
 

 
Abstract—By monitoring changes in thermal parameters, the 

relationship between the operating status of ship diesel engines 
and thermal parameters can be reflected, thereby determining 
the current state of ship diesel engines. Nevertheless, the high 
complexity of thermal parameters renders their evaluation a 
challenging endeavor. Therefore, to accurately evaluate the 
performance of ship engines and reduce the difficulty of data 
processing, this paper proposes to construct a ship engine 
performance evaluation system through Principal Component 
Analysis (PCA). The system uses PCA to check its thermal 
parameters, thereby elucidating the substantial intrinsic 
correlation between different thermal parameters of diesel 
engine performance. The results showed that compared with the 
fuzzy entropy weight method, PCA was more accurate in 
evaluating the performance of the propagation host, with a 
maximum relative error of only 4.2%. For the testing host, PCA 
accurately detected issues such as high cylinder cooling water 
temperature, high cylinder liner temperature, high exhaust 
temperature, and low steam compressor speed. The fuzzy 
entropy weight rule made it difficult to reflect these issues 
accurately. In addition, PCA could accurately reflect the 
severity of the above-mentioned faults through outliers and 
deviation rates. Meanwhile, compared with the information 
entropy method, PCA had smaller errors, with an average error 
of only 2.8%. The above results indicate that PCA can 
accurately evaluate the performance of ship engines, providing a 
strong reference for ensuring the performance of ship engines 
and stable operation of ships. 
 

Index Terms—performance evaluation, principal component 
analysis, ship main engine, smart ship 
 

I. INTRODUCTION 

ITH the rapid development of intelligent ships, 
intelligent ship systems play an increasingly important 

role in ship equipment maintenance, performance assessment, 
and monitoring. Ship equipment monitoring based on big data 
analysis methods and traditional equipment monitoring 
methods can help ship management personnel understand the 
operational status of ship equipment. Accordingly, the 
maintenance of ship equipment can be effectively planned and 
predicted in advance. As the key equipment for ship operation, 
the ship’s main engine consists of many devices. Numerous 
devices can be divided into several subsystems. According to 
their functions and characteristics, they can be classified into 
exhaust gas and exhaust systems, cooling water systems, 
floating oil systems, etc. Accordingly, the monitoring of the 
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host’s performance can facilitate a comprehensive analysis of 
the operational status of the subsystems that are under the host. 
Checking the operating parameters of the host can timely 
determine the current operating status of the host and evaluate 
whether the performance of the host is decreasing or 
increasing [1]. 

To achieve real-time monitoring and effective evaluation 
of ship energy efficiency status, this study takes ship 
operation records and environmental data in good condition 
as samples. A ship navigation state recognition model is 
constructed using Principal Component Analysis (PCA) and 
the energy efficiency status of the ship's main engine is 
evaluated using this model. The constructed navigation state 
recognition model can be used to identify the current 
navigation state of the ship. The fuel consumption benchmark 
model can be utilized to ascertain whether the present energy 
consumption status of the ship's main engine is within the 
normal range. This allows for an intelligent and accurate 
evaluation of the main engine's energy efficiency, thereby 
providing a reference point for the research of intelligent ship 
energy efficiency evaluation. 

 

II. THE REALIZATION OF PRINCIPAL COMPONENT ANALYSIS 

A. Overview of Principal Component Analysis 

PCA is a widely used multivariate statistical analysis 
method. The method is founded upon a multidimensional 
orthogonal linear transformation, which lends itself to 
applications such as data downscaling and signal feature 
extraction. In 1901, PCA was initially proposed, and 
subsequent research was conducted by scholars in this field. 
This research was later summarized by researchers in the form 
of probability theory, which led to the development of the 
PCA algorithm [2]. Many industry scholars have carried out 
in-depth research on it, and PCA is widely used in various 
fields such as image processing, pattern recognition, etc. It 
has different names in different fields, such as the 
Karhunen-Loeve Transform (KL), Eigen-structure Approach, 
Hotelling Transform (Hotelling), etc. 

