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Abstract—The objective of this article is to develop the theory
of discrete version of the fundamental theorem on α(`)-delta
integration, utilizing ∞-order α(`) integrable functions. This
theory is subsequently applied to establish several fundamental
theorems and illustrate examples concerning fractional order
sums in the field of discrete fractional calculus.

Index Terms—Delta integrable function, Discrete Delta
integration, Fractional sum, Closed form, Summation form,
Numerical analysis.

I. INTRODUCTION

OVER the past few decades, there has been substantial
attention in the literature of discrete fractional

calculus [1], [2], [3], [6], [9], [13], [18]. The authors
concentrated on establishing precise definitions for discrete
fractional differential equations and developing effective
solution methodologies. To achieve this, various researchers
rigorously investigated the commutative properties of
fractional sum and difference operators. The study
introduced a fractional difference equation of order ν-th
order (0 < ν ≤ 1), analyzed a nonlinear problem with an
initial condition, and provided a linear constant-coefficient
problem as an illustrative example [1].

In [2], the authors have paid attention in finite
differences of fractional order, ∆αf which provides a
description of differences of arbitrary order and computes
them for numerous specific functions. The researchers
developed a novel discrete transform method by extending
the discrete Laplace transform. The authors established
many properties, including a comprehensive exponential
law and the critical Leibniz rule, which is used to solve
2nd-order linear differential equations [4], [5].

In [7], the authours explores solutions to difference
equations using elementary analysis and linear algebra.
Readers may have encountered difference equations in
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various contexts, such as Newton’s Method approximation,
discretization, computation, combinatorics, and modeling
economic or biological phenomena. In [8], the topics
covered by differential equations, numerical analysis,
discrete modeling, combinatorics and numerical methods.
The wide range of uses to various mathematical subfields is
a distinguishing feature of this iteration. In this study [10],
[11], the researchers explained the generalized difference
operator of the nth kind, represented by ∆`, where
` = `1, `2, . . . , `n. They get some interesting findings. In
number theory, formulas for the sum of universal partial
sums of products of successive terms of an arithmetic
progression are developed.

This article [12] discusses and provides solutions to
the second order generalized difference problem. They
demonstrate that there is no non-trivial solution for the
given condition. They provide few formulas and examples
respectively. In [14], the author delved into the theoretical
and practical applications of computer technologies for
modeling nonlinear systems. The research encompassed a
variety of computational techniques, including high-precision
operator approximation and innovative non-Lagrange
interpolation methods.

The work [15] proposes fractional central differences
and derivatives. The integer order derivatives and differences
are extended to real orders, resulting in two new types of
differences and derivatives. For each type, an appropriate
integral formulation is obtained. This book [16] offers
a comprehensive preliminaries to fractional differential
equations and fractional derivatives, covering essential
special functions, foundational theory, existence and
uniqueness proofs, and analytical and numerical solution
methods. Additionally, it presents a range of practical
applications.

The goal of this study in [17] is to develop discrete
fundamental theorems for delta integrable functions using
a novel mechanism known as the delta integration method.
The νth fractional sum of a function f has both forms,
which is summation and closed form. Additionally, which is
extended to h-delta sum and integration. Finally, they assess
their findings using diagrams of falling factorial, geometric
and polynomial functions. Also authors in [19] developed
`-nabla integration of f and discrete fractional integration
for factorials and geometric functions.

In this article, we have extended this concept to α(`)-delta
integration and its sum. Here, we derive several fundamental
theorems using α(`)-delta operator. Also, we validated our
findings with suitable numerical examples.

Notations I.1. For a ∈ R = (−∞,∞), we denote a+Z` =
{a, a± `, a± 2`, ...} throughout this paper, we take ` > 0.
Also, a+ Z1 = {a, a± 1, a± 2, ...}, 0 + Z1 = Z.
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II. PRELIMINARIES RELATED TO α(`) - DELTA
INTEGRATION

In this section, we present the definitions related to
`-falling factorials, the α(`)-delta operator and its anti
difference delta operator on real valued function, and a
summation formula arrived via the anti difference α(`)-delta
operator.

