradicts v, (t) <m, , SO we can
choose a adequacy large Tl’ >t, 20 such that
v()y=zm as t>T'.

Similarly, utilizing the second equation of ODE (3.1), we
can demonstrate the existence of a sufficiently large
constant 7, such that

3.0 11 m ! g1 myl m .l
h b23b24 — ale 1b23b24 — a23b24 — a24b23

myl 3.l
a22b23b24

v, () > m; =

as t>T;.

According to the third equation of the ODE (3.1), and
using (3.6) and (3.7), it follows that

!
a31n11 m 1
T e~ a34M4]
biv, (1) +m,

‘}3 2 Vs (t)[_r?m +
+ a;’z;Mi)(blr;% (O)+m)+ aélrnl ]
bl (1) +m,
"+ a MO
(r3 . M) [, (1) +
biv, (1) +m,
rm +amM1 bm .
(o 2@ MOB 1 )
byvs(t) +my

rm+amM1 bm
(3 - 34 4) 13 [—v3(t)+n731].
bl3v3(t)+ml

v (2

! m m 1
amy — (15" +ag,M,)m,

m m 1 m

'+ agM,)bj

]

=V3(t)
=v(?)

>Vy(t)

Utilizing the same method outlined above, along with the

comparison theorem of ODEs, we can conclude that

(7) When m; <v,(t,) »if t=t,, then m; < (1),

(8) When v, (to) > m; , for a enough large ¢, we have

1
my < v, (2)-

Therefore, it follows that there exist a enough large
T/>t,>0 such that
v, () >my as t>T.

Analogously, according to the fourth equation of the
ODE (3.1) we can choose a adequacy large positive
constants 7, such that

i m 1
v agm — (" +agMy)m,

v, ()= my >m, = >
! o " +aliMy) b

as t>T,.

From (3.3)-(3.10), and set T =max{7,,T,} , then we

1<i<4
have m, <v,()<M,,(i=12),m, <v,()<M;, (j=3,4)
as t>T for any positive solution (v,(¢),v,(?),v;(?),v,(?))

of the ODE (3.1) subject to the positive initial values. Thus,
we complete the proof of Theorem 3.1. O
Given the symmetry inherent in ODE (3.1), one can
arrive at analogous conclusions by employing the previo-
usly outlined analysis and proof techniques.
Theorem 3.2. If it follows that,

111 11 m [ 1/ miy.l miyl

(H3) h b13b14 _a12M2b13b14 _a13b14 _a14b13 > Oa
111 11 m / 7.l myl m .l

(H 4) ) b23b24 _alebzsbm _a23b24 _a24b23 > Oa

m m /
Ay tay 1,
/ m
r, —ay

m m /
ay ta, —n
(H,)——F—5—>0, (H)
B —a;
! 2 ! 2
(Hy) ay, > 1" +ayM;, (Hy)a, > +aM;.
Then the ODE (3.1) is permanent.
Theorem 3.3. Supposed that the model (1.1) satisfies the

conditions (H,)—(H) , then the model (1.1) has a strictly
positive SHPS V' (¢) = (\A/l ®),v,(1),v,(t),7, (l)) .

>0,
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Proof. Utilizing the theorem regarding the existence and
uniqueness of ODE solutions, we are able to define a Poin-

caré operator @: R' >R inthe manner specified below
eV =Vt 0,1, V),

where V (¢, @,2,, V) = (v, (), v, (2),v5(2),v,()) be a positive
solution of the ODE (3.1) subject to the initial values
4 :(V1(to)a V) (t())a V3(l‘0), V4(to)) . And define
S={(v1,v2,v3,v4)eRf|m,. <v,<M,i=1,2, 3,4},

it becomes evident that § — R} possesses the properties of
being both compact and convex. By consulting Theorem
3.1 and invoking the continuity of the solution to ODE (3.1)
with respect to initial values, it becomes apparent that the
mapping @ is continuous from S to S . Additionally,
applying Lemma 2.3 allows us to conclude that ODE (3.1)
possesses a positive @ - periodic solution (v (¢),v; (¢),; (¢),
v,(t)). The fact that (v, (¢),v,(?),v;(?),v,(¢)) serves as a
strictly positive SHPS for model (1.1) is readily apparent,
thereby concluding the proof of Theorem 3.3. O

Utilizing the same analysis and proof techniques
employed in Theorem 3.3, one can deduce analogous
conclusions based on Theorem 3.2.