As the most commonly used classical feature extraction 
method, the development of PCA is closely related to the 
development of the pattern recognition discipline. To conduct 
a comprehensive analysis of the system through pattern 
recognition, many potential influencing factors must be 
considered, which requires selecting a wide range of variables 
as parameter indicators. In this way, the recognition and 
analysis of the system will be relatively accurate. Research 
has shown that there is a certain degree of overlap in the 
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information of selected variables and indicators. The 
utilization of these selected variables for direct analysis of the 
system will result in an elevated level of complexity in the 
problem-solving process. In addition, excessive data storage 
will occupy a large amount of memory space, consume more 
resources, and take longer to process information. Given this, 
how to extract features more effectively from the system to be 
analyzed has become a key link in the discipline of pattern 
recognition [3]. 

PCA converts the multivariate indicator problem from the 
original high-dimensional space to a low-dimensional space, 
forming a small number of new composite variable indicators. 
The recently developed composite indicators are employed to 
supplant the initial indicators in the subsequent data 
processing. This method facilitates the transformation of a 
high-dimensional problem into a low-dimensional one, 
thereby facilitating its resolution [4]. These new composite 
variable indicators are a special linear combination of the 
original indicators. This transformation also serves to reduce 
the difficulty of handling multivariate systems and simplify 
system variable indicators, thereby reducing the complexity 
of system analysis. When using the PCA to evaluate 
something, the thing itself is often composed of 
multidimensional data, and there is some internal connection 
between the multidimensional data. Processing data using 
PCA eliminates correlations between things and reduces 
workload. 

B. Mathematical Model of Principal Component Analysis 

According to the basic idea of PCA and its geometric 
significance that can be learned, PCA uses the idea of 
dimensionality reduction to concentrate the information 
contained in a set of variables on some composite variables 
(linear combinations of original variables). These composite 
variables obtained are uncorrelated with each other. From a 
geometric perspective, PCA rotates the original axes to obtain 
mutually orthogonal axes, thereby maximizing the spread of 
all data points. The new axes are then obtained by arranging 
them according to the numerical magnitude of the 
corresponding eigenvalues. 

To analyze the PCA from an algebraic point of view: for a 
given set of data sample points  1 2 ... nX x x x , there are n  

sample points in the data set, each of which contains p  

indicators, i.e. , 1, 2,...,ixp R i n  . The expression is shown 

in equation (1). 
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Then, the equation (2) is obtained. 
 

  1 2, ,..., , 1,2,...,
T

i i i nix x x x i p   (2) 

 
PCA is the linear combination of the original p  indicators 

to obtain a new composite of p  composite indicators, which 

is shown in equation (3). 
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Equation (3) is reduced to equation (4). 
 

 1 1 2 2 ... , 1,2,...,i i i pi pz w x w x w x i p      (4) 

 
ix  and 

iz  represent n -dimensional. The coefficient 
ijw  

needs to satisfy three conditions. First, ,i jz z  are uncorrelated, 

where  , , 1, 2,...,i j i j p  . Second, the variance of 

variable 
1z  is greater than or equal to the variance of variable 

2z , which is decreasing by degrees. Third, 
2 2 2
1 2 ... , 1,2,...,k k kpw w w k p    . 

When the 3 conditions are met, the random variable 
indicators obtained after the transformation are uncorrelated 
between the two [5]. The variance is sequentially decreasing. 

From the above, the transformation matrix of p p  can be 

obtained to equation (5): 
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Then there is equation (6): 
 

 1 2, ,..., T
pZ z z z W X     (6) 

 
The process of PCA is a process of de-correlation, and the 

variables obtained are uncorrelated with each others. 

C. Contribution of Principal Components 

The contribution ratio and cumulative contribution ratio of 
principal components reflect the extent to which the 
transformed metrics 

iz  portraying the information content of 

the original data X . 

