
Least Squares Estimation for Uncertain Delay
Differential Equations Based on Implicit Euler

Scheme
Chao Wei

Abstract—Uncertain delay differential equations (UDDEs)
are typically employed to portray systems affected by the
Liu process with delays. This study centers on addressing
the issue of estimating parameters for UDDEs from discrete
observations. Initially, we establish the discrete form of UDDEs
by utilizing the implicit Euler scheme. Subsequently, we outline
the equations for acquiring parameter estimations for both
the drift component and diffusion component. Lastly, we offer
illustrative instances to showcase the approaches proposed in
this manuscript.

Index Terms—UDDEs; parameter estimation; Liu process;
difference equation; implicit Euler scheme

I. INTRODUCTION

To estimate the parameters is very important for modeling
the stochastic models and many scholars devoted to study
this problem. For instance, Zhang et al. ( [26]) proposed
a numerical method to identify the topology and estimate
line parameters without the information of voltage angles.
Maldonado et al. ( [19]) used sequential Bayesian method to
estimate the parameter in stochastic dynamic load models.
Zhang et al. ( [27]) studied the joint estimation of states and
parameters of a special class of nonlinear bilinear systems.
Ji and Kang ( [11]) investigated new estimation methods for
on-line parameter estimation for a class of nonlinear systems.
Escobar et al. ( [8]) offered several strategies to address the
issue of parameter estimation in stochastic systems operating
in continuous time. Ding ( [7]) explored the properties of
the least squares methods and the multi-innovation least
squares methods. These strategies effectively consider both
white and colored noise perturbations and employ traditional
methodologies commonly used in this field. Shin and Park
( [21]) applied generator-regularized continuous conditional
generative adversarial network to estimate uncertain param-
eters. Amorino et al. ( [1]) proposed a contrast function
based on a pseudo likelihood approach and estimated the
parameter for drift and diffusion coefficients of a stochastic
McKean-Vlasov equation. Mehmood and Raja ( [20]) in-
vestigated in evolutionary heuristics of weighted differential
evolution to estimate the parameters of Hammerstein-Wiener
model along with comparative evaluation from state-of-the-
art counterparts. Brusa et al. ( [5]) presented an evolutionary
optimization approach to facilitate the process of maximum
likelihood and approximate maximum likelihood estimation
for discrete latent variable models. In practice, due to the
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uncertain communication environment such as population
dynamics with a time lag, time delay is always unavoid-
able. Parameter estimation for stochastic delay differential
equations have attracted an increasing interest during past
few decades. Berezansky and Braverman ( [4]) discussed
the solution estimates for linear differential equations with
delay. Benke and Pap ( [3]) studied the weak convergence
of the maximum likelihood estimator. Liu and Jia ( [16])
applied the method of moments to estimate the parameters
based on discrete observations of solutions. Zhu et al. (
[28]) investigated the parameter identification of a reaction-
diffusion rumor propagation system with time delay. Jamilla
et al. ( [10]) apply genetic algorithm with multi-parent
crossover to obtain parameter estimates of three neutral delay
differential equation models with a discrete delay.

Stochastic differential equations may fail to model many
time-varying systems such as stock prices. Therefore, the
uncertainty theory was created by Liu ( [14]) and perfected
by Liu ( [15]) based on the normality, duality, subadditivity
and product axioms. Liu process is the uncertain process for
dealing with dynamic systems in uncertain environments. In
recent years, parameter estimation for uncertain differential
equations (UDEs) has been discussed in some literature. For
example, Li et al. ( [12]) provided three methods to estimate
the parameters in UDEs based on discrete observation data.
Chen et al. ( [6]) used the method of moments to estimate
parameters of uncertain SIR model and designed a numerical
algorithm to solve them. Liu ( [17]) utilized generalized
moment estimation to obtain the estimators. Yang et al.
( [24]) applied α-path approach to obtain the estimators.
Liu and Yang ( [18]) proposed moment estimations for un-
known parameters by Euler method approximation of high-
order UDEs. Wei ( [22]) applied contrast function to obtain
the least squares estimators of uncertain Vasicek model
and analyzed the consistency and asymptotic distribution.
Wei ( [23]) studied the parameter estimation for Ornstein-
Uhlenbeck process driven by Liu process. Ye and Liu ( [25])
proposed a method to test whether an uncertain differential
equation fits the observed data or not. He et al. ( [9])
derived an algorithm of parameter estimation for a special
uncertain fractional differential equation. Li and Xia ( [13])
proposed one novel estimation method named the estimating
function technique of uncertain differential equations based
on uncertain integrals.