Theorem 3.4. If the conditions (H,),(H,),(H,)—(H,,) are

satisfied, then the model (1.1) has a strictly positive SHPS

V(t) = (‘%(f),‘72(l),‘93(f),94(f))-

IV. STABILITY OF THE SHPS FOR RDPPM (1.1)-(1.2)

In this section, we research the globally asymptotic stabi-
lity of the SHPS for the 4-species nonautonomous reaction-
diffusive periodic RDPPM, equations (1.1)-(1.2), emplo-
ying the method of UALS for parabolic PDEs along- side
Lyapunov stability theory. Consequently, we provide some
readily verifiable sufficient conditions for this stability.

Theorem 4.1. Suppose that the reaction-diffusive nona-
utonomous @ - periodic RDPPM (1.1) satisfies assumpt-

ions (H,)—(H,) and the following assumptions

, g m M m mym M
H.) d —d' (@ +ab)M; (g +d,by) 450

Byd+my  G+m)
. (am+ mbm)Ml ( m+ambm Ml
(H,,) dy—a, Zl 51’32 = azgz > ) >0,
(byym; +m,) (byymy, +my,)
(H )~ + (a:l;lbll3 —a;;)m, (aézbé3 —ay)m,
T et any ey

(azlub114 —ag)m " (aéllzbé4 —ay,)m, >0
(BEMy+ M, (byM, +M,)’

(H,,) —d5, +

then there is a strictly positive SHPS (v, (¢),Vv, (¢),v; (¢),
v, (1)) of models (1.1)-(1.2). And the the SHPS is globally
asymptotically stable, i.e. , the solution (vl(x,t),vz(x, 1),

V;(x,2),v,(x,1)) of RDPPM (1.1)~(1.2) with respect to any
positive initial values satisfies

lim (v, (x,) = v/ (1)) =0,i=1,2,3,4,

uniformly for x & Q.

Proof. After obtaining existence results through Theor-
em 3.3, our focus shifts to examining the stability aspects.

Let [, = rxne%l Vo(x), r= max v,(x), i=1234,
then 0</ <v,(x)<7. Suppose that (V,(¢),V,(t),V;(?),
v,(t)) and (y(?),,(?),15(),¥,(t)) are the solutions
for (3.1) corresponding to initial values (¥;(0),1,(0),
v3(0),v,(0)) = (15,1, 73,7,) and  (1,(0),1,(0),,(0),
v (0))=(,l,,1;,1,) respectively, then there are a pair
of ordered UALS  (V,(¥),V,(t),V;(?),v,(¢)) and (v,(2),
v,(2),v,(t),v,(t)) for models (1.1)-(1.2). Thus, there
exists a unique solution (V,(x,?),v,(x,1),v,(x,1),v,(x,1)),

(x,1) e Qx R", for models (1.1)-(1.2) by Lemma 2.1,

which satisfies
M@, %0, %50, 1,(1)) < (4 (x61),v, (X, 1), v3 (x,2), v, (X, 7))
S @)% (0),v5(0),v,(0))

If we have
limv, () —v;(¢) =limy,(¢) —v/(¢) =0,
t—w t—0
then (4.1) is obtained. Hence, to attain (4.2), it is imperative
that we demonstrate that the solution (V(£),v,(£),v5(£),v,(£))
for ODE (3.1) with respect to any positive initial value
(V1 (0), Y, 0), Vs (0), Vs )= ("'10:"'20:»"'3(),‘}40) satisfy
lim (v,(5) =/ (£)) =0, (1 =1,2,3,4).
t—w

From Theorem3.1, there exist positive constants

Mi,mi,M;,m;,,i=1,2,j:3,4 ,and T , such that
1 1 . .
m, S\/i(t)SM,mj <v,()<M;,i=12,j=3,4, for all

t>T.

Define the Lyapunov function as outlined below

U(t) = i[\m v.()—Inv" (¢)

],t>0.

