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Abstract—In this paper, we consider the problem of statistical
inference for integrated reflected Ornstein-Uhlenbeck processes
based on continuous-time observations. We examine the con-
sistency and asymptotic distribution of the trajectory fitting
estimator by employing the Toeplitz lemma and the strong law
of large numbers.

Index Terms—trajectory fitting estimator, integrated reflected
OUP, consistency, asymptotic distribution.

I. INTRODUCTION

THE Ornstein-Uhlenbeck process (OUP) has demonstrat-
ed a wide range of practical applications and con-

siderable theoretical significance in physics, finance, and
other fields since its inception. In practical applications, this
process effectively combines the randomness of Brownian
motion with the stability of mean regression, enabling accu-
rate simulations of the fluctuation characteristics of financial
variables such as stock prices, option pricing, and interest
rates (see, e.g., Nicolato and Venardos [1]; Fouque et al. [2]).
During the last decades, asymptotic properties of parameter
estimator for OUP have been studied by many statisticians.
(see, e.g., Bercu et al. [3]; Bercu and Rouault [4]; Dietz [5];
Florens-Landais and Pham [6]; Gao and Jiang [7]; Jiang [8];
Jiang and Dong [9]; Jiang and Xie [10]; Jiang and Zhang
[11]; Kutoyants [12]).

In various applications, the modeled quantity often needs
to meet additional constraints on its permissible values. For
example, models for populations or interest rates must remain
positive. It is widely recognized that reflected stochastic
differential equations with white noises are better suited for
capturing these types of phenomena. The reflected OUP mod-
ifies the standard OUP by introducing an additional regulator
that ensures the reflected OUP remains nonnegative. It is
known that the OUP {Xt, t ≥ 0} reflected at the boundary
zero is defined as follows:{

dXt = θXtdt+ dBt + dLt, X0 = x0,
Xt ≥ 0, 0 ≤ t ≤ T, (1)

where θ ∈ R, {Bt, t ≥ 0} is a one dimensional standard
Brownian process and L = {Lt, t ≥ 0} is the minimal
nondecreasing and nonnegative process, which makes the
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process Xt ≥ 0 for all t ≥ 0, so that∫ ∞
0

I(Xt > 0)dLt = 0,

where I(·) denotes the indicator function. It can be concluded
that (see, e.g., Harrison [13]; Whitt [14]) the expression of
process L is

Lt = max

[
0, sup

0≤s≤t

(
−x0 − θ

∫ s

0

Xudu−Bs
)]

= max

[
0, sup

0≤s≤t
(Ls −Xs)

]
. (2)

In recent decades, reflected OUP have been widely uti-
lized in research on queueing systems, financial engineering,
mathematical biology, and more (see, e.g., Bo et al. [15]; Ric-
ciardi and Sacerdote [16]; Ward and Glynn [17]). Recently,
statisticians have closely examined the asymptotic properties
of parameter estimation for the reflected OUP and have made
significant progress (see, e.g., Bo and Yang [18]; Bo et al.
[19]; Jiang and Yang [20]; Hu et al. [21]; Zang and Zhang
[22]; Zang and Zhu [23]).

However, there are instances when we do not directly ob-
serve the stochastic processes. Instead, we examine its inte-
grals over non-overlapping time intervals. Furthermore, these
observations are presumed to be affected by measurement
errors. Integrated stochastic processes could provide a more
effective explanation for various modern econometric phe-
nomena, as current observations often represent the cumu-
lative effects of all prior perturbations (see, e.g., Barndorff-
Nielsen [24]; Barndorff-Nielsen and Shephard [25]; Nicolau
[26]). Motivated by the aforementioned works, in this paper
we consider the integrated reflected OUP

dYt = Xtdt, Y0 = y0, (3)

where X = {Xt, t ≥ 0} is defined in equation (1).
We assume that the process X is unobservable, whereas
the process Y = {Yt, t ≥ 0} is observable. This article
aims to study consistency and asymptotic distribution of
the trajectory fitting estimator (TFE) for the unknown drift
parameter θ ∈ R in equation (3) by utilizing continuous
observations of the trajectory of the process {Yt, t ≥ 0} over
the interval [0, T ], where T > 0. TFE was first introduced by
Kutoyants [27] as a numerically appealing alternative to the
established maximum likelihood estimators for continuous
diffusion processes (see, e.g., Kutoyants [12]; Dietz and
Kutoyants [28]; Shu et al. [29]; Zhang and Shu [30]).