Although the problem of parameter estimation for UDEs
has been developed in recent years, the time lag factor has
been considered in few literature. Moreover, the method
used in literature to derive the difference equation is explicit
difference method. However, this numerical method is nu-
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merically unstable. Motivated by the above considerations,
in this paper, we study the parameter estimation for UDDEs
based on implicit Euler scheme from discrete observations.
We give the difference equation of UDDEs by using the
implicit Euler scheme. Then, we provide the equations which
can obtain the parameter estimators both for drift item and
diffusion item and provide some examples to illustrate the
methods used in this paper. The structure of this paper is
organized as follows. Section 2 gives some definitions about
uncertain variables and Liu process. Section 3 introduces the
UDDEs considered in this paper and presents the equation
applied to obtain the estimators. Some numerical examples
are provided to illustrate the effective of the methods in
Section 4. The conclusion is given in Section 5.

II. PROBLEM FORMULATION AND PRELIMINARIES

Firstly, we give some definitions about uncertain variables
and Liu process.

Definition 1: ( [14], [15]) Let L be a σ-algebra on a
nonempty set Γ. A set function M : L → [0, 1] is called
an uncertain measure if it satisfies the following axioms:
Axiom 1: (Normality Axiom) M(Γ) = 1 for the universal
set Γ.
Axiom 2: (Duality Axiom) M(Λ) +M(Λc) = 1 for any
event Λ.
Axiom 3: (Subadditivity Axiom) For every countable se-
quence of events Λ1, Λ2, · · · ,

M{
∞⋃
i=1

Λi} ≤
∞∑
i=1

M{Λi}.

Axiom 4: (Product Axiom) Let (Γk,Lk,Mk) be uncertainty
spaces for k = 1, 2, · · · . Then the product uncertain measure
M is an uncertain measure satisfying

M{Π∞k=1Λk} = min
k≥1
Mk{Λk},

where Λk are arbitrarily chosen events from Lk for k =
1, 2, · · · .

An uncertain variable ξ is a measurable function from the
uncertainty space (Γ,L,M) to the set of real numbers.

Definition 2: ( [14]) For any real number x, let ξ be an
uncertain variable and its uncertainty distribution is defined
by

Φ(x) =M(ξ ≤ x).

In particular, an uncertain variable ξ is called normal if it
has an uncertainty distribution

Φ(x) = (1 + exp(
π(µ− x)√

3σ
))−1, x ∈ <,

denoted by N (µ, σ). If µ = 0, σ = 1, ξ is called a standard
normal uncertain variable.

Definition 3: ( [15]) An uncertain process Ct is called a
Liu process if
(i) C0 = 0 and almost all sample paths are Lipschitz contin-
uous, (ii) Ct has stationary and independent increments, (iii)
the increment Cs+t−Cs has a normal uncertainty distribution

Φt(x) = (1 + exp(
−πx√

3t
))−1, x ∈ <.

Definition 4: ( [2]) Suppose that Ct is a Liu process, h
and w are two measurable real functions, τ stands for a
nonnegative time delay. Then

dXt = h(t,Xt, Xt−τ )dt+ w(t,Xt, Xt−τ )dCt (1)

is called an uncertain delay differential equation.
Moreover, a real-valued function Xα

t is called the α-
path of above uncertain differential equation if it solves the
corresponding ordinary differential equation

dXα
t = h(t,Xα

t , X
α
t−τ )dt+ |w(t,Xα

t , X
α
t−τ )|Φ−1(α)dt,

where

Φ−1(α) =

√
3

π
ln

α

1− α
, α ∈ (0, 1).

Remark 1: The uncertain delay differential equation (1)
has a unique solution if the coefficients h(t, x, y) and
w(t, x, y) satisfy the following conditions

|h(t, x, y)|+ |w(t, x, y)| ≤ L(1 + |x|+ |y|),

|h(t, x, y)− h(t, x1, y1)|+ |w(t, x, y)− w(t, x1, y1)|
≤ L(|x− x1|+ |y − y1|).