Suppose that D*{J denotes the right derivation on function
U (?), it follows that
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. 4 oo V(8 V()
Inv,(6)~tnv,(0)] = ;sgn{vxr) O T
() _ V;(t)
BaOw(O+30) By (0)+v](0)

D'U(t) = i/y[

=sgn{y, (1) — V; O} =a, (O @) _V: ) —a, (O, @) - V; () —a, (1

4,00 (t)vj“(g)m 0 (z)v;:(glv; )00} 000 ()~ 000 ()

‘“23(’)(b23(t)vj3(g)+v2@) b, (t)v?(g)w; (r>)_”2“(t)(b24<t>vj?§;)+vz<t> _bm(t)v;ig)w;(t)

Femti(O-y (t)}[%‘(t)(la3(t)v?(g)+vl(t)_bn (z)vigl o e, (t)v?(gl "o b, (t)v?(g)w; G

4 00 O st 0~ 03, 0 (t)vjl((f)L o @v‘;’iﬁi P WW&W)
—Wg)w@) (OO (O]

v (O (0) -y () - OO - )
CNOMGERAG) CRNOINGESNG)

[+sgn{v, () - V; O}Ha, O, () - V; D) —ay, (D) - V; ),

=sgn{v (1) _Vl*(t)}[_an O © _V]*(t)) —a, (H( () _V;(t)) —a, ()

W (OO v, () =V, (O O ~v (1)
By (v, () + v )b, (¢ )V: O+ V: Q)
V(O (0) = v (@) = v, ()0 () -3 (1) v, (00, (0) =, () v, 0, () — v, (0)
(b (O () + v, (D))bys (v (1) + v, (1)) (CROINGERAG) CHOIAGERNG)!
WO O OO0 | AO00 50 000 -¥0)
(b @vs (@) + v (D)By; (v () +v, (1)) (bys ()v3 () + v, (D) (s (1) + v, (1))

. - V(0 0O =y (O =V (O, (1) =V, (©)
= a3, (), () = v, ()] +sgniv, (1) —v, (D} [, (b, (1) B OO+ OB OV T O)

—a, (O, () =V, ()]

—a,(t)

—a,(t) a,, (?)

+sgn{v; (0) =3 (0} [a;, (0B, (1)

v, (00, () = () = v (O, () = v, (1)
(Dyy (D), (1) + vy (2 ))(b24 (¢ )VZ )+ v; )
(a;() +a, (Db, OV (a,() +a, (Db, OV,() |
(b (1), (6) +9, (O (V5 () +9, () (B (D)v,() +9, (D) by, (D)v,(0) +v, (1))
(ay (1) +ay, (1)b,, (t))v;(t) n (ay,(?) +a, ()b, (t))V:(t)
(bys ()v(£) +, () (byy (V5 (1) 49, (1)) (B ()v, (1) +, ()b ()Y, (1) +v5 (1))

+a,, ()b, (1)

< ‘Vl(t)_vl*(t)‘[_all(t)"'azl(t)+

+‘V2(I)_V;(t)‘[_a22(t)+alz(t)"‘

O _ (a31(t)b13(t) _a13(t))v1*(t) _ (a32 (t)b23 (t) —dy; (t))vz*(t)
)=y (0)[[as () 4 g : -
(b3 ()5 () +v, (D5 (v () + v (1)) (bys(1)v3(2) + v, (1))(byy (H)v5(2) +v,(1))
(a,,(1)b,, (1) _a14(t))vl*(t) (a4 (D)byy (1) =y, (D)V, (1)

O v 0l (0

(B (D (1) + v, (D) (v, (1) +v, (1)) (B (1)v, (1) +, () (yy (v, (1) +v, (1))
(a +aBDM;  (a +dbipM,
(bllsml +m )2 (b&ml +m, )2
(a5 +aphf )My (ay, +dpby)M,
(Bysm; +my)’ (byym, +my)’
(aé1b113 —aj)m, n (aézbé3 —ay)m, ]
(BLMy +M,)*  (BM; +M,)

<y (v (0)|ld}, — a3

OVl —aps -

(@O v O|[-ap +

(azlubll4 —a, )m n (az[ub; —ay,)m, ]
(BuMy+M,)  (ByM, +M,)

[y -v; @[t +
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In view of conditions (#,,)—(H,,), one has

1
o= min{a’ " (a13 + a31b1';)M (alrf; + arlblrft)lel
= T b b >

( 13m3 +m1) (biymy +my,)
d. —a” (a23 + a32b2”;)M (%4 +apbi )M, 1
2 A 7
(bé3m3 + mz) (b24m4 + m2)
I 71 I3
_ (d5,b; —aiy)m, | (as,bh —az;)m, ,
CUML M) (BM M)

" (a41b1[4_a m, (azltz b4 a24)m2}
BEM M) (B M M)

Thus,
4
DU@) <-ay v()-v, (1)
i=1
Integrating (4.4) from T to ¢ (T >t,), one has

U)+af, (ilxl-(r) — ¥,(t))ds SU(T) < +oo.
Therefore, a
[ » [v,(6) = v, (0))ds <
By (4.5), we ll:aive
i(\vi ()=, (O)) € L (T, +).