To obtain the TFE, we can rewrite equation (3) as follows:

dYt = (x0 + θYt +Bt + Lt)dt, 0 ≤ t ≤ T. (4)

It follows that

Yt = y0 + x0t+ θCt +

∫ t

0

Bsds+

∫ t

0

Lsds, (5)
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where Ct =
∫ t
0
Ysds. The TFE of θ is to minimize the

following objective function:∫ T

0

|Yt − y0 − x0t− θCt|2dt.

It is clear that the minimum is achieved when θ is given by

θ̂T =

∫ T
0

(Yt − y0 − x0t)Ctdt∫ T
0
C2
t dt

. (6)

Substituting equation (5) into equation (6) yields that

θ̂T = θ +

∫ T
0

(∫ t
0
Bsds+

∫ t
0
Lsds

)
Ctdt∫ T

0
C2
t dt

. (7)

II. CONSISTENCY OF THE TFE θ̂T

In the section, we investigate the consistency of the TFE
θ̂T . Throughout the article, we shall use the notation “→p”
to denote “convergence in probability” and the notation “⇒”
to denote “convergence in distribution”. We write “

d
=” for

equality in distribution.
We introduce an important lemmas as follows.
Lemma 2.1: (Dietz and Kutoyants [28]) If ϕT is a prob-

ability measure defined on [0,∞) such that ϕT ([0, T ]) = 1
and ϕT ([0,K])→ 0 as T →∞ for each K > 0, then

lim
T→∞

∫ T

0

ftϕT (dt) = f∞

for every bounded and measure function f : [0,∞)→ R for
which the limit f∞ := lim

t→∞
ft exists.

Theorem 2.1: (i) Under θ > 0, we have

lim
T→∞

(θ̂T − θ) = 0, a.s. (8)

(ii) Under θ = 0, we have

θ̂T − θ →p 0, as T →∞. (9)

(iii) Under θ < 0, we have

lim
T→∞

θ̂T = 0, a.s. (10)

Proof: (i) Under θ > 0, it follows from Zang and Zhang
[22] that

lim
t→∞

Yt
eθt

=
η∞ + β∞

θ
, a.s., (11)

and

lim
t→∞

Lt

t
1
2

= 0, a.s., (12)

where β∞ = max
[
0,−x0 + max0≤s≤ 1

2θ
B̌s

]
, {B̌t, t ≥ 0}

is another Brownian motion and −
∫ t
0
e−θsdBs = B̌ 1−e−2θt

2θ

,

and η∞ = x0 − B̌ 1
2θ

. Combining Lemma 2.1 and (11) gives
that

lim
t→∞

Ct
eθt

= lim
t→∞

∫ t
0
Ysds

eθt

= lim
t→∞

∫ t
0
Ys
eθs

eθs∫ t
0
eθsds

ds

eθt∫ t
0
eθsds

=
η∞ + β∞

θ2
, a.s. (13)

By (12) and Lemma 2.1, one has

lim
t→∞

∫ t
0
Lsds

eθt
= lim
t→∞

∫ t
0
Ls

s
1
2

s
1
2

eθs
eθs∫ t

0
eθsds

ds

eθt∫ t
0
eθsds

= 0, a.s. (14)

According to the strong law of large numbers and Lemma
2.1, we have

lim
t→∞

∫ t
0
Bsds

eθt
= lim
t→∞

∫ t
0
Bs
s

s
eθs

eθs∫ t
0
eθsds

ds

eθt∫ t
0
eθsds

= 0, a.s. (15)

By (7), (13)-(15) and Lemma 2.1, one sees that

lim
T→∞

(θ̂T − θ)

