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Abstract—Recently, a multi-criteria decision-making method
known as the Measurement of Alternatives and Ranking ac-
cording to COmpromise Solution (MARCOS) was proposed by
Stević, et al. In this paper, we first provide a theoretical proof
demonstrating that the MARCOS method is equivalent to the
weighted sum method. To further illustrate the equivalence
of these two methods, we present several cases, including
simulation experiments and practical applications, to enhance
readers’ understanding.

Index Terms—Decision Making, MARCOS, Weighted sum
method, Alternative Ranking

I. INTRODUCTION

THE Multi-Criteria Decision-Making (MCDM) approach
is a method used to evaluate and select alternatives

based on multiple criteria or objectives [9], [11], [14]. In
MCDM, decision-makers assess various factors or criteria
that are pertinent to the decision at hand, assigning weights
or levels of importance to each criterion in order to guide the
decision-making process. The objective is to systematically
analyze and evaluate various alternatives in order to make
informed decisions that are aligned with the desired goals and
objectives. The Multi-Criteria Decision Making (MCDM)
generally involves the following steps:

Step 1. Identification of Criteria: Define the criteria or
objectives relevant to the decision-making process. These
criteria represent the various dimensions or aspects that must
be taken into account during the decision-making process.

Step 2. Weight Assignment: Assign weights to each crite-
rion based on its relative importance or priority. This reflects
the decision-maker’s preferences and the relative significance
of each criterion in achieving the overall objective.

Step 3. Alternative Evaluation: Evaluate each alternative
with respect to each criterion. This evaluation may involve
data collection, performance assessment, or the use of expert
opinions.

Step 4. Aggregation: Combine the evaluations of alter-
natives across all criteria, taking into account the assigned
weights. Various aggregation methods, such as the weighted
sum or weighted product, may be employed.

Step 5. Ranking and Selection: Rank the alternatives
based on the aggregated scores. The alternative with the
highest score is regarded as the preferred choice.
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MCDM is applicable across various fields, including busi-
ness, engineering, environmental management, and public
policy, where decisions frequently involve multiple con-
flicting objectives. It offers a structured and transparent
framework for decision-making, considering the complexity
and diversity of decision criteria.

The classical weighted sum method is a simple yet pow-
erful tool for aggregating multiple criteria into a single score
for decision-making. Its simplicity and flexibility make it
suitable for a wide range of applications. The basic steps
involved are as follows:

Step 1. Define the Criteria: First, identify the criteria
or objectives that will be used to evaluate the alternatives.
These could include factors such as cost, quality, time, or
other relevant performance measures.

Step 2. Quantify the Alternatives Performance: Assess
how each alternative performs with respect to each criterion.
The performance is typically quantified on a scale (e.g., 0
to 10, 1 to 100%, etc.). Denote the performance of the i-th
alternative on the j-th criterion by xij :

X =

A1

A2

...
Am


x11 x12 · · · x1n

x21 x22 · · · x2n

· · · · · · · · · · · ·
xm1 xm2 · · · xmn

 .

Step 3. Assign Weights to the Criteria: Assign a weight
wj to each criterion to reflect its relative importance. The
sum of all weights must be equal to 1:

m∑
j=1

wj = 1.

Step 4. Calculate the Weighted Sum for Each Alter-
native: For each alternative i, calculate the weighted sum
by multiplying each score xij by the weight wj for the
corresponding criterion and summing the results:

Si =
m∑
j=1

wj · xij ,

where:
• Si is the weighted sum for the i-th alternative,
• wj is the weight of the j-th criterion,
• xij is the score of the i-th alternative on the j-th

criterion.
Step 5. Rank the Alternatives: After calculating the

weighted sum for each alternative, compare the results. The
alternative with the highest weighted sum is typically chosen
as the best option.