From the uniformity permanence of the model (1.1),

< 400

U(T)
(04

4
Z(‘Vi (t )—V; (t)‘) is uniformity continuous. By Lemma
P

2.2, we can obtain that
lim v, (£) v, ()| =0, (1=1,2,3,4).

This ends the proof of Theorem 4.1. O
Utilizing the analysis and proof techniques employed in
Theorem 4.1, one can derive analogous conclusions from
Theorems 3.2 and 3.4.
Theorem 4.2. Assume that the model (1.1) satisfies
(H,),(H,),(H,)—(H,,)and the following conditions

" (aw +d;b)M, ; (a14 +ayby )M :
(b113m3 +ml) (b4m4 +ml)
(a5 +apbl )M _(ay +apby )M, :

(Z)l3m3 +m, )2 (bl4m4 + mz)

(H.)-d" (a31b113 —a;)m " (a32b53 —dy )mz

3

(H, 5)“11

!
(Hm)azz _alr;

(BAMG + M)’ (baM; +M,)’
(H,)-a" +(a41b114_a14)m1 (aybl, —az)m,
SO GEMI M) (M M)

then there is a strictly positive SHPS (v, (¢),v,(¢),
v; (¢),v,(2)) of models (1.1)-(1.2). And the SHPS

>0,

exhibits global asymptotic stability, meaning that
for any positive initial values, the solution (vi(x,?),

v (x50),v,(x%,1),v,(x,)) to the reaction-diffusive RDP-
PM, equations (1.1)-(1.2), satisfies

lim(v,(x,£)—v, (£)) =0,i =1,2,3,4,

t—00

uniformly for xe Q.

V. NUMERICAL SIMULATIONS

Two examples are provided to substantiate the findings
presented in this article. To verify the accuracy of
Theorems 4.1 and 4.2, we utilize a 2-periodic function as
the coefficient for the reaction-diffusive nonautonomous
@ - periodic RDPPM (1.1)-(1.2).

Example 5.1. A 2-periodic reaction-diffusion model
encompassing four species and incorporating functional

responses that are dependent on ratios is considered here.
Based on the conditions (H,)—(#) and (4,,)—(#1,) outlined

in Theorem 4.1, we have selected specific parameter values
for the models (5.1)-(5.3) through a series of calculations. It
is important to note that the choice of these parameters is
not unique.

ov(x,t)/ ot — v, (%, H)[(29+cos 7t)

o ov(x0) t)
o’
—(27+sinzt)v,(x,1)—(0.8+0.2sin 7t)v, (x, 1)
(0.075+0.025sin 7zt)v, (x, ¢)
(1.05+0.05sin 7t )v, (x, ) +v,(x,2)
__ (0.065+0.035sin 7zt)v, (x,1)
(1.15+0.15sin 7t ), (x,£) +v,(x,£)

v2 (x t)

ov,(x,t)/ ot — v, (x,1)[(25+cos 7t)

—(22+sin ), (x,1) — (0.7 +0.3sin 77t)v, (x, £)

~ (0.085+0.015sin )y, (x, 1)
(1.04+0.04sin 72t )v, (x, 1) +v, (X, 1)

_ (0.075+0.025sin 7zt)v, (x, 1)
(1.06+0.06sin zt), (x,£) +v, (x,£) "

v3 (x t)

ovy(x,t)/ Ot — v, (x,1)[<(2.05+0.05cos 7t)

N (3.2+0.2sin 7t (x, 1)
(1.05+0.05sin 7zt )v, (x, ) + v, (x,1)

N (0.75+0.25sin 7t )v, (x,¢)
(1.04+0.04sin 7zt)v; (x, 1) + v, (x, 1)

—(0.085+0.015sin 7zt)v, (x,2)],

vy (x1) _
o’