= lim
T→∞

∫ T
0

Ct
eθt

∫ t
0
Bsds

eθt
e2θt∫ T

0
e2θtdt

dt∫ T
0

( Ct
eθt

)2 e2θt∫ T
0
e2θtdt

dt

+ lim
T→∞

∫ T
0

Ct
eθt

∫ t
0
Lsds

eθt
e2θt∫ T

0
e2θtdt

dt∫ T
0

( Ct
eθt

)2 e2θt∫ T
0
e2θtdt

dt

= 0, a.s. (16)

This completes the desired proof.
(ii) Under θ = 0, we have

Yt = y0 + x0t+

∫ t

0

Bsds+

∫ t

0

Lsds, 0 ≤ t ≤ T. (17)

By the scaling properties of Brownian motion and equation
(2), there exists another standard Brownian motion {B̃t, t ≥
0} on the enlarged probability space, such that

{(B̃t, L̃t), t ≥ 0} d
=
{
T

1
2B t

T
,

T
1
2 max

[
0,− x0

T
1
2

− max
0≤s≤t

(−B s
T

)

]
, t ≥ 0

}
. (18)

Then, we have∫ T

0

C2
t dt

=

∫ T

0

[∫ t

0

(
y0 + x0s+

∫ s

0

(Bu + Lu)du

)
ds

]2
dt

= T

∫ 1

0

[∫ Tν

0

(
y0 + x0s+

∫ s

0

(Bu + Lu)du

)
ds

]2
dν

= T 3

∫ 1

0

[∫ ν

0

(
y0 + x0Tr +

∫ Tr

0

(Bu + Lu)du

)
dr

]2
dν

= T 6

∫ 1

0

[∫ ν

0

(
y0 + x0Tr

T
3
2

+

∫ r

0

BTq + LTq

T
1
2

dq

)
dr

]2
dν

d
= T 6

∫ 1

0

[∫ ν

0

(
y0 + x0Tr

T
3
2

+

∫ r

0

(B̃q + L̃q)dq

)
dr

]2
dν,

and∫ T

0

Ct

(∫ t

0

Bsds+

∫ t

0

Lsds

)
dt

= T

∫ 1

0

∫ Tν

0

(
y0 + x0s+

∫ s

0

(Bu + Lu)du

)
ds
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·
∫ Tν

0

(Bs + Ls)dsdν

= T 5

∫ 1

0

∫ ν

0

(
y0 + x0Tr

T
3
2

+

∫ r

0

BTq + LTq

T
1
2

dq

)
dr

·
∫ ν

0

BTr + LTr

T
1
2

drdν

d
= T 5

∫ 1

0

∫ ν

0

(
y0 + x0Tr

T
3
2

+

∫ r

0

(B̃q + L̃q)dq

)
dr

·
∫ ν

0

(B̃r + L̃r)drdν.

Therefore, it follows from (7) and the continuous mapping
theorem that

θ̂T − θ

=

∫ T
0

(∫ t
0
Bsds+

∫ t
0
Lsds

)
Ctdt∫ T

0
C2
t dt

d
=

1

T

(∫ 1

0

∫ ν

0

(
y0 + x0Tr

T
3
2

+

∫ r

0

(B̃q + L̃q)dq

)
dr

·
∫ ν

0

(B̃r + L̃r)drdν

)
×
(∫ 1

0

[∫ ν

0

(
y0 + x0Tr

T
3
2

+

∫ r

0

(B̃q + L̃q)dq

)
dr

]2
dν

)−1
→p 0, as T →∞. (19)

This completes the desired proof.

(iii) Under θ < 0, it follows from Zang and Zhang [22]
that

lim
t→∞

Yt
t

=
1√
−πθ

, a.s., (20)

and

lim
t→∞

Lt
t

=

√
−θ
π
, a.s. (21)

Combining (20) and Lemma 2.1 yields that

lim
t→∞

Ct
t2

= lim
t→∞

∫ t
0
Ysds

t2

= lim
t→∞

∫ t
0
Ys
s

s∫ t
0
sds
ds

t2∫ t
0
sds

=
1

2
√
−πθ

, a.s. (22)

Applying Lemma 2.1 and the strong law of large numbers,
we find that

lim
t→∞

∫ t
0
Bsds

t2
= lim
t→∞

∫ t
0
Bs
s

s∫ t
0
sds
ds

t2∫ t
0
sds

= 0, a.s. (23)