Definition II.1. Let f : a + Z` → R, where ` > 0 and
a + Z` = {a, a± `, a± 2`, ...}. The α(`)-delta operator on
f is defined as

∆α(`)f(ζ) = f(ζ + `)− αf(ζ), ζ ∈ a+ Z`. (1)

The inverse of α(`)-delta operator ∆−1α(`) on f is defined by

∆−1α(`)f = f1(ζ) + c, (2)

where f1 : a+ Z` → R such that ∆α(`)f1(ζ) = f(ζ) and c
is an arbitrary constant.

Definition II.2. [17] For n ∈ N = {1, 2, 3, . . .}, the
nth-order `-falling factorial of ζ, ζ(n)` is defined by

ζ
(n)
` =

n−1∏
r=0

(ζ − r`) and ζ(0)` = 1, ζ ∈ R.

For ζ, ν ∈ R and ` > 0, the νth-order `-falling factorial is
defined by

ζ
(ν)
` =

Γ

(
ζ

`
+ 1

)
Γ

(
ζ

`
− ν + 1

)`ν , ζ
`
−ν+1 /∈ {0,−1,−2,−3, ...} .

(3)

Lemma II.3. [17] The Gamma function satisfies the relation

Γ(α) = (α− 1)Γ(α− 1), α ∈ R− {0,−1,−2, ...} . (4)

Lemma II.4. Let ζ ∈ (−∞,∞), f(ζ) = ζ
(n)
` and n > 0.

Then,

∆α(`)ζ
(n)
` = [(ζ + `)− α(ζ − (n− 1)`)]ζ

(n−1)
` . (5)

Proof: From the definition of α(`)-delta operator,

∆α(`)ζ
(n)
` = (ζ + `)

(n)
` − αζ(n)`

= (ζ + `)ζ(ζ − `) . . . (ζ − (n− 2)`)

−α(ζ)(ζ−`) . . . (ζ−(n−2)`)(ζ−(n−1)`)

= ζ
(n−1)
` [(ζ + `)− α(ζ − (n− 1)`)],

which gives (5).

Theorem II.5. If ∆α(`)f1(ζ) = f(ζ) and m =
ζ − a
`
∈ N

for ζ ∈ a+ Z`, then

f1(ζ + `)− αmf1(a+ `) =
m∑
s=1

αm−sf(a+ s`). (6)

Proof: From the given hypothesis, ∆α(`)f1(ζ) = f(ζ),
and the equation (1), we get

f1(ζ + `) = f(ζ) + αf1(ζ). (7)

By finding the values of f1(ζ − r`), r = 0, 1, 2, . . . ,m
by replacing ζ by ζ − r`, r = 1, 2, . . . ,m respectively in

equation (7), and then substituting again in (7), we arrive
following steps:

f1(ζ + `) = f(ζ) + αf(ζ − `) + α2f1(ζ − `)

f1(ζ+`) = f(ζ)+αf(ζ − `)+α2f(ζ−2`)+α3f1(ζ−2`),

f1(ζ+`) = f(ζ)+αf(ζ−`)+α2f(ζ−2`)+· · ·+α4f1(ζ−3`).
(8)

Proceeding this upto m-steps, equation (8) yields

f1(ζ+ `)−αmf1(ζ− (m−1)`) =
m∑
k=1

αk−1f(ζ− (k−1)`).

(9)
Now, equation (6) follows by taking ζ −m` = a, in (9).

The following corollary motivates us to develop integer
order α(`) delta integration of certain function.

Corollary II.6. Let ζ ∈ a + Z`, ∆−1α(`)f(ζ) = f1(ζ) and

m =
ζ − a
`
∈ N . Then,

∆−1α(`)f(ζ)−αm∆−1α(`)f(a) =
m−1∑
s=0

αm−1−sf(a+ s`). (10)

Proof: This corollory is proved by taking ∆−1α(`)f(ζ) =

f1(ζ) and replacing ζ by ζ − ` in Theorem II.5.

III. INTEGER ORDER α(`) - DELTA INTEGRATION

The relation (10) is a basic theorem of α(`)-delta
integration. The expressions (6) and (9) are said to be the
1st-order discerete α(`)-delta integration of f . Here, we
obtain an important theorem for integer order α(`)-delta
integration. This is a generalization of the relation (10).

Definition III.1. Let f : a + Z` → R be an mth-order
α(`)-delta integrable function and if there exists a sequence
of functions, (f1, f2, ..., fm) such that

∆k
α(`)fk = f, k = 1, 2, 3, ...,m. (11)

Then (f1, f2, ..., fm) is said to be α(`)-delta integrating
sequence of f .