8v4(x,t)/8t =v,(x,))[~(2.1+0.1cos t)
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(3.1+0.1sin zt)v,(x,1)
(1.15+0.15sin wt)v, (x,1) +v,(x,1)
(0.65+0.35sin 7t)v, (x,t)
(1.06 +0.06s1in 7t )v, (x,t) + v, (x,t)
—(0.065+0.035sin 7t)v, (x,1)],

(5.1)
subject to the Neumman boundary conditions
ov, oOv, Ov; Ov
L =—2="3="4=0,/>0,x=0,27, (52
on oOn On On
and initial values
v (x,0)=1.07,v,(x,0)=1.15,
(5.0 =107, 3,(x.0) )

v;(x,0)=0.85,v,(x,0)=0.67, x (0, 27).
By calculating, we have
M, ~1.1538, M, =1.1539, M, ~1.1304,M, =1.1305,
MY ~2.7693, M}y =2.7694, M) ~2.5385, M, =2.5386,
m; ~0.95248, m, =0.9524,m, ~0.98461, m, = 0.9846,

m, ~0.20315, m} =0.2031,m, ~0.15993, m, =0.1547,
K a5 L on-agp ’

rllb113b114 - alr;Mzbllsbll4 - a1”3lb114 - alnztbll_?; ~26.6695,
1 BB, —ay M blbL, —alibl, —asbl, ~22.6461,
_ (aj; +ayb; )]\/[3l _ (ay, +ayby )Mi
(bIISmflf + ml )2 (bll4m411 + ml )2
a, 1" +adiM, ~0.6461,d,, — 1" + ajsM; ~0.5231,

1 1
w (a5 +anbi)Ms (a5, +dpby )M,

1 m
a; —ay

~7.3126,

!
4 —a ~14.8873,
R Gmm)’ (B my)
o (a%:lb113 1_ aﬁ)"zl (a%bé3 1_ a;';)n’? ~0.0796,
(bsM5+M,) (biM; +M,)

i I i
I
J'l I jﬂ””

i

f]f‘,‘l,’?
t’.'t,', I; ;’ 7

Uiy f
AT
il

i
iy
"ﬂ,'p
]

om (ay,biy —ai)m, " (@b, —as)m,
TGIM M) (B M+ ML)

The assumptions of Theorem 4.1 are clearly met by

~0.0429,

systems (5.1)-(5.3). Consequently, it is straightforward to
deduce from Theorem 4.1 that system (5.1) possesses a

strictly positive SHPS (v} (¢), v, (¢),V; (¢),v;(¢)) , and the

solution ((X,£), 15 (%,£), 1, (%, 1), v, (%, 1)) for models (5.1)-(5.3)

satisfies
lim(vi(x, 1) —vl.*(t)) =0,i=1,2,3,4,
t—o0

uniformly for x € (0,27) .

By employing the finite differences method in conjun-
ction with the MATLAB 7.1 software package, we gained
numerical solutions for the system described by equations
(5.1-(5.3). These solutions are visually depicted in Figures
5.1-5.4. Upon analyzing Figures 5.1-5.4, it is evident that
the system, as defined by equations (5.1)-(5.3), exhibit a
strictly positive global asymptotic stability. Specifically,
the densities of both prey and predator species within the
system oscillate periodically, with a consistent period of 2.
As time progresses and reaches sufficiently long duration,
these species distribute homogeneously across the spatial
domain. This finding underscores the effectiveness of
theoretical method presented in this article, as imple-
mented through MATLAB 7.1, in capturing the dynamic
behavior of the reaction-diffusion RDPPM. To further
validate the results presented in this paper, we conducted
numerical simulations using various initial values. The
findings indicate that, regardless of the positive initial value
chosen, the solutions all converge to the same stable
periodic solution. The projection plots and phase diagrams
obtained, as shown in Figures 5.5-5.9, adequately illustrate
the dynamical behavior of the solutions for the equations
(5.1)-(5.3).

lf
’Zn ”;g
il
I
Ui ﬂ%ﬂ?ﬁ

Fig.1. The evolution process concerning the density of species V, (x, 1) within models (5.1)-(5.3).
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Time t

Fig. 5. As the spatial variable x = (.67 , the plane projection of the numerical solutions of
models (5.1)—(5.2) with different initial values.