Step 6. Make the Decision: After performing the ranking,
select the alternative with the highest weighted sum as the
final decision.
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In 2020, an MCMD method called Measurement of Al-
ternatives and Ranking according to COmpromise Solution
(MARCOS) was presented by Stević, Pamučar, Puška and
et al in [10]. Subsequently, numerous scholars have applied
the MARCOS method to various fields, such as influenza
forecasting [4], failure mode and effect analysis [7], site
evaluation of subsea tunnels [15], supplier evaluation and
selection [1], regional evaluation study of VFTO interference
[12]. Meanwhile, several generalizations of the MARCOS
method have been proposed by numerous scholars, including
MARCOS technique under intuitionistic fuzzy environment
[3], MARCOS method under integrated fuzzy FUCOM [2],
MARCOS method under fuzzy ZE-numbers [5], [6], a hybrid
method for maximizing the reliability of drug supply chain
based on machine learning and MARCOS [8]. In summary,
the MARCOS evaluation approach has been widely applied
and further developed.

In this paper, we demonstrate the equivalence of the
MARCOS method and the weighted sum method through
theoretical analysis and illustrative cases.

II. EQUIVALENCE ANALYSIS

Firstly, the execution steps of the MARCOS method in-
volve constructing an initial evaluation matrix. Subsequently,
the negative ideal solution (AAI) and the positive ideal
solution (AI) are introduced into the initial evaluation matrix,
resulting in an extended matrix X:

X =

AAI
A1

A2

...
Am

AI


xaai1 xaai2 · · · xaain

x11 x12 · · · x1n

x21 x22 · · · x2n

· · · · · · · · · · · ·
xm1 xm2 · · · xmn

xai1 xai2 · · · xain

 .

The negative ideal solution and the positive ideal solution
are calculated using equalities (2.1) and (2.2):

AAI =

{
min
i

xij , j ∈ B

max
i

xij , j ∈ C
, (2.1)

AI =

{
max

i
xij , j ∈ B

min
i

xij , j ∈ C
, (2.2)

where B and C represent the maximization indicator and the
minimization indicator, respectively.

Subsequently, the extended matri x undergoes dimension-
less processing as follows:

nij =
xij

xai
, j ∈ B, (2.3)

nij =
xai

xij
, j ∈ C, (2.4)

where nij represents the element in the matrix N after
dimensionless processing.

The elements of the dimensionless matrix N are multiplied
by the weights of the indicators to obtain the weighted matrix
V , as defined by equality (2.5):

vij = nij × wj , (2.5)

where wj represents the weight coefficients of each indicator.

Calculate K+
i and K−

i , which represent the utility of the
alternative solutions relative to the positive and negative ideal
solutions, respectively:

K+
i =

Si

Sai
, (2.6)

K−
i =

Si

Saai
, (2.7)

where Si represents the sum of the elements in the i-th row
of the weighted matrix V , as defined by equality (2.8):

Si =
n∑

j=1

vij (2.8)

and Sai, Saai are the sum of positive ideal and negative ideal
solutions, respectively.

Utilizing equalities (2.6) and (2.7) to determine the utility
functions associated with the positive ideal and negative ideal
solutions:

f(K+
i ) =

K−
i

K−
i +K+

i

, (2.9)

f(K−
i ) =

K+
i

K−
i +K+

i

. (2.10)

Finally, determine the utility function f(Ki) of the alter-
native solution, as defined by equality (2.11):

f(Ki) =
K+

i +K−
i

1 +
1− f(K+

i )

f(K+
i )

+
1− f(K−

i )

f(K−
i )

(2.11)

and rank each alternative based on its utility function value
f(Ki).

Next, we will demonstrate that the utility function value
f(Ki) of the MARCOS method is equal to C × Si, where
C is a constant greater than zero, which implies that the
MARCOS method is equivalent to the weighted sum method.

Note that, if we substitute equalities (2.6) and (2.7) into
equalities (2.9) and (2.10) respectively, we have

f(K+
i ) =

SiSai

SiSaai + SiSai
=

Sai

Saai + Sai
, (2.12)

f(K−
i ) =

SiSaai

SiSai + SiSaai
=

Saai

Sai + Saai
. (2.13)

Furthermore, by equalities (2.12) and (2.13), we obtain

1− f
(
K+

i

)
f
(
K+

i

) =
1− Sai

Saai + Sai

Sai

Saai + Sai

=

Saai

Saai + Sai

Sai

Saai + Sai

=
Saai

Sai
,

(2.14)
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1− f
(
K−

i

)
f
(
K−

i

) =
1− Saai

Sai + Saai

Saai

Sai + Saai

=

Sai

Sai + Saai

Saai

Sai + Saai

=
Sai

Saai
.