III. MAIN RESULTS AND PROOFS

The UDDEs considered in this paper is described as
follows:

dXt = h(t,Xt, Xt−τ , θ)dt+ w(t,Xt, Xt−τ , β)dCt, (2)

where θ and β are an unknown parameters, Ct is a Liu
process and τ is a given delay time.

By applying the implicit Euler scheme, the Eq. (2) has the
following difference form

Xti+1
−Xti = h(ti+1, Xti+1

, Xti+1−τ , θ)(ti+1 − ti)
+w(ti+1, Xti+1

, Xti+1−τ , β)(Cti+1
− Cti),

namely

Xti+1
−Xti − h(ti+1, Xti+1

, Xti+1−τ , θ)(ti+1 − ti)
= w(ti+1, Xti+1

, Xti+1−τ , β)(Cti+1
− Cti). (3)

As the diffusion term of Eq. (2) is usually regarded as the
noise, the right term of Eq. (4) should be as small as possible.
Then, given the observed data (ti, xti), i = 1, 2, · · · , n. We
can derive the estimator of θ by solving the optimization
problem as follows:

min

n−1∑
i=1

(xti+1−xti−h(ti+1, xti+1 , xti+1−τ , θ)(ti+1− ti))2.

(4)
Thus, the estimator of β can be obtained by solving the

following equation

E[
n−1∑
i=1

(w(ti+1, xti+1
, xti+1−τ , β)(Cti+1

− Cti))2]

=
n−1∑
i=1

(xti+1
− xti − h(ti+1, xti+1

, xti+1−τ , θ̂)

(ti+1 − ti))2,

where θ̂ is the estimator of θ.
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Since E[Cti+1−Cti ] = 0 and V ar[Cti+1−Cti ] = (ti+1−
ti)

2, we have

E[
n−1∑
i=1

(w(ti+1, xti+1
, xti+1−τ , β)(Cti+1

− Cti))2]

=
n−1∑
i=1

E[(w(ti+1, xti+1
, xti+1−τ , β)(Cti+1

− Cti))2]

=
n−1∑
i=1

w2(ti+1, xti+1
, xti+1−τ , β)E[(Cti+1

− Cti)2]

=
n−1∑
i=1

w2(ti+1, xti+1
, xti+1−τ , β)(ti+1 − ti)2.

Then, we can obtain the estimator of β by solving the
equation

n−1∑
i=1

w2(ti+1, xti+1 , xti+1−τ , β)(ti+1 − ti)2

=
n−1∑
i=1

(xti+1
− xti − h(ti+1, xti+1

, xti+1−τ , θ̂)(ti+1 − ti))2.(5)

IV. EXAMPLE

Example 1: Consider the following uncertain delay differ-
ential equation:

dXt = θdt+ βXt−0.5dCt,

where θ and β are an unknown parameters. Given the ob-
served data (ti, xti), i = 1, 2, · · · , n in which ti+1−ti = 0.5.
By solving the optimization problem

min
n−1∑
i=1

(xti+1
− xti − θ(ti+1 − ti))2,

we obtain the estimator of θ

θ̂ =

∑n−1
i=1 (xti+1

− xti)(ti+1 − ti)∑n−1
i=1 (ti+1 − ti)2

=
2

n− 1

n−1∑
i=1

(xti+1
− xti) =

2

n− 1
(xtn − xt1).

Then, according to Eq. (7), we can get the estimator of β

β̂ =

√√√√4
∑n−1
i=1 (xti+1

− xti − 1
n−1 (xtn − xt1))2∑n−1

i=1 x
2
ti

.

Assume that we have 20 groups of observed data as shown
in Table 1. Then, we derive the least squares estimators

θ̂ = 2.0926, β̂ = 0.0354.

Thus, the uncertain delay differential equation could be
written as

dXt = 2.0926dt+ 0.0354Xt−0.5dCt.

Hence, the γ-path Xγ
t (0 < γ < 1) is the solution of

following ordinary differential equation

dXγ
t = 2.0926dt+ 0.0354Xγ

t−0.5

√
3

π
ln

γ

1− γ
dt.