By (21) and Lemma 2.1, one has

lim
t→∞

∫ t
0
Lsds

t2
= lim
t→∞

∫ t
0
Ls
s

s∫ t
0
sds
ds

t2∫ t
0
sds

=
1

2

√
−θ
π
, a.s. (24)

By (7), (22)-(24) and Lemma 2.1, it is not difficult to see
that

lim
T→∞

(θ̂T − θ)

= lim
T→∞

∫ T
0
Ct
∫ t
0
Bsdsdt∫ T

0
C2
t dt

+ lim
T→∞

∫ T
0
Ct
∫ t
0
Lsdsdt∫ T

0
C2
t dt

= lim
T→∞

∫ T
0

Ct
t2

∫ t
0
Bsds

t2
t4∫ T

0
t4dt

dt∫ T
0

(Ctt2 )2 t4∫ T
0
t4dt

dt

+ lim
T→∞

∫ T
0

Ct
t2

∫ t
0
Lsds

t2
t4∫ T

0
t4dt

dt∫ T
0

(Ctt2 )2 t4∫ T
0
t4dt

dt

= −θ, a.s. (25)

This implies that

lim
T→∞

θ̂T = 0, a.s. (26)

This completes the proof.

III. ASYMPTOTIC DISTRIBUTION OF THE TFE θ̂T

In the section, we study the asymptotic distribution of the
TFE θ̂T .

Theorem 3.1: (i) Assume θ > 0, we have

eθT

T
3
2

(θ̂T − θ)⇒
2
√

3θ2

3

N

η∞ + β∞
, (27)

as T →∞, where N is a standard normal random variable
independent of η∞ and β∞.
(ii) Assume θ = 0, we have

T (θ̂T − θ)

⇒
∫ 1

0

∫ ν
0

∫ r
0

(B̃q + L̂q)dqdr
∫ ν
0

(B̃r + L̂r)drdν∫ 1

0

(∫ ν
0

∫ r
0

(B̃q + L̂q)dqdr
)2
dν

, (28)

as T → ∞, where {B̃u, u ≥ 0} be another standard
Brownian motion on the enlarged probability space, and
L̂s = max[0,max0≤u≤s(−B̃u)].

Proof: (i) Under θ > 0,

eθT

T
3
2

(θ̂T − θ)

=
eθT

∫ T
0
Ct
∫ t
0
Bsdsdt

T
3
2

∫ T
0
Ct

2dt
+
eθT

∫ T
0
Ct
∫ t
0
Lsdsdt

T
3
2

∫ T
0
Ct

2dt

=: I1 + I2. (29)

For I1, we can decompose it as follows:

I1 =
(ηT + βT )2

e−2θT
∫ T
0
Ct

2dt

(
e−θTT−

3
2

∫ T
0
Ctdt

∫ T
0
Bsds

(ηT + βT )2

−
e−θTT−

3
2

∫ T
0
Ct
∫ T
t
Bsdsdt

(ηT + βT )2

)
=: I11(I12 − I13). (30)

Combining Lemma 2.1 and (13) gives that

lim
T→∞

∫ T
0
C2
t dt

e2θT
= lim
T→∞

∫ T
0

(
Ct
eθt

)2 e2θt∫ T
0
e2θtdt

dt

e2θT∫ T
0
e2θtdt
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=
(η∞ + β∞)2

2θ5
, a.s.

This implies that

lim
T→∞

I11 = 2θ5, a.s. (31)

For I12, we have

I12 =
e−θT

∫ T
0
Ctdt

ηT + βT
·
T−

3
2

∫ T
0
Bsds

ηT + βT
. (32)

For the first half of I12, it can be obtained using Lemma 2.1
and equation (13) as follows:

lim
T→∞

e−θT
∫ T
0
Ctdt

ηT + βT
=

1

θ3
, a.s. (33)

For the second half of I12, by integration by parts, it can be
expressed as

T−
3
2

∫ T
0
Bsds

ηT + βT

=
T−

3
2

∫√T
0

(T − s)dBs + T−
3
2

∫ T√
T

(T − s)dBs
η√T + (ηT − η√T ) + βT

. (34)