(2.15)

Substitute equalities (2.6), (2.7), (2.14), (2.15) into (2.11)
yields

f (Ki) =

Si

Sai
+

Si

Saai

1 +
Saai

Sai
+

Sai

Saai

=

(Sai + Saai)Si

SaiSaai

SaiSaai + S2
aai + S2

ai

SaiSaai

= C × Si,

(2.16)

where

C =
Sai + Saai

S2
ai + S2

aai + SaiSaai
. (2.17)

Therefore, by equalities (2.8) and (2.16), we know that the
MARCOS method is equivalent to the weighted sum method.

III. COMPARATIVE ANALYSIS

This section presents several cases, including simulation
experiments and practical applications, that illustrate the
equivalence between the MARCOS method and the weighted
sum method.

Case 1. In this case, we evaluate five alternatives
A1, A2, · · · , A5, each of which is assessed based on six
criteria X1, X2, · · · , X6, we assume that all criteria are
positive criteria, which means that all criteria are ”benefit”
criteria, hence the extended matrix X is as follows:

X =

AAI
A1

A2

A3

A4

A5

AI



2.00 2.00 3.00 1.00 7.71 2.00
9.00 2.00 3.00 4.50 19.28 2.00
2.00 3.00 6.00 5.00 13.82 9.00
3.00 4.00 5.00 6.00 9.68 13.00
4.00 10.00 4.30 1.00 34.85 4.00
5.50 17.00 3.30 7.00 7.71 8.00
9.00 17.00 6.00 7.00 34.85 13.00


.

By equality (2.3), the following dimensionless matrix N can
be obtained:

N =

AAI
A1

A2

A3

A4

A5

AI



0.2222 0.1176 0.5000 0.1429 0.2212 0.1538
1.0000 0.1176 0.5000 0.6429 0.5532 0.1538
0.2222 0.1765 1.0000 0.7143 0.3966 0.6923
0.3333 0.2353 0.8333 0.8571 0.2778 1.0000
0.4444 0.5882 0.7167 0.1429 1.0000 0.3077
0.6111 1.0000 0.5500 1.0000 0.2212 0.6154
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000


.

In this case, we assumes that the weights of each indicator
are

wj = (0.1636, 0.2384, 0.1561, 0.1578, 0.1613, 0.1227)T ,

respectively. By using equality (2.5) to weight the normal-
ization matrix N , the weighting matrix is as follows:

V =

AAI
A1

A2

A3

A4

A5

AI



0.0364 0.0280 0.0781 0.0225 0.0357 0.0189
0.1636 0.0280 0.0781 0.1014 0.0893 0.0189
0.0364 0.0421 0.1561 0.1127 0.0640 0.0850
0.0545 0.0561 0.1301 0.1353 0.0448 0.1227
0.0727 0.1402 0.1119 0.0225 0.1613 0.0378
0.1000 0.2384 0.0859 0.1578 0.0357 0.0755
0.1636 0.2384 0.1561 0.1578 0.1613 0.1227


.

Simple calculations show that

Si = (0.4793, 0.4962, 0.5435, 0.5465, 0.6933)T

and
Sai = 1.0000, Saai = 0.2196.

Next, calculate the utility of five alternatives relative
to the positive ideal solution and negative ideal solution,
respectively, the following results can be obtained:

K+
i = (0.4793, 0.4962, 0.5435, 0.5465, 0.69331)T ,

K−
i = (2.1828, 2.2598, 2.4754, 2.4887, 3.1573)T .

So the utility function related to positive ideal and negative
ideal solutions can be determined:

f(K+
i ) = (0.8200, 0.8200, 0.8200, 0.8200, 0.8200)T ,

f(K−
i ) = (0.1800, 0.1800, 0.1800, 0.1800, 0.1800)T .

Finally, calculate the utility function of each alternative
based on the above formula equality (2.11) and so

f(Ki) = (0.4611, 0.4773, 0.5229, 0.5257, 0.6669)T .

On the other hand, by using equality (2.17) and Si, we can
obtain C = 0.9620, therefore, by equality (2.16), we have

f(Ki) = (0.4611, 0.4773, 0.5229, 0.5257, 0.6669)T .

So it can be seen that equalities (2.11) and (2.16) are
equivalent.