TABLE I
OBSERVATIONS OF UNCERTAIN DELAY DIFFERENTIAL EQUATION

n 1 2 3 4 5 6 7 8 9 10

ti 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50

Xti 0.53 1.20 2.45 3.91 4.32 5.41 6.58 7.86 8.37 9.25

n 11 12 13 14 15 16 17 18 19 20

ti 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50

Xti 10.43 11.76 12.59 13.92 14.18 15.06 17.39 18.71 19.63 20.41

0 2 4 6 8 10 12
0

5

10

15

20

25

30

=0.95
=0.01

observations

Fig. 1. Observations and γ-path of Xt

According to Figure 1, all observations fall into the area
between 0.01-path X0.01

t and 0.95-path X0.95
t . Therefore, the

methods used in this paper are reasonable.
Example 2: Consider the following uncertain delay differ-

ential equation:

dXt = θXt−0.2dt+ βXtdCt,

where θ and β are an unknown parameters. Given the ob-
served data (ti, xti), i = 1, 2, · · · , n in which ti+1−ti = 0.2.
By solving the optimization problem

min
n−1∑
i=1

(xti+1 − xti − θxti(ti+1 − ti))2,

we obtain the estimator of θ

θ̂ =

∑n−1
i=1 (xti+1

− xti)xti(ti+1 − ti)∑n−1
i=1 (xti(ti+1 − ti))2

=

∑n−1
i=1 (xti+1

− xti)xti
5
∑n−1
i=1 (xti)

2
.

Assume that we have 20 groups of observed data as shown
in Table 2. Then, we derive the least squares estimators

θ̂ = 0.0154, β̂ = 0.3944.
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Thus, the uncertain delay differential equation could be
written as

dXt = 0.0154Xt−0.2dt+ 0.3944XtdCt.

Hence, the γ-path Xγ
t (0 < γ < 1) is the solution of

following ordinary differential equation

dXγ
t = 0.0154Xγ

t−0.2dt+ 0.3944Xγ
t

√
3

π
ln

γ

1− γ
dt.

TABLE II
OBSERVATIONS OF UNCERTAIN DELAY DIFFERENTIAL EQUATION

n 1 2 3 4 5 6 7 8 9 10

ti 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

Xti 0.17 0.69 1.53 1.98 2.76 3.25 3.81 4.32 5.07 5.83

n 11 12 13 14 15 16 17 18 19 20

ti 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00

Xti 6.34 7.18 7.92 8.51 9.13 9.64 10.35 11.17 12.36 13.18

According to Figure 2, all observations fall into the area
between 0.15-path X0.15

t and 0.83-path X0.83
t . Therefore, the

methods used in this paper are reasonable.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

16

18

20

=0.15
=0.83

observations

Fig. 2. Observations and γ-path of Xt

Example 3: Consider the following uncertain delay differ-
ential equation:

dXt = (θ1Xt + θ2Xt−0.3)dt+ βXtdCt,

where θ1, θ2 and β are an unknown parameters. Given the
observed data (ti, xti), i = 1, 2, · · · , n in which ti+1 − ti =
0.3.

Assume that we have 20 groups of observed data as shown
in Table 3. Then, we derive the least squares estimators

θ̂1 = 3.3333, θ̂2 = −10.8436, β̂ = 0.9437.

Thus, the uncertain delay differential equation could be
written as

dXt = (3.3333Xt − 10.844Xt−0.3)dt+ 0.9437XtdCt,

Hence, the γ-path Xγ
t (0 < γ < 1) is the solution of

following ordinary differential equation

dXγ
t = (3.3333Xγ

t − 10.8436Xγ
t−0.3)dt

+0.9437Xγ
t

√
3

π
ln

γ

1− γ
dt.