25

0.5

1.5 1
0.5

v1(:30) 2.0

v2(:,30)
Fig. 6. As the spatial variable X = 0.6 , the changing patterns of population densities

Vi, V,,V; inmodels (5.1)-(4.2) with different positive initial values.

Volume S5, Issue 4, April 2025, Pages 791-808

10



TAENG International Journal of Applied Mathematics

25~

0.5

1.5 0.5
v1(:,30) v2(:,30)

Fig. 7. As the spatial variable X = (.67 , the changing patterns of population densities
Vi,V,,V; inmodels (5.1)-(4.2) with different positive initial values.

25

0.5

v3(:,30) 0 05
0 v1(:,30)

Fig. 8. As the spatial variable x = (.67 , the changing patterns of population densities
Vi,V,,V; inmodels (5.1)-(4.2) with different positive initial values.

25

v4(:,30)

0.5

v3(:,30)
0 o v2(:,30)

Fig. 9. As the spatial variable X = (.67 , the changing patterns of population densities
Vi,V,,V; inmodels (5.1)-(4.2) with different positive initial values.
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Example 5.2. Take into consideration the periodic
RDPPM that involves four species and incorporates

reaction-diffusion processes. Based on the assumptions

(H,),(H,),(H,)—(H,,)and (H,5)—(H,g) of Theorem 4.2,

we have selected specific parameter values for the models
(5.4)-(5.6) through a series of calculations. It is important

to note that the choice of these parameters is not unique.
o, (x, 1 o' (x, t)
ot o’
— (27 +sinzt)v, (x,1) — (0.8 +0.2sin 7t)v, (x,1)
(0.075+0.025sin 7t ) v, (x, )
(1054 0.05sin o), (x, ) + v, (x, 1)
(0.065+0.035sin zt)v, (x,?)
(L15+0.15sin zt)v, (x,£) + v, (x, 1)
M (x,1) o', (x, t)
ot o’
—(22+sinzt)v,(x,¢)— (0.7 4+ 0.3sin zt)v, (x, 1)
(0.085+0.015sin zt)v, (x, 1)
*(1.04+0.04sin 7o), (x,£) + v, (x, )
(0.075+0.025sin zt)v, (x,?)
*(1.06+0.06sin 7t )v, (x,£) + v, (x,1)
ov, (x, t) vy (x, H
ot o’
(0.75+0.25sin 7zt )v, (x,¢)
(1 05+ 0.05sin 7zt )v, (x,1) +v,(x, )
(3.2+0.2sin 7t)v, (x,1)
(1 04+ 0.04sin 7zt )v, (x,1) + v, (x,1)
—(0.085+0.015sin zt)v, (x,1)],
W, (x,0) o', (x, H
ot o’
N (0.65+0.35sin zt)v, (x,1)
(1.15+0.15sin zt)v, (x,1) + v, (x,1)
(3.140.1sin 7zt )v, (x,1)
(1.06 4 0.06sin 7zt )v, (x,1) + v, (x, )
—(0.065+0.035sin 7t )v, (x,1)],

v, (x,0)[(29 + cos rt)

v, (x,0)[(25 + cos )

=v,(x,1)[—(2.05+0.05cos rt)

=v,(x,1)[~(2.1+0.1cos t)

(5.4)

with the boundary conditions
% @ Q @—Ot>0x 0,27, (5.5

on on on On

and the initial conditions
v, (x,0)=1.06,v,(x,0) =1.16,v,(x,0)=0.9,

(5.6)
v,(x,0)=0.75, x (0, 27).

By calculating, we have

M; ~1.1538, M, =1.1539, M, ~1.1304, M, =1.1305,
M3l* ~2.7693, M; =2.7694,Mf ~ 2.5385, Mi =2.5386,
m’ ~0.95248, m, =0.9524, m, ~0.98461, m, = 0.9846,
mgz* ~0.2528, m32 =0.2527, mz* ~(.1881, mf =0.1880,

m m ! [
4 ta;,; —n _24, Ay +a, —

! m ! m
3 —dy Iy —ay
' bLbl, —al M bLb, —a’b, —albl, ~26.6695,
rzlbézb; —ayM, bl bl a23bé4 a24bé3 ~22.6461,

a, —r" +aiM; ~0.6513,d,, — 1" +dpM; ~0.5287,

=22,

alz g — (a3 +ay b )M2 (a14 +a,b, )M2 ~19.7046
T @em) Gl +m) ’
i g (B AGEIME  (dyagBOML
»o (b§3m3 +”72) (bé4m4 +n12) ,
+ (‘%1 3 — s )y (a'jzbés —y)m, ~0.0954,
5 BM? + MY (b;';M2 +M,)
"y (a41bll42 a)m, (‘142bé42 ay)m, ~0.0961.
buM, + M, ) (b, M, + M. )