As shown in Table 1, the final rankings derived from both
methods are identical.

TABLE 1
MARCOS METHOD VS WEIGHTED SUM METHOD

Ai f (Ki) rank Si rank
f (Ki)

Si
A1 0.4611 5 0.4793 5 0.9620
A2 0.4773 4 0.4962 4 0.9620
A3 0.5229 3 0.5435 3 0.9620
A4 0.5257 2 0.5465 2 0.9620
A5 0.6669 1 0.6933 1 0.9620

Case 2. Now, we aim to illustrate the similarity be-
tween the two methods by presenting a case involving non-
beneficial criteria. Consider a decision-making problem with
five alternatives A1, A2, · · · , A5, each evaluated against six
criteria X1, X2, · · · , X6. We assume that criteria X1 and X2
are non-beneficial criteria, which are ”cost” criteria, while the
remaining four criteria are beneficial, which are ”benefit” cri-
teria. Based on this assumption, the corresponding extended
matrix X is presented below:

X =

AAI
A1

A2

A3

A4

A5

AI



9.00 17.00 3.00 1.00 7.71 2.00
9.00 2.00 3.00 4.50 19.28 2.00
2.00 3.00 6.00 5.00 13.82 9.00
3.00 4.00 5.00 6.00 9.68 13.00
4.00 10.00 4.30 1.00 34.85 4.00
5.50 17.00 3.30 7.00 7.71 8.00
2.00 2.00 6.00 7.00 34.85 13.00


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By equalities (2.3) and (2.4), the following dimensionless
matrix N can be obtained:

N =

AAI
A1

A2

A3

A4

A5

AI



0.2222 0.1176 0.5000 0.1429 0.2212 0.1538
0.2222 1.0000 0.5000 0.6429 0.5532 0.1538
1.0000 0.6667 1.0000 0.7143 0.3966 0.6923
0.6667 0.5000 0.8333 0.8571 0.2778 1.0000
0.5000 0.2000 0.7167 0.1429 1.0000 0.3077
0.3636 0.1176 0.5500 1.0000 0.2212 0.6154
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000


.

In this case, we assumes that the weights of each indicator
are

wj = (0.1836, 0.2184, 0.1761, 0.1578, 0.1613, 0.1027)T ,

respectively. By using equality (2.5) to weight the normal-
ization matrix N , the weighting matrix is as follows:

V =

AAI
A1

A2

A3

A4

A5

AI



0.0408 0.0257 0.0881 0.0225 0.0357 0.0158
0.0408 0.2184 0.0881 0.1014 0.0892 0.0158
0.1836 0.1456 0.1761 0.1127 0.0640 0.0711
0.1224 0.1092 0.1468 0.1353 0.0448 0.1027
0.0918 0.0437 0.1262 0.0225 0.1613 0.0316
0.0668 0.0257 0.0969 0.1578 0.0357 0.0632
0.1836 0.2184 0.1761 0.1578 0.1613 0.1027


.

Simple calculations show that

Si = (0.5537, 0.7531, 0.6611, 0.4771, 0.4460)T ,

and
Sai = 1.0000, Saai = 0.2286.

Next, calculate the utility of five alternatives relative
to the positive ideal solution and negative ideal solution,
respectively, the following results can be obtained:

K+
i = (0.5538, 0.7532, 0.6612, 0.4772, 0.4460)T ,

K−
i = (2.4226, 3.2947, 2.8923, 2.0874, 1.9512)T .

So the utility function related to positive ideal and negative
ideal solutions can be determined:

f(K+
i ) = (0.8139, 0.8139, 0.8139, 0.8139, 0.8139)T ,

f(K−
i ) = (0.1861, 0.1861, 0.1861, 0.1861, 0.1861)T .

Finally, calculate the utility function of each alternative
based on the above formula equality (2.11) and so

f(Ki) = (0.5312, 0.7224, 0.6342, 0.4577, 0.4278)T .

On the other hand, by using equality (2.17) and Si, we can
obtain C = 0.9593, therefore, by equality (2.16), we have

f(Ki) = (0.5312, 0.7224, 0.6342, 0.4577, 0.4278)T .

So it can be seen that equalities (2.11) and (2.16) are
equivalent.