 
Contribution Ratio 

The larger the proportion of the eigenvalues of the i -th 

largest covariance matrix to the sum of the eigenvalues of all 
covariance matrices, the stronger the ability of the i -th 

variable indicator to present more original data information 
and integrate the information of the original variable 
indicators. The formula for calculating the covariance matrix 
of the i -th largest eigenvalue 

i  is expressed as equation (7). 
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Cumulative Contribution Rate 

The larger the ratio of the sum of the first k  eigenvalues of 

the covariance matrix to the sum of all eigenvalues of the 
covariance matrix, the more tender and sufficient the first k  

principal components represent the information of the 
original data. The formula is expressed as equation (8): 
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In practical applications, the first k  larger variable 

indicators are usually selected to achieve a certain threshold 
for their cumulative contribution rate (the cumulative 
contribution rate empirically selected in this article is not less 
than 90%). The first k  larger composite indicators are used 

to replace the original p  variable indicators for subsequent 

data analysis and processing, aiming to achieve the goal of 
data compression, dimensionality reduction, and extraction of 
the main features of the data [6]. 

D. Steps of Principal Component Analysis Algorithm 

(1) The mean 
1

1 n

i
i

x
n 

   of the samples in sample dataset 

 1 2 ... nX x x x  is calculated, the samples are centered, and 

the centered sample is taken as ,i i ix x x   . 

(2) The covariance matrix V  of the original dataset X  is 

calculated. The matrix is denoted as 1 TV XX
n

 . 

(3) The eigen-decomposition is performed on covariance 
matrix V  to obtain its eigenvalues and corresponding 

eigenvectors 
iw , and the eigenvalues in descending order are 

arranged. 
(4) According to the selected cumulative contribution rate, 

the first k  eigenvalues is taken. 
1 2, ,..., k    is the k 

eigenvectors corresponding to the k  eigenvalues extracted. 

The first k  eigenvector combination matrix is noted as 

 1 2, ,...,k kW w w w , then the k  principal components 

extracted are T
kW X . 

(5) After the principal components are determined, the 
corresponding comprehensive evaluation function can be 
constructed. The calculation formula is expressed as equation 
(9). 

 

 1 1 2 2 n nF y y y       (9) 

 
In equation (9), 

iy  represents the principal component. 

III. PRINCIPAL COMPONENT DATA ANALYSIS 

A. Original Data Matrix 

In Table Ⅰ, rotational speed, shaft power, wind speed, 
current speed, wave level, water speed, and ground speed are 
the main data affecting the fuel consumption of the main 
engine. These seven important indicators can be used to 
establish a matrix for the purpose of analysis [7].

TABLE I 
ENERGY EFFICIENCY DATA FOR SELECTED SEGMENT HOSTS 

Segment RPM (r/min) 
Shaft power 

(kw) 
Wind speed 

(kn) 
Water velocity 

(kn) 
Wave class 

(grade) 
Speed over 
water (kn) 

Speed to 
ground (kn) 

Fuel consumption 
rate (g/kw·h) 

1 80.0 7126 4 1.9 3 12.3 14.2 180.091 

2 79.2 6940 5 0.9 4 12.0 12.9 180.115 

3 79.4 7103 3 3.6 1 1.81 15.4 180.088 

... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... 

27 68.0 4951 4 2.9 3 9.5 12.4 180.098 

28 68.0 5160 3 3.0 1 9.3 12.3 172.884 

 
TABLE Ⅱ 

DATA AFTER STANDARDIZATION 

Segment RPM Shaft power Wind speed Water velocity Wave class Speed over water Speed to ground 

1 1.5963 1.3987 0.0515 -0.9177 0.1472 1.8316 1.3878 

2 1.4347 1.2016 1.4947 -2.0205 1.1776 1.6047 0.2526 

3 1.4751 1.3743 -1.3916 0.9571 -1.9137 1.4534 2.4357 

... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... 

27 -0.8274 -0.9066 0.0515 0.1851 0.1472 0.1472 -0.1840 

28 -0.8274 -0.6851 -1.3916 0.2954 -1.9137 -1.9137 -0.2713 
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B. Data Standardization and the Establishment of 
Covariance Matrix 

The programming software is used to standardize the 
original data matrix, and the results are shown in Table Ⅱ. 

The covariance matrix of sample R is calculated using 
standardized data, as shown in equation (9). 