TABLE III
OBSERVATIONS OF UNCERTAIN DELAY DIFFERENTIAL EQUATION

n 1 2 3 4 5 6 7 8 9 10

ti 0.30 0.60 0.90 1.20 1.50 1.80 2.10 2.40 2.70 3.00

Xti 0.19 1.58 3.69 6.12 4.35 8.01 6.52 9.72 3.83 7.54

n 11 12 13 14 15 16 17 18 19 20

ti 3.30 3.60 3.90 4.20 4.50 4.80 5.10 5.40 5.70 6.00

Xti 10.23 15.18 11.29 6.27 12.39 9.37 17.53 11.89 15.61 18.36

According to Figure 3, all observations fall into the area
between 0.05-path X0.05

t and 0.96-path X0.96
t . Therefore, the

methods used in this paper are reasonable.

0 1 2 3 4 5 6 7
-5

0

5

10

15

20

25

=0.96
=0.05

observations

Fig. 3. Observations and γ-path of Xt

Remark 2: If the time delay in equation (2) is unknown,
equation (3) can be rewritten as the following approximation
equation by using Taylor expansion

Xti+1
−Xti = h(ti+1, Xti+1

, Xti+1
− τ

Xti+1 −Xti

ti+1 − ti
, θ)

(ti+1 − ti)

+w(ti+1, Xti+1 , Xti+1 − τ
Xti+1 −Xti

ti+1 − ti
, β)

(Cti+1
− Cti). (6)
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We can derive the estimator of θ by solving the optimiza-
tion problem as follows:

min
n−1∑
i=1

(xti+1
− xti − h(ti+1, Xti+1

, Xti+1

−τ
Xti+1 −Xti

ti+1 − ti
, θ)(ti+1 − ti))2.

Then, the estimator of β can be obtained by solving the
equation

n−1∑
i=1

w2(ti+1, Xti+1
, Xti+1

− τ
Xti+1

−Xti

ti+1 − ti
, β)

(ti+1 − ti)2

=
n−1∑
i=1

(xti+1 − xti

−h(ti+1, Xti+1
, Xti+1

− τ
Xti+1

−Xti

ti+1 − ti
, θ)(ti+1 − ti))2.

Example 4: Consider the following uncertain delay differ-
ential equation:

dXt = θdt+Xt−τdCt,

where θ and τ are an unknown parameters. Given the ob-
served data (ti, xti), i = 1, 2, · · · , n in which ti+1− ti = 1.
By solving the optimization problem

min
n−1∑
i=1

(xti+1
− xti − θ(ti+1 − ti))2,

we obtain the estimator of θ

θ̂ =

∑n−1
i=1 (xti+1

− xti)(ti+1 − ti)∑n−1
i=1 (ti+1 − ti)2

.

Assume that we have 20 groups of observed data as shown
in Table 4. Then, we derive the least squares estimators

θ̂ = 0.7258, τ̂ = 0.5472.

Thus, the uncertain delay differential equation could be
written as

dXt = 0.7258dt+Xt−0.5472dCt.

Hence, the γ-path Xγ
t (0 < γ < 1) is the solution of

following ordinary differential equation

dXγ
t = 0.7258dt+Xγ

t−0.5472

√
3

π
ln

γ

1− γ
dt.

According to Figure 4, all observations fall into the area
between 0.15-path X0.15

t and 0.85-path X0.85
t . Therefore, the

methods used in this paper are reasonable.

V. CONCLUSIONS

In this paper, we have studied the problem of parameter
estimation for UDDEs based on implicit Euler scheme from
discrete observations. We have obtained the difference equa-
tion of UDDEs by using the implicit Euler scheme. Then, we
have derived the equations which can obtain the parameter
estimators both for drift item and diffusion item. Moreover,
we have provided some examples to illustrate the methods
used in this paper. We will consider the parameter estimation
for partially observed UDDEs in future works.

TABLE IV
OBSERVATIONS OF UNCERTAIN DELAY DIFFERENTIAL EQUATION

n 1 2 3 4 5 6 7 8 9 10

ti 1 2 3 4 5 6 7 8 9 10

Xti 1.28 3.65 5.17 8.75 3.39 7.11 9.27 10.94 12.81 6.38

n 11 12 13 14 15 16 17 18 19 20

ti 11 12 13 14 15 16 17 18 19 20

Xti 10.39 14.28 11.81 8.45 12.97 7.12 15.68 11.25 18.61 15.07

0 5 10 15 20 25
0

5

10

15

20

25

30

=0.85
=0.25

observatons

Fig. 4. Observations and γ-path of Xt
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