Table 2 presents a comparative analysis of the results
obtained using the MARCOS method and the weighted sum
method. As shown in Table 2, the final rankings derived from
both methods are identical.

TABLE 2
MARCOS METHOD VS WEIGHTED SUM METHOD

Ai f (Ki) rank Si rank
f (Ki)

Si
A1 0.5312 3 0.5537 3 0.9593
A2 0.7224 1 0.7531 1 0.9593
A3 0.6342 2 0.6611 2 0.9593
A4 0.4577 4 0.4771 4 0.9593
A5 0.4278 5 0.4460 5 0.9593

Case 3. In this case, we consider a practical application
involving the risk assessment of distribution network equip-
ment. The risk assessment of distribution network equipment
is of great significance for reducing distribution network
failures and improving the reliability of distribution network
power supply.

Regarding the risk assessment of distribution network
equipment, Wang, et al [13] identified six evaluation indica-
tors, denoted as X1, X2, · · · , X6, which are as follows: new
load, equipment load rate, degree of aging, importance of
load, exceeding the power supply radius limit, exceeding the
voltage drop limit. Additionally, relevant data were collected
for 51 alternative lines, as detailed in Table 3:

TABLE 3
RISK ASSESSMENT VALUES OF DISTRIBUTION NETWORK EQUIPMENT

Ai X1 X2 X3 X4 X5 X6

A1 8 8 4 6 0 0
A2 8 8 4 6 0 0
A3 6 6 2 6 0 0
A4 4 2 4 4 0 0
A5 4 2 4 4 2 0
A6 2 2 4 2 0 0
A7 4 4 4 4 0 0
A8 4 6 6 4 0 0
A9 2 2 6 2 2 0
A10 4 4 6 2 0 0
A11 2 2 4 2 2 0
A12 2 2 6 2 0 0
A13 2 2 6 2 2 0
A14 0 0 8 2 0 0
A15 0 0 8 2 0 0
A16 10 10 2 6 0 0
A17 10 10 6 6 4 4
A18 10 10 2 6 0 0
A19 8 8 6 8 0 2
A20 8 8 6 6 0 2
A21 6 8 6 4 0 0
A22 6 6 8 2 0 0
A23 8 6 6 6 0 2
A24 4 6 6 6 0 0
A25 6 6 8 8 0 0
A26 4 4 6 4 4 2
A27 4 4 6 4 0 0
A28 2 4 8 2 4 4
A29 2 2 6 4 0 0
A30 0 2 6 2 0 0
A31 0 2 4 2 0 0
A32 0 2 4 2 0 0
A33 0 2 6 2 0 0
A34 2 2 6 4 0 0
A35 2 2 8 8 0 0
A36 0 0 6 2 4 2
A37 0 0 6 2 2 2
A38 0 0 6 4 8 6
A39 0 0 6 4 4 2
A40 0 0 6 2 4 2
A41 0 0 6 2 2 4
A42 0 0 6 4 4 2
A43 0 0 6 2 6 6
A44 0 0 8 2 10 6
A45 0 0 4 8 4 2
A46 0 0 6 2 2 2
A47 0 0 4 2 8 4
A48 0 0 6 2 10 6
A49 0 0 6 2 2 2
A50 0 0 6 2 2 2
A51 0 0 4 2 10 6

In [13], the weights of each criterion are obtained through
the combined weighting method as follows:

wj = (0.3684, 0.2105, 0.1287, 0.1237, 0.0958, 0.0729)T .
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Finally, based on the MARCOS method and combined
weighting, Wang, et al [13] calculated the risk coefficients
of the aforementioned 51 alternative lines.

Based on the aforementioned alternatives and criteria, the
extended matrix X is as follows:

X =

AAI
A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

...
A42

A43

A44

A45

A46

A47

A48

A49

A50

A51

AI



0 0 2 2 0 0
8 8 4 6 0 0
8 8 4 6 0 0
6 6 2 6 0 0
4 2 4 4 0 0
4 2 4 4 2 0
2 2 4 2 0 0
4 4 4 4 0 0
4 6 6 4 0 0
2 2 6 2 2 0
4 4 6 2 0 0
...

...
...

...
...