 

 

 

1.0000 0.9925 0.1403 0.2791 0.0839 0.9208 0.8420

0.9925 1.0000 0.1410 0.2590 0.0815 0.9017 0.8359

0.1403 0.1410 1.0000 0.2634 0.8734 0.1366 0.0508

0.2791 0.2590 0.2634 1.0000 0.1840 0.5249 0.1858

0.0839 0.0815 0.8734 0.
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
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 
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 1840 1.0000 0.0437 0.0952

0.9208 0.0917 0.1366 0.5249 0.0437 1.0000 0.7388

0.8420 0.8359 0.0508 0.1858 0.0952 0.7388 1.0000
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C. Calculation of Eigenvalues and Contribution Ratio 

The principal components and their corresponding 
eigenvalues and contribution rates are shown in Table Ⅲ. 

TABLE Ⅲ 
PRINCIPAL COMPONENTS AND THEIR CORRESPONDING EIGENVALUES AND 

CONTRIBUTION RATES 

Principal 
component 

Eigenvalue Contribution 
Cumulative 

contribution rate 

1 3.749 46.860 46.860 

2 2.047 25.592 72.452 

3 1.775 22.185 94.637 

4 0.229 2.859 97.296 

5 0.116 1.455 98.591 

6 0.070 0.985 99.936 

7 0.005 0.064 100.000 

D. Determining the Number of Principal Components 

The total variance explanatory graph displays the 
differences and variations between the eigenvalues, variance 
contribution rates, and cumulative variance contribution rates 
of the seven principal components. The eigenvalues and 
variance contribution rates represent the amount of 

information on the seven ship parameters represented by the 
principal components. The larger the eigenvalue and variance 
contribution rate are, the more original information is retained 
by this principal component [8]. The values of the eigenvalues 
are arranged in descending order. The data of eigenvalues in 
PC1-PC6 are becoming increasingly insignificant. The 
cumulative contribution rate in Table Ⅲ means the sum of the 
original information that the first n principal components can 
contain. In general, the principal components with a 
cumulative contribution rate ≥85% can be used as new 
parameters and represent most of the information of the 
original data [9]. 

Fig. 1 shows the gravel plot of the seven principal 
components, and the vertical coordinates in the figure are the 
eigenvalue values of each principal component. In PCA, the 
gravel plot is also an effective way to assist in selecting the 
number of components required. In general, the principal 
components with eigenvalues greater than 1 should be 
selected, and the information content of the principal 
components with eigenvalues less than 1 is incomplete [10]. 
At the same time, the slope of the curve in the gravel plot 
should also be considered. The number of selected principal 
components should be between the two principal component 
points where the slope of the curve changes significantly. 
Combined with the actual situation of the samples in this 
paper, the first three principal components (PC1 to PC3) are 
selected to construct the equation graphs. 

Table Ⅳ shows that the correlation between the principal 
component 1 and the first, second, sixth, and seventh energy 
consumption indicators is relatively large. The principal 
component 1 can be regarded as the rotational speed (r/min), 
shaft power, speed to water, and speed to the ground, to affect 
the host energy efficiency of the integrated indicators [11]. 
The correlation between principal component 2 and the fifth 
indicator is relatively large. The principal component 2 can be 
regarded as a comprehensive indicator that the wave level 
affects the energy efficiency of the main engine. The 
correlation between principal component 3 and the fourth 
indicator is relatively large. The principal component 3 can be 
regarded as a comprehensive indicator of the influence of 
current speed on the energy efficiency of the main engine. 
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TABLE Ⅳ 
COMPONENT MATRIX 