Example III.2. (i) Let f(ζ) = 2ζ , ζ ∈ R, is an mth-order
α(`)-delta integrable function having integrating sequence(

2ζ

2` − α
,

2ζ

(2` − α)2
, ...,

2t

(2` − α)m

)
, Since

f(ζ) = 2ζ =
∆α(`)2

ζ

2` − α
=

∆2
α(`)2

ζ

(2` − α)2
= ... =

∆m
α(`)2

ζ

(2` − α)m
,

(12)
∀ m ∈ N.

(ii) Let f(ζ) = cζ , c6= 1, ζ ∈ R = J1 is mth-order
α(`)-delta integrable function having integrating sequence(

cζ

c` − α
,

cζ

(c` − α)2
, ...,

cζ

(c` − α)m

)
, since

f(ζ) = cζ =
∆α(`)c

ζ

c` − α
=

∆2
α(`)c

ζ

(c` − α)2
= ... =

∆m
α(`)c

ζ

(c` − α)m
,

(13)
∀ m ∈ N.

For α = 1, the delta integrable functions are clearly
mentioned in [17]
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Definition III.3. Let f : a + Z` → R be an α(`)-delta
integrable function having α(`)-delta integrating sequence

(f1, f2, ..., fn). If ζ ∈ a + Z`, m =
ζ − a
`

and n ∈ N, then

nth-order α(`)-delta integration of f based at a is defined
by

Fna (ζ) := fn(ζ)−
n−1∑
r=0

αm−rm(r) fn−r
r!

(a). (14)

From this, we have the following example for nth-order
α(`)-delta integration.

Example III.4. (i) Let f(ζ) = 2ζ , where ζ ∈ a+Z`. Then the
nth-order α(`)-delta integration of 2ζ based at a is defined
as,

Fna (ζ) = fn(ζ)− [αmfn(a) +
m

1!
αm−1fn−1(a)

+ . . .+
m(n−1)

(n− 1)!
αm−(n−1)f1(a)]

Fna (ζ) =
2ζ

(2` − α)n
−
[

αm2a

(2` − α)n
+

mαm−12a

(1!)(2` − α)n−1

+ . . .+
m(n−1)αm−(n−1)2a

((n− 1)!)(2` − α)

]
Fna (ζ) =

2ζ

(2` − α)n
−
n−1∑
r=0

αm−rm(r)

r!

2a

(2` − α)n−r
.

(ii) Let f(ζ) = bζ , where ζ ∈ a+ Z` and b` 6= α. Then the
nth-order α(`)-delta integration of bζ based at a as,

Fna (ζ) = fn(ζ)− [αmfn(a) +
m

1!
αm−1fn−1(a)

+ . . .+
m(n−1)

(n− 1)!
αm−(n−1)f1(a)]

Fna (ζ) =
bζ

(b` − α)n
−
[

αmba

(b` − α)n
+

mαm−1ba

(1!)(b` − α)n−1

+ . . .+
m(n−1)αm−(n−1)ba

((n− 1)!)(b` − α)

]
Fna (ζ) =

bζ

(b` − α)n
−
n−1∑
r=0

αm−r(m)(r)

r!

ba

(b` − α)n−r
.

Theorem III.5. Assume f : a+ Z` → R having α(`)-delta
integrating sequence (f1, f2, ..., fn). If ζ ∈ a + Z`, m =
ζ − a
`

and n ∈ N such that m − n be a positive integer

and ∆−nα(`)f(ζ) be the nth-order α(`)-delta integration of f
based at a, then we have

a∆−nα(`)f(ζ)

=
1

(n− 1)!

m−n∑
s=0

αm−n−s (m− (s+ 1))
(n−1)

f(a+ s`).

(15)

Proof: The 1st-order α(`)-delta integration is proved
from Corollary II.6.
Taking inverse delta operator ∆−1α(`) on equation (10),

∆−2α(`)f(ζ)− αm∆−2α(`)f(a) =
m−1∑
s=0

αm−1−s∆−1α(`)f(a+ s`)

= ∆−1α(`)f(a+ (m− 1)`) + α∆−1α(`)f(a+ (m− 2)`)

+ · · ·+ αm−2∆−1α(`)f(a+ `) + αm−1∆−1α(`)f(a)

Since a+m` = ζ, we get

∆−2α(`)f(ζ)− αm∆−2α(`)f(a)