It is easy to show that models (5.3)-(5.4) satisfy the con-
ditions of Theorem 4.2. It follows from Theorem 4.2 that

there exists a strictly positive SHPS (v, (¢), v, (¢),v; (¢),
v,(#)) for (5.3), and the solution (,(x,2),v,(x,7),v,(x, 1),
v,(x,t)) for models (5.3)-(5.4) satisfies

}i_)rg(vi(x,t) —v/())=0,i=1,2,3,4,

uniformly for x € (0,27) .

By employing the finite differences method in conjun-
ction with the MATLAB 7.1 software package, we gained
numerical solutions for the system described by equations
(5.4)-(5.6). These solutions are visually depicted in Figures
5.10-5.13. Upon analyzing Figures 5.10-5.13, it is evident
that the system exhibits global asymptotic stability. Specifi-
cally, the densities of both prey and predator species within
the system oscillate periodically with a consistent period of
2. As time progresses and reaches a sufficiently long
duration, these species distribute homogeneously across the
spatial domain. This finding underscores the effectiveness
of the theoretical results presented in this article.To further
validate the results presented in this paper, we conducted
numerical simulations using various initial values. The
findings indicate that, regardless of the positive initial value
chosen, the solutions all converge to the same stable
periodic solution. The projection plots and phase diagrams
gained, as shown in Figures 5.14-5.18, adequately illustrate
the dynamical behavior of the solutions for the equations
(5.4)-(5.6).

Volume S5, Issue 4, April 2025, Pages 791-808



tics
a

m

the

Ma

ied

lie

p

fAp
urnal o
1Jo

a

tion

na

ter

IIl

G

EN

IA

/mmf'ﬁ?m' |
rmfmmm:mﬂr ‘
. l'ﬂlﬂﬂ.'ﬂiﬂﬂ
'f,:‘,",‘,”ﬁ,;;ﬂmmn iy Mg 7 iﬂlﬂﬂﬂlﬂﬂ !%m
i il e

el i i fmmﬁmﬁ‘-‘% ‘

,n'll:’;l{ ”p:r””" ,,.;;;” i i ”ﬂﬂﬂi ,Wﬂ

i i f”i%l i

,,,,;;55’””5155 - - Hn

i i

i il Al I: il

lrmﬂmmmm nmrﬁmm i i i
mmfumim/fmmmmmm’”"””””””"" '

ﬂmmmmumm i

i i W_W”'mﬂ

lfﬁ;zm i
il I

i uu;;z
”ﬂlf.’”
it

i /N
I I
i il

Ry

1.18 5

f Hifji
,f,[,;;;rliti!!f

Il
W\“ !

i \
Uiy
i\m\\\%\\\i\i\m\n

i i i
I
1.16

iy i
7
.'fr,%,
i)
1
il
[
iy

mﬂ“‘{'\\
i m”'ﬂ\\\\\
A i
i i
ﬁﬁﬁ?”""%ﬁ‘l‘h‘féﬂf;u:runufu
rf'fr’r’:'f,u.'n.\‘\\'ln'n'lml.'.'ﬂh'im“““

it fi

.l.'ﬂh'n'ﬂh'l i \

,ffﬂiﬁ’:;%gﬂ.{ﬁ‘mmnuﬂm h

il i

,;%%ﬁm%? iy

um'?fﬁnu'fnmr |

'l!ﬂ!!ﬂ!i_iﬂl‘!!!
A
iy i
“““"-’"’;’,’,’;fffiﬂ‘f»
f'r’r'pﬂufru“‘l‘h:\i{\{j”ﬂu
m]f,];;[ﬂ,{ﬂ,}\\{‘{l{fﬂfﬂf!ﬂlffll! Il !
| m“?'?f’iﬂﬁllﬂih‘ ' iy
i ““\\l‘ |
\‘e\“\\\\\\l\\\l‘&\\\'}\ l
JE _
o 1 1.1 ~
> o
1.06
1.04
=

10

0.96

I.‘lﬂl? Il"'?"[ Ty IJI.'I
lfHn'llllll’.'lﬂﬂﬂh‘lﬂllf lﬂfllllﬂﬂ
Fllll’h‘!f.'L'lﬂﬂi.'h‘h'lf.‘llh’li-‘l.’h’l#
HI_IIH!IIIIH i
o il
0.

i
n.;"'

il

g

i)

{_r;m’ ”
7 !'

m”:_:',:,:"?'