Energy consumption indicators PC1 PC2 PC3 PC4 PC5 PC6 PC7 

RPM 0.264 -0.038 0.037 2.125 -0.759 -1.763 -11.509 

Shaft power 0.262 -0.040 0.053 1.802 -0.840 -2.634 7.558 

Wind speed 0.057 0.460 0.228 0.709 2.660 -1.201 0.027 

Water velocity -0.094 -0.216 0.786 -1.356 0.035 -4.464 0.202 

Wave class 0.037 0.458 0.293 3.119 -2.449 1.595 -0.188 

Speed over water 0.257 -0.009 -0.218 2.074 0.694 2.338 2.500 

Speed to ground 0.223 -0.181 0.371 1.321 0.830 2.345 3.046 

 
TABLE Ⅴ 

FACTOR WEIGHT ANALYSIS 
Name Explanatory rate of variance (%) Cumulative variance explained (%) Weight (%) 

PC1 53.301 53.301 55.067 

PC2 28.384 81.686 29.325 

PC3 15.108 96.793 15.608 

 
TABLE Ⅵ 

COMPREHENSIVE EVALUATION VALUE 
Ranking Row Index Composite Score PC1 PC2 PC 3 

1 6 1.316 1.682 0.867 0.867 

2 2 1.093 1.482 1.500 -1.041 

3 4 0.849 1.515 -0.497 1.024 

4 1 0.823 1.664 -0.095 -0.417 

5 7 0.756 1.432 -0.205 0.177 

6 8 0.714 1.397 -0.067 -0.172 

7 5 0.691 1.347 -0.067 -0.200 

8 9 0.302 0.550 0.114 -0.220 

9 14 0.244 -0.501 1.283 0.921 

10 3 0.207 1.428 -2.228 0.590 

11 16 0.207 -0.437 1.576 -0.091 

12 26 0.193 -0.548 1.373 0.587 

13 22 0.009 -0.795 1.749 -0.425 

14 12 -0.196 -0.657 -0.197 1.430 

15 19 -0.232 -0.633 -0.003 0.756 

 

E. Comprehensive Evaluation of Principal Component 
Analysis 

The cumulative contribution rate of the eigenvalues of the 
first three principal components is 96.793% (Table Ⅴ), which 
is greater than 85%. Therefore, the principal components 1 to 
3 are selected as the host energy efficiency data of the 
comprehensive evaluation index [12-13]. 

Table Ⅵ shows the comprehensive evaluation value and 
ranking of the energy efficiency data of the main engine under 
different fuel consumption. 

Table Ⅵ shows that the comprehensive score of the first 15 
data calculated by the F-value can be obtained from the 
comprehensive score and ranking of each sample. Table Ⅵ 
shows that the comprehensive evaluation function can 
represent the changes in the unit state reflected by seven 
indicators, such as rotational speed, shaft power, wind speed, 
current speed, wave level, water speed, ground speed, etc. 
The loss of information is small [14-16]. The analysis shows 

that the data can better reflect the operating status of the host. 
PCA is employed to reduce the dimensionality of raw energy 
efficiency data and integrate information to obtain a 
quantitative evaluation of host status indicators. This is 
advantageous for the monitoring of the operating status of the 
host. 

F. Model Validation and Energy Efficiency Status 
Assessment 

(1) Model Validation 
Fig. 2 shows the plot of the residuals between the 

calculated host fuel consumption and the actual host fuel 
consumption. The graph reflects the error of the host fuel 
consumption benchmark model corresponding to each data 
point. After calculation, the accuracy of the model is 98.50% 
in the sample time period, which is highly accurate and can be 
used as the benchmark model of oil consumption for host 
energy efficiency state assessment. 
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Fig. 2 Residual difference of fuel consumption amount 
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Fig. 3 Percentage residual of fuel consumption 

 
(2) Energy efficiency state assessment 
This paper selects ship operation data one year after 

training the fuel consumption benchmark model for energy 
efficiency status evaluation. After processing and PCA of 
some data, the oil consumption benchmark value is obtained 
by inputting it into the oil consumption benchmark model. 
The fuel consumption of the main engine of the ship operation 
is compared with the fuel consumption benchmark value of 
the model. Fig. 3 is a histogram of the remaining percentage 
between the actual fuel consumption and the benchmark fuel 
consumption of the model host. The actual fuel consumption 
value is at most 3.8% higher than the benchmark fuel 

consumption value. Overall, the actual fuel consumption is 
higher than the benchmark fuel consumption, with an average 
increase of 0.5%. The above data indicate that the mainframe 
is in a state of slightly higher energy efficiency level at this 
stage. Fig. 4 shows the comprehensive performance 
evaluation results of the ship’s main engine. In Fig. 4, within 
the actual 120 data series, the comprehensive performance 
score of the ship’s main engine is not lower than 70 points. 
The highest score is 98 points, the lowest is 90 points, and the 
average score is 83 points. This indicates that the main engine 
performance of the ship is excellent, which is consistent with 
its actual operating situation. 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 4, April 2025, Pages 902-910