= ∆−1α(`)f(ζ−`)+α∆−1α(`)f(ζ−2`)+α2∆−1α(`)f(ζ−3`)

+ · · ·+ αm−2f1(ζ − (m− 1)`) + αm−1f1(ζ −m`)
Substituting Equation (10) in every term of RHS of above
equation, which yields
∆−2α(`)f(ζ)− αm∆−2α(`)f(a)

= f(ζ − 2`) + 2αf(ζ − 3`) + 3α2f(ζ − 4`) + 4α3f(ζ − 5`)

+ · · ·+ (m− 1)αm−2f(ζ −m`) +mαm−1f1(ζ −m`).
(16)

∆−2α(`)f(ζ)− αm∆−2α(`)f(a)−mαm−1∆−1α(`)f(a)

= f(a+ (m− 2)`) + 2αf(a+ (m− 3)`)

+ · · ·+ (m− 1)αm−2f(a)

∆−2α(`)f(ζ)− αm∆−2α(`)f(a)−mαm−1∆−1α(`)f(a)

=
m−2∑
s=0

αm−2−s (m− (s+ 1)) f(a+ s`). (17)

Equation (17) is the 2nd-order α(`)-delta integration formula.
Applying ∆−1α(`) operator on the Equation (16) and then
continuing the same way, we get

∆−3α(`)f(ζ)− αm∆−3α(`)f(a)−mαm−1∆−2α(`)f(a)

−m
(2)

2!
αm−2∆−1α(`)f(a)

=
1

2!

m−3∑
s=0

αm−3−s (m− (s+ 1))
(2)
f(a+ s`). (18)

Similarly applying the ∆−1α(`) operator repeatedly, we arrive
the (n− 1)th-order α(`)-delta integration as

∆
−(n−1)
α(`) f(ζ)−

n−2∑
r=0

αm−r
m(r)

r!
∆
r−(n−1)
α(`) f(a)

=
1

(n− 2)!

m−(n−1)∑
s=0

αm−(n−1)−s (m− (s+ 1))
(n−2)

f(a+s`).

Hence, again taking the ∆−1α(`) operator on both sides of
above equation, we can easily obtain the nth-order α(`)-delta
integration

∆
−(n)
α(`) f(ζ)−

n−1∑
r=0

αm−r
m(r)

r!
∆r−n
α(`)f(a)

=
1

(n− 1)!

m−n∑
s=0

αm−n−s (m− (s+ 1))
(n−1)

f(a+ s`)

On taking

a∆−nα(`)f(ζ) = ∆
−(n)
α(`) f(ζ)−

n−1∑
r=0

αm−r
m(r)

r!
∆r−n
α(`) f(a),

we get Equation (15).

Theorem III.6. Let f : a + Z` → R be a function having
α(`)-delta inegrating sequence (f1, f2, ..., fn). If ζ ∈ a+Z`,
m =

ζ − a
`

such that m−n be a positive integer and Fna (ζ)

be the nth-order α(`)-delta integration of f based at a as
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defined in (14), then

Fna (ζ) :=

m−n∑
s=0

αm−n−s (m− (s+ 1))
(n−1)

f(a+ s`)

(n− 1)!
.

(19)

Proof: The proof follows by mathematical induction
method.
From II.5, we have

F 1
a (ζ) := f1(ζ)− αmf1(a) =

m−1∑
s=0

αm−1−sf(a+ s`)

and hence Equation (19) is true for n = 1
Let us assume Equation (19) is true for n− 1 case,

Fn−1a (ζ) := fn−1(ζ)−
n−2∑
r=0

αm−r
m(r)

r!
fn−1−r(a)

=

m−(n−1)∑
s=0

αm−n+1−s (m− (s+ 1))(n−2) f(a+ s`)

(n− 2)!
. (20)

Now, we are going to prove Equation (20) is true for nth

case.
On taking

ζ − a
`

= m, a = ζ − m` and expanding the
Equation (20), we arrive on

fn−1(ζ)− αmfn−1(a)− αm−1m
(1)

1!
fn−2(a)− · · ·

−αm−(n−2) m
(n−2)

(n− 2)!
f1(a)

=
1

(n− 2)!