...
0 0 6 4 4 2
0 0 6 2 6 6
0 0 8 2 10 6
0 0 4 8 4 2
0 0 6 2 2 2
0 0 4 2 8 4
0 0 6 2 10 6
0 0 6 2 2 2
0 0 6 2 2 2
0 0 4 2 10 6
10 10 8 8 10 6



.

By equalities (2.3) and (2.4), the following dimensionless
matrix N can be obtained:

N =

AAI
A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

...
A42

A43

A44

A45

A46

A47

A48

A49

A50

A51

AI



0 0 0.25 0.25 0 0
0.8 0.8 0.5 0.75 0 0
0.8 0.8 0.5 0.75 0 0
0.6 0.6 0.25 0.75 0 0
0.4 0.2 0.5 0.5 0 0
0.4 0.2 0.5 0.5 0.2 0
0.2 0.2 0.5 0.25 0 0
0.4 0.4 0.5 0.5 0 0
0.4 0.6 0.75 0.5 0 0
0.2 0.2 0.75 0.25 0.2 0
0.4 0.4 0.75 0.25 0 0

...
...

...
...

...
...

0 0 0.75 0.5 0.4 0.33
0 0 0.75 0.25 0.6 1
0 0 1 0.25 1 1
0 0 0.5 1 0.4 0.33
0 0 0.75 0.25 0.2 0.33
0 0 0.5 0.25 0.8 0.67
0 0 0.75 0.25 1 1
0 0 0.75 0.25 0.2 0.33
0 0 0.75 0.25 0.2 0.33
0 0 0.5 0.25 1 1
1 1 1 1 1 1


In this example, we know that the weights of each indi-

cator are

wj = (0.3684, 0.2105, 0.1287, 0.1237, 0.0958, 0.0729)T ,

respectively. By using equality (2.5) to weight the normal-
ization matrix N , the weighting matrix is as follows:

V =

AAI
A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

...
A42

A43

A44

A45

A46

A47

A48

A49

A50

A51

AI



0 0 0.0322 0.0309 0 0
0.2947 0.1684 0.0644 0.0928 0 0
0.2947 0.1684 0.0644 0.0928 0 0
0.1474 0.0421 0.0644 0.0619 0 0
0.1474 0.0421 0.0644 0.0619 0.0192 0
0.0737 0.0421 0.0644 0.0309 0 0
0.1474 0.0842 0.0644 0.0619 0 0
0.1474 0.1263 0.0965 0.0619 0 0
0.0737 0.0421 0.0965 0.0309 0.0192 0
0.1474 0.0842 0.0965 0.0309 0 0
0.0737 0.0421 0.0644 0.0309 0.0192 0

...
...

...
...

...
...

0 0 0.0965 0.0619 0.0383 0.0243
0 0 0.0965 0.0309 0.0575 0.0729
0 0 0.1287 0.0309 0.0958 0.0729
0 0 0.0644 0.1237 0.0383 0.0243
0 0 0.0965 0.0309 0.0192 0.0243
0 0 0.0644 0.0309 0.0766 0.0486
0 0 0.0965 0.0309 0.0958 0.0729
0 0 0.0965 0.0309 0.0192 0.0243
0 0 0.0965 0.0309 0.0192 0.0243
0 0 0.0644 0.0309 0.0958 0.0729

0.3684 0.2105 0.1287 0.1237 0.0958 0.0729


Simple calculations show that

Si = (0.6202, 0.6202, 0.4723, · · · , 0.1709, 0.2640)T ,

and
Sai = 1.0000, Saai = 0.0631.

Next, calculate the utility of five alternatives relative
to the positive ideal solution and negative ideal solution,
respectively, the following results can be obtained:

K+
i = (0.6202, 0.6202, 0.4723, · · · , 0.1709, 0.2640)T ,

K−
i = (9.8296, 9.8296, 7.4848, · · · , 2.7086, 4.1834)T .

So the utility function related to positive ideal and negative
ideal solutions can be determined:

f(K+
i ) = (0.9406, 0.9406, 0.9406, · · · , 0.9406, 0.9406)T ,

f(K−
i ) = (0.0594, 0.0594, 0.0594, · · · , 0.0594, 0.0594)T .

Finally, calculate the utility function of each alternative
based on the above formula equality (2.11) and so

f(Ki) = (0.6179, 0.6179, 0.4705, · · · , 0.1703, 0.2630)T .