 
______________________________________________________________________________________ 



 

0
10
20
30
40
50
60
70
80
90

100

20 40 60 80 100 120

C
om

pr
eh

en
si

ve
 p

er
fo

rm
an

ce
 e

va
lu

at
io

n 
re

su
lts

Data serise

0

 

Fig. 4 Comprehensive performance evaluation results 
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Fig. 5 Host power evaluation results 
 

TABLE Ⅶ 
FAULT DETECTION RESULTS 

Parameter 
Abnormal point position Abnormal degree Outlier Drift rate/% 

PCA 
Fuzzy entropy 

weight 
PCA 

Fuzzy entropy 
weight 

PCA 
Fuzzy entropy 

weight 
PCA 

Fuzzy entropy 
weight 

Cylinder sleeve 
cooling water 
temperature 

100 100 1 1 74 75 2.5 3.2 
130 320 2 2 80 77 10.8 8.4 
160 160 3 2 86 78 19.1 10.2 

Air cylinder 
exhaust 

temperature 

300 300 1 1 290 288 1.6 0.8 
330 340 2 1 300 291 5.1 2.1 
360 350 3 2 310 295 8.6 3.9 

Speed of the 
turbine 

compressor 

500 500 1 1 3900 3982 -2.6 -1.2 
530 530 2 1 3500 3856 -12.6 -5.8 
560 550 3 2 3000 3793 -25.1 -9.6 

 
To further explore the accuracy of PCA-based performance 

evaluation methods for ship engines, the power of ship 
engines is evaluated and compared with the fuzzy entropy 
weight evaluation method. The results are shown in Fig. 5. 
Compared to the fuzzy entropy weight method, PCA’s 
evaluation value of host power is closer to the true value. The 
maximum relative errors between the evaluation results of the 

fuzzy entropy weight method and PCA and the true values are 
20.2% and 4.2%, respectively. The above results indicate that 
PCA is more accurate in evaluating the performance of ship 
engines. To further explore the detection of the host 
performance evaluation method proposed in the study, a fault 
host is tested. The experimental results are shown in Table 
Ⅶ. 
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Fig. 6 T2 and Q statistics of the test samples 
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Fig. 7 PAC and information entropy evaluation results 

 
According to Table Ⅶ, the PCA can effectively monitor 

the anomaly points of the host. The monitoring results show 
that the host has a high cylinder liner cooling water 
temperature, high cylinder exhaust temperature, and low 
steam compressor speed. Outliers and drift rates accurately 
reflect the severity of the above-mentioned faults, facilitating 
timely troubleshooting by the crew. Although the fuzzy 
entropy weight method can preliminarily distinguish the fault 
location and degree, there are some differences between the 
discrimination results and the actual result. PCA can more 
accurately evaluate and monitor the performance of ship hosts. 
The T2 and Q statistics of the test samples are shown in Fig. 6. 

Under the current operating conditions in Fig. 6, the T2 
statistic will only exceed the control limit when the parameter 
offset rate is large, while the Q statistic will exceed the control 
limit when the parameter offset rate is small. Therefore, 
during the normal operation of the host under a certain 
operating condition, the T2 statistic can be used as the 
monitoring indicator for parameters with a large fluctuation 
range. The Q statistic can be used as the monitoring indicator 
for parameters with a small fluctuation range. This can reduce 
the probability of false positives and improve the accuracy of 
monitoring. To further validate the performance of the 
proposed method for averaging a ship’s engine performance, 
it is compared with the information entropy-based engine 
performance evaluation method. The results are shown in Fig. 
7. 