[
αm−n+1(m− 1)(n−2)f(ζ −m`)

+αm−n(m− 2)(n−2)f(ζ − (m− 1)`)

+ · · ·+ (n− 2)(n−2)f(ζ − (n− 1)`)
]

Applying ∆−1α(`) in the above equation, we get

fn(ζ)− αmfn(a)− αm−1m
(1)

1!
fn−1(a)− · · ·

−αm−(n−2) m
(n−2)

(n− 2)!
f2(a)

=
1

(n− 2)!

[
(n− 2)(n−2)f1(ζ − (n− 1)l)

+α(n− 1)(n−2)f1(ζ − nl) + · · ·
+αm−n(m− 2)(n−2)f1(ζ − (m− 1)`)

+αm−n+1(m− 1)(n−2)f1(ζ −m`)
]

Applying Theorem II.5 in every term of RHS of above
equation, which arrive

fn(ζ)− αmfn(a)− αm−1m
(1)

1!
fn−1(a)− · · ·

−αm−(n−2) m
(n−2)

(n− 2)!
f2(a)

=
(n− 2)(n−2)

(n− 2)!
f(ζ−nl)+α

n(n−1)

(n− 2)!(n− 1)
f(ζ−(n+1)`)

+α2 (n+ 1)(n−1)

(n− 2)!(n− 1)
f(ζ − (n+ 2)`) + · · ·

+αm−n
(m− 1)(n−1)

(n− 2)!(n− 1)
f(ζ −m`)

+αm−n+1 m(n−1)

(n− 2)!(n− 1)
f1(ζ −m`)

Now multipling and dividing (n−1)! in 1st term only of the
right side, we get

fn(ζ)− αmfn(a)− αm−1m
(1)

1!
fn−1(a)− · · ·

−αm−(n−2) m
(n−2)

(n− 2)!
f2(a)−αm−(n−1) m

(n−1)

(n− 1)!
f1(a)

=
(n− 1)(n−1)

(n− 1)!
f(ζ − n`) + α

n(n−1)

(n− 1)!
f(ζ − (n+ 1)`)

+α2 (n+ 1)(n−1)

(n− 1)!
f(ζ − (n+ 2)`) + · · ·

+αm−n
(m− 1)(n−1)

(n− 1)!
f(ζ −m`)

which implies on

fn(ζ)−
n−1∑
r=0

αm−r
m(r)

r!
fn−r(a)

=
1

(n− 1)!

m−n∑
s=0

αm−n−s (m− (s+ 1))
(n−1)

f(a+ s`)

From Equation (14), we get equation (19) and hence by the
induction method the theorem is true for nth case.

Example III.7. Taking f(ζ) = 2ζ and a = 2, n = 3 in
Equation (19), we get

F 3
a (ζ) :=

1

2!

m−3∑
s=0

αm−3−s (m− (s+ 1))
(2)
f(a+ s`) (21)

By taking ` = 1, ζ = 5, α = 1 in example III.4 and inserting

m =
5− 2

1
= 3 in (21), we get

F 3
a (ζ) =

25

(21 − 1)3
−

3−1∑
r=0

13−r3(r)

r!

22

(21 − 1)3−r
= 4.

1

2!

m−3∑
s=0

αm−3−s (m− (s+ 1))
(2)
f(a+ s`)

=
1

2!
α3−3−0 (3− (0 + 1))

(2)
f(a+ s`) = 4.

Hence, the equation (21) is verified.

Corollary III.8. Let ζ ∈ a+Z` and n ∈ N such that m−n be
a positive integer. If f be an nth-order α(`)-delta integrable
function based at a, then

Fna (ζ) =a ∆−nα(`)f(ζ). (22)

Proof: The proof completes by Equation (15) and (19)
which leads to (22).

Corollary III.9. Let f : a+Z` → R be nth-order α(`)-delta
integrable function based at a. If a < b < ζ such that both,
ζ − a
`
− n and

ζ − b
`
− n be a positive integer, then

a∆−nα(`)f(ζ) = Fna (ζ)− Fna (b). (23)

Proof: From (22), we have ∆−nα(`)f(ζ) = Fna (ζ) and
∆−nα(`)f(b) = Fna (b).

Now (23) follows from a∆−nα(`)f(ζ) = ∆−nα(`)f(ζ)−∆−nα(`)f(b)
arrived by (24).