The following claims can be drawn from (34).
(i) Obviously, the random variable T−

3
2

∫ T√
T

(T − s)dBs
follows a normal distribution N(0, 13 +T−1−T− 1

2 − 1
3T
− 3

2 ),
which weakly converges to the normal random variable
N(0, 13 ) as T →∞.
(ii) By integration by parts, strong law of large numbers and
Lemma 2.1, we have

lim
T→∞

T−
3
2

∫ √T
0

(T − s)dBs

= lim
T→∞

B√T (T −
√
T ) +

∫√T
0

Bsds

T
3
2

= 0, a.s. (35)

(iii) It is easy to see that

lim
T→∞

η√T = η∞, a.s.,

and

lim
T→∞

βT = β∞, a.s.

(iv) T−
3
2

∫ T√
T

(T − s)dBs is independent of η√T and βT .
(v) By Zang and Zhang [22], it follows that ηT −η√T →p 0
as T →∞.

Then, we can obtain that

I12 ⇒
√

3

3θ3
N

η∞ + β∞
, (36)

as T →∞, where N is a standard normal random variable
independent of η∞ and β∞. Next, let’s consider I13. Note
that

e−θTT−
3
2

∫ T

0

Ct

∫ T

t

Bsdsdt

≤ e−θTT− 3
2

∫ T

0

∣∣Cte−θt∣∣
∣∣∣∣∣
∫ T

t

Bsds

∣∣∣∣∣ eθtdt
≤ sup

t≥0

∣∣Cte−θt∣∣ e−θTT− 3
2

∫ T

0

∣∣∣∣∣
∫ T

t

Bsds

∣∣∣∣∣ eθtdt. (37)

Since supt≥0 |Cte−θt| is almost surely finite, we only need
to show that

e−θTT−
3
2

∫ T

0

∣∣∣∣∣
∫ T

t

Bsds

∣∣∣∣∣ eθtdt→p 0, (38)

as T →∞. Applying Markov inequality and integration by
parts, we have for T large enough and any ε > 0,

P

(
e−θTT−

3
2

∫ T

0

∣∣∣∣∣
∫ T

t

Bsds

∣∣∣∣∣ eθtdt ≥ ε
)

≤ ε−1E

[
e−θTT−

3
2

∫ T

0

∣∣∣∣∣
∫ T

t

Bsds

∣∣∣∣∣ eθtdt
]

≤
∫ T
0
e−θuudu

εT
+

∫ T
0
e−θuu

1
2 du

εT
1
2

+

∫ T
0
e−θuu

1
2 du

εT
1
2

→ 0, as T →∞. (39)

This implies that

I13 →p 0, as T →∞. (40)

Hence, by (30), (31), (36) and (40), one can get that

I1 ⇒
2
√

3θ2

3

N

η∞ + β∞
, as T →∞. (41)

By (13), (14) and Lemma 2.1, one sees that

lim
T→∞

∫ T
0
Ct
∫ t
0
Lsdsdt

eθTT
3
2

= lim
T→∞

∫ T
0

Ct
eθt

∫ t
0
Lsds

t
3
2

eθtt
3
2∫ T

0
eθtt

3
2 dt

dt

eθTT
3
2∫ T

0
eθtt

3
2 dt

= 0, a.s. (42)

It follows from (13) and (42) that

lim
T→∞

I2 =

∫ T
0
Ct
∫ t
0
Lsdsdt

eθTT
3
2

· e2θT∫ T
0
C2
t dt

= 0, a.s. (43)

Therefore, by (29), (41) and (43), we can conclude that (27)
holds. This completes the desired proof.
(ii) Under θ = 0, by (19), we can conclude that (28) holds.
This completes the desired proof.

IV. CONCLUSION

This paper presents new results on statistical inference for
integrated reflected Ornstein-Uhlenbeck processes. The main
findings are derived using integration by parts, Lemma 2.1,
and the strong law of large numbers. These results contribute
to the further development of asymptotic theory in statistical
inference for integrated stochastic processes.
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