As shown in Fig. 7, compared with the information entropy 

method, the host power evaluation value of PCA is closer to 
the true value. The maximum relative errors between the 
evaluation results of information entropy and PCA and the 
true values are 17.6% and 4.2%, respectively, and the average 
errors are 13.5% and 2.8%, respectively. The above results 
indicate that PCA is more accurate in evaluating the 
performance of ship engines. To further analyze the 
performance of the proposed ship host performance 
evaluation method, the overall performance trend in operation 
is evaluated by the fuzzy entropy weight method, which is 
shown in Fig. 8. 

Fig. 8(a) shows that the overall trend of the ship's main 
engine is monotonically decreasing around 800-1300 hours. 
This indicates that the overall performance of the host is 
declining and there is a gradual trend of failures occurring. In 
Fig. 8(b), the ship's main engine undergoes a class transition 
at 4,365 hours, resulting in a sudden decline in engine 
performance. This indicates that the host may experience a 
sudden malfunction or that some unexpected factor has a 
significant impact on the host. Therefore, both PCA and fuzzy 
entropy weight methods can achieve an accurate evaluation of 
the performance of ship engines. However, compared to the 
actual situation, the evaluation results of PCA are more 
consistent. To further validate the performance evaluation 
method for ship engines proposed in the study, the cumulative 
failure rate of ship engines is analyzed using it, and the results 
are shown in Table VIII. 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 4, April 2025, Pages 902-910

 
______________________________________________________________________________________ 



 

70

75

80

85

90

95

100

800

Pe
rf

or
m

an
ce

 s
co

re

900 1000 1100 1200 1300
Time series acquisition point/h

（a）750～1300h

PCA
Fuzzy entropy weight

60

65

70

75

80

85

4250

Pe
rf

or
m

an
ce

 s
co

re

4300 4325 4375 4400 4425
Time series acquisition point/h

（b）4250～4425h

PCA
Fuzzy entropy weight

4275 4350

Actual
Actual

Actual

PCA

Fuzzy entropy weight

Actual

PCA

Fuzzy entropy weight

 

Fig 8 Overall change trend of ship host performance 

 
TABLE VIII 

CUMULATIVE FAILURE RATE OF SHIP’S MAIN ENGINE 

Component Fault 500h 1000h 1500h 

Crankshaft 
bearing 

assembly 

Bearing wear, 
burning, melting, 

and biting 
0.015 0.029 0.048 

Fracture of 
crankshaft 

connecting rod 
0.005 0.011 0.013 

Piston, 
piston ring, 

cylinder 
liner 

component
s 

Piston ring 
fracture or snap 

ring 
0.019 0.043 0.065 

Piston crack or 
fracture 

0.003 0.006 0.011 

Cylinder crack or 
fracture 

0.003 0.007 0.010 

Cylinder 
body 

Crack or fracture 0.003 0.007 0.012 
Other faults 0.007 0.015 0.025 

Fuel 
injection 

pump 
/ 0.010 0.022 0.032 

 
According to Table VIII, when the ship's main engine 

operates normally for 500 hours, the incidence of “Bearing 
wear, burning, melting, and biting” and “Piston ring fracture 
or snap ring” is the highest, at 0.015 and 0.019, respectively. 
In summary, the proposed method for analyzing the 
performance of ship engines can reflect the reliability of safe 
operation of ship propulsion systems at a certain point in time. 
Due to the fact that the failure modes and failure rates of ship's 
main engine components are accumulated through a large 
amount of data, their reliability has reference value. From a 
lateral perspective, the collection of fault data for ship 
propulsion systems, the establishment of databases, and the 
sharing of data are extremely important for accurate analysis 
and ensuring the reliability of propulsion systems. 

IV. CONCLUSION 

This study used PCA to evaluate the performance of ship 
engines and constructed a clear and easily comparable 
comprehensive evaluation index system based on principal 
components by combining corresponding engine fuel 
consumption data. This provides a certain reference for 
evaluating the performance of the main engine and the stable 
operation of the ship. 
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