Remark III.10. If f is nth-order α(`)-delta integrable
function based at a, then from Corallary III.8 and Equation
(3), we obtain
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a∆−nα(`)f(ζ) = fn(ζ)−
n−1∑
r=0

αm−r
fn−r(a)

Γ(r + 1)

Γ(m+ 1)

Γ(m− r + 1)

=
1

Γ(n)

m−n∑
s=0

αm−n−s Γ(m− s)

Γ(m− s− (n− 1))
f(a+ s`) (24)

Example III.11. Putting n = 1 in the Equation (24), we get

f1(ζ)−
0∑
r=0

αm−r
f1−r(a)

Γ(r + 1)

Γ(m+ 1)

Γ(m− r + 1)

=
1

Γ(1)

m−1∑
s=0

αm−1−s
Γ(m− s)

Γ(m− s− 0)
f(a+ s`).

Now taking f(ζ) = 2ζ , ζ = 5.5, a = 1.5, ` = 2, α = 1 and
inserting m = 2 in the above equation, we get

f1(ζ) − αm
f1(a)

Γ(1)

Γ(3)

Γ(3)
=

1∑
s=0

12−1−s Γ(2 − s)

Γ(2 − s)
f(1.5 + 2s) (25)

On expanding both the sides of the above equation, we get

LHS =
2ζ

2`−α
− 1× 2a

2`−α
= 14.14213562

RHS =
1∑
s=0

21.5+2s =
25.5

22 − 1
− 21.5

22 − 1
= 21.5 + 23.5

= 14.14213562

Hence, the equation (25) is verified.

IV. FRACTIONAL ORDER α(`) - DELTA INTEGRATION

The relation (24) in Remark III.10 motivates us to form
a conjecture in fractional order α(`)-delta integration. Here,
we extend this to fractional νth-order α(`)-delta integration
value equal to νth-order fractional sum of f based at a. In
this section, the TheoremIII.5 and Theorem III.6 yield new
definition when n becomes fractional, that is, for any real
ν > 0.

Definition IV.1. [17] Let f : a + Z` → R be an nth-order
delta integrable function based at a for every n ∈ N , then f
is called the ∞− order delta integrable function.

Remark IV.2. [17] All the functions mentioned in Example
III.4 are ∞-order α(`)-delta integrable functions.

Definition IV.3. Let f : a + Z` → R be a function ν ≥ 0,

ζ ∈ a+Z`, m =
ζ − a
`

such that m−ν be a positive integer.

The fractional order (νth-order) α(`)-delta sum of f based
at a is defined by,

∆−ν
α(`)

f(ζ) =
1

Γ(ν)

m−ν∑
s=0

αm−n−s Γ(m− s)

Γ(m− s− (ν − 1))
f(a+s`). (26)

Definition IV.4. Let f : a+Z` → R, ν ≥ 0, ζ ∈ a+Z` and

m =
ζ − a
`

such that m − ν be a positive integer. If there
exists a function fνa : a+ ν +N → R such that

fνa (ζ) =
1

Γ(ν)

m−ν∑
s=0

αm−n−s Γ(m− s)

Γ(m− s− (ν − 1))
f(a+ s`), (27)

then the function fνa is called the νth-order α(`)-delta
integration of f based at a.

Conjecture: Let f : a + Z` → R be an infinte order
α(`)-delta integrable function based at a having integrating
sequence (fn)∞n=1. If fn(a) = 0 when n = 1, 2, . . ., then
fνa (ζ) exists and satisfies (27) for ν > 0.

Theorem IV.5. If f : a + Z` → R be a function having
α(`)-delta integrating sequence (f1, f2, · · · , fn) and also f
is in geometric progression, ζ ∈ a+Z`, a ∈ R and a∆−nq f(t)
is the nth-order α(`)-delta integration of f based at a, then

fn(ζ)− [ (r + 1)(n−1)

(n − 1)!
αr+2−nf(ζ − (r + 2)`)

]2
(r + 1)(n−1)

(n − 1)!
αr+2−nf(ζ − (r + 2)`) −

(r + 2)(n−1)

(n − 1)!
αr+3−nf(ζ − (r + 3)`)

=
r∑

s=n−1

s(n−1)

(n− 1)!
αs−n+1f(ζ − (s+ 1)`) (28)

Proof: Consider the expression (24) in Remark III.10,

fn(ζ)− αmfn(a)−mαm−1fn−1(a)− m(2)

2!
αm−2fn−2(a)

− · · · − m(n−1)

(n− 1)!
αm−(n−1)f1(a)

=
(n− 1)(n−1)