Hﬂ [

I i nmfﬂ

!ﬂliﬂﬂﬂ

Ui

ruut."::'"?ﬂ\:ﬂ'\
f_w?’:?,',’ﬁii'ﬁ':%}%ﬂ%
Il !i')ﬁ‘l Ml
'1"",,55715?3’},‘;
!ﬂi'iﬂﬂlﬂ!
mm-'
il /|
Ilﬂf.'l'fﬁﬁ-‘:. !
mnmmmmnm& I
Hm! i I
: mm!ﬂﬁi#&#ﬁfﬁ#ﬂ%ﬁ#‘,ﬁiﬂ
I lIHmﬂmﬂlf!.fli!l!ir’ﬂfﬂ:»'I."iﬂ.f_iﬂﬁh'lﬂ Il
!Hfﬂl}' i;'!f! il i |
92
(5
R 0.9
0.88
86 .
0. 0

6).
5.
4)-(
5.

Is (

de

(0]

in m

ithin

Hw

(x

ies V;

€C1C

fsp

density o
the

ing

T

nce

S co

CCS

pro

. n

lutio

€vo

The

12.

Fig.

8
80
1-
79

es

Pag

5,

02

il 2

rl

Ap

4,

e

Issu

55,

e

lum

Vo



TAENG International Journal of Applied Mathematics

0.96

0.94

My
i

iyt
it
i

i

il it

0.92

0.9 .

0.88

0.86 |

| | | | | | |
3 4 5 6 7 8 9 10
Time t

Fig. 14. As the spatial variable X = 0.6 , the plane projection of the numerical solutions of
models (5.4)—(5.5) with different initial values.
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Fig. 15. As the spatial variable x =0.67 , the changing patterns of population densities
Vi,V,,V; inmodels (5.4)-(4.5) with different positive initial values.
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Fig. 16. As the spatial variable x = (.67 , the changing patterns of population densities
Vi,V,,V, inmodels (5.4)-(4.5) with different positive initial values.
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Fig. 17. As the spatial variable x =0.67 , the changing patterns of population densities

Vi, V5, V, inmodels (5.4)-(4.5) with different positive initial values.
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Fig. 18. As the spatial variable x =0.67 , the changing patterns of population densities

Vi,V,,V, inmodels (5.4)-(4.5) with different positive initial values.

VI. CONCLUSION

The UALS method exhibits notable robustness when
utilized for nonlinear nonautonomous reaction-diffusion
equations, as demonstrated in this article. It has been
broadly applied to tackle problems related to nonlinear
PDEs across diverse fields, including chemistry, engine-
ering, and mathematical physics. By employing an innov-
ative strategy of constructing a Lyapunov function accom-
panied by a pair of ordered UALS, this method offers a
significant reference for addressing stability concerns in
nonlinear PDEs. Utilizing this approach, researchers can
attain a deeper understanding of the dynamical charact-
eristics of these intricate systems.

In this article, we delve into the study of a nonauto-
nomous 4-species reaction-diffusion RDPPM. Our object-
ives include establishing sufficient conditions for the
existence and stability of strictly positive SHPS of this
model. Furthermore, we generalize and enhance the
relevant conclusions presented in previous studies [29-34].
Notably, the sufficient conditions derived in this paper are
notably straightforward, thereby facilitating the application
and analysis of nonlinear multi-species reaction-diffusive
predator-prey models. It is important to acknowledge that
the impact of time delay on the model has not been
considered in this article. However, in real-world ecosy-
stems, time delays are ubiquitous and can potentially exert
significant influence on the stability of the model.
Therefore, our next objective is to investigate a nonaut-
onomous multi-species RDPPM that incorporates time
delay. By incorporating delay into our model, we aim to
gain a more comprehensive understanding of the dynamical
behavior of predator-prey interactions in the more complex
ecosystems.
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