(n− 1)!
f(ζ − n`) +

(n)(n−1)

(n− 1)!
αf(ζ − (n+ 1)`)

+ · · ·+ (m− 1)(n−1)

(n− 1)!
αm−nf(ζ −m`)

As m → ∞, fs(a) → 0 when s = 1, 2, . . . , n, then
substituting this into the above equation and it becomes

fn(ζ) =
(n− 1)(n−1)

(n− 1)!
f(ζ−n`)+ (n)(n−1)

(n− 1)!
αf(ζ−(n+1)`)+· · ·

Now, we spilt the above infinite series into two series

fn(ζ) =

[
(n− 1)(n−1)

(n− 1)!
f(ζ − n`) + (n)(n−1)

(n− 1)!
αf(ζ − (n+ 1)`)

+ · · ·+ (r)(n−1)

(n− 1)!
αr+1−nf(ζ − (r + 1)`)

]
+

[
(r + 1)(n−1)

(n− 1)!
αr+2−nf(ζ − (r + 2)`)

+
(r + 2)(n−1)

(n− 1)!
αr+3−nf(ζ − (r + 3)`) + · · ·

]
(29)

Consider the second series of the equation (29)

(r + 1)(n−1)

(n− 1)!
αr+2−nf(ζ − (r + 2)`)

+
(r + 2)(n−1)

(n− 1)!
αr+3−nf(ζ− (r+3)`)+ · · ·

=

[ (r + 1)(n−1)

(n − 1)!
αr+2−nf(ζ − (r + 2)`)

]2
(r + 1)(n−1)

(n − 1)!
αr+2−nf(ζ − (r + 2)`) −

(r + 2)(n−1)

(n − 1)!
αr+3−nf(ζ − (r + 3)`)

.

Substitute this into the equation (29), we get (28).

Corollary IV.6. If f is νth-order α(`)-delta integrable
function based at a, then

fν(ζ)− [ 1

Γν

Γ(r + 2)

Γ(r − ν + 3)
αr+2−νf(ζ − (r + 2)`)

]2
1

Γν

Γ(r + 2)

Γ(r − ν + 3)
αr+2−νf(ζ − (r + 2)`) −

1

Γν

Γ(r + 3)

Γ(r − ν + 4)
αr+3−νf(ζ − (r + 3)`)

=
1

Γν

r∑
s=ν−1

Γ(s+ 1)

Γ(s− ν + 2)
f(ζ − (s+ 1)`). (30)

Proof: The proof follows by Theorem IV.5 and convert
(28) this into gamma function.
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Example IV.7. Applying f(ζ) = 2ζ , ζ = 0.5, r = 4.5, ` =
0.2, α = 0.3, ν = 2.5 in (30), then it will becomes

f2.5(ζ)−

[ 1

Γ2.5

Γ6.5

Γ5
(0.3)4f(0.5 − 1.3)

]2
1

Γ2.5

Γ6.5

Γ5
(0.3)4f(0.5 − 1.3) −

1

Γ2.5

Γ7.5

Γ6
(0.3)5f(0.5 − 1.5)

=
1

Γ2.5

4.5∑
s=1.5

Γ(s+ 1)

Γ(s− 0.5)
f(0.5− (s+ 1)(0.2))

LHS =
2ζ

(2` − α)2.5

−

[ 1

Γ2.5

Γ6.5

Γ8
(0.3)420.5−1.3

]2
1

Γ2.5

Γ6.5

Γ5
(0.3)420.5−1.3 − 1

Γ2.5

Γ7.5

Γ6
(0.3)520.5−1.5

= 2.13124− 0.001762

0.027726
= 2.13124− 0.06355

= 2.06769

RHS =
1

Γ2.5

4.5∑
s=1.5

(0.3)s−1.5
Γ(s+ 1)

Γ(s− 0.5)
20.5−(s+1)(0.2)

=
1

1.3296
[1.3296 + 0.868113 + 0.396762 + 0.15543]

=
1

1.3296
[2.749905]

= 2.06822

Hence, the equation (30) is verified.

V. CONCLUSION

While the fractional order α(`)-delta sum of given function
f based at a is available in the literature, no one has yet
attempted to derive the fractional order α(`)-delta integration
of f . We have developed this discrete fractional integration
for factorials and geometric functions. Here, the fractional
sum of f is derived by using the Newton’s formula. These
results generate several identies and formulae.
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