On the other hand, by using equality (2.17) and Si, we can
obtain C = 0.9593, therefore, by equality (2.16), we have

f(Ki) = (0.6179, 0.6179, 0.4705, · · · , 0.1703, 0.2630)T .

So it can be seen that equalities (2.11) and (2.16) are
equivalent.

In this practical application, we present the risk coeffi-
cients for each alternative line, which were obtained using
both the MARCOS method and the weighted sum method.
Table 4 presents a comparison of the results between the
MARCOS method f (Ki) and the weighted sum method Si.
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TABLE 4
MARCOS METHOD VS WEIGHTED SUM METHOD

Ai f (Ki) rank Si rank
f (Ki)

Si
A1 0.6179 7 0.6202 7 0.9963
A2 0.6179 7 0.6202 7 0.9963
A3 0.4705 12 0.4723 12 0.9963
A4 0.3145 23 0.3157 23 0.9963
A5 0.3336 21 0.3348 21 0.9963
A6 0.2103 38 0.2111 38 0.9963
A7 0.3564 20 0.3578 20 0.9963
A8 0.4304 15 0.4320 15 0.9963
A9 0.2614 29 0.2624 29 0.9963
A10 0.3577 19 0.3590 19 0.9963
A11 0.2294 34 0.2302 34 0.9963
A12 0.2423 33 0.2432 33 0.9963
A13 0.2614 29 0.2624 29 0.9963
A14 0.1590 48 0.1596 48 0.9963
A15 0.1590 48 0.1596 48 0.9963
A16 0.7012 3 0.7039 3 0.9963
A17 0.8519 1 0.8551 1 0.9963
A18 0.7012 3 0.7039 3 0.9963
A19 0.7050 2 0.7076 2 0.9963
A20 0.6742 5 0.6767 5 0.9963
A21 0.5458 10 0.5478 10 0.9963
A22 0.5051 11 0.5070 11 0.9963
A23 0.6323 6 0.6346 6 0.9963
A24 0.4612 13 0.4630 13 0.9963
A25 0.5975 9 0.5997 9 0.9963
A26 0.4509 14 0.4526 14 0.9963
A27 0.3885 17 0.3899 17 0.9963
A28 0.4029 16 0.4044 16 0.9963
A29 0.2731 26 0.2742 26 0.9963
A30 0.1689 46 0.1696 46 0.9963
A31 0.1369 50 0.1374 50 0.9963
A32 0.1369 50 0.1374 50 0.9963
A33 0.1689 46 0.1696 46 0.9963
A34 0.2731 26 0.2742 26 0.9963
A35 0.3668 18 0.3682 18 0.9963
A36 0.1894 40 0.1901 40 0.9963
A37 0.1703 42 0.1709 42 0.9963
A38 0.3068 24 0.3079 24 0.9963
A39 0.2202 35 0.2210 35 0.9963
A40 0.1894 40 0.1901 40 0.9963
A41 0.1945 39 0.1952 39 0.9963
A42 0.2202 35 0.2210 35 0.9963
A43 0.2569 31 0.2578 31 0.9963
A44 0.3271 22 0.3283 22 0.9963
A45 0.2497 32 0.2507 32 0.9963
A46 0.1703 42 0.1709 42 0.9963
A47 0.2197 37 0.2205 37 0.9963
A48 0.2950 25 0.2962 25 0.9963
A49 0.1703 42 0.1709 42 0.9963
A50 0.1703 42 0.1709 42 0.9963
A51 0.2630 28 0.2640 28 0.9963

From Table 4, it is evident that the final results obtained
by the MARCOS method and the weighted sum method
are equivalent. This equivalence suggests that, despite the
differences in the computational procedures and underlying
assumptions of these two methods, they lead to the same
ranking of alternatives.

In this paper, the weighted sum method is dimension-
lessized using equations (2.3) and (2.4). These equations
are specifically designed to standardize the decision matrix
by eliminating the influence of differing units and scales
across criteria. However, the classical weighted sum method
employs the following formula for dimensionlessization:

yij =
xij − xj min

xj max − xj min
, i = 1, 2, · · · ,m, j = 1, 2, · · · , n.

This difference in dimensionlessization techniques leads to
variations in the final ranking results. Table 5 presents the

results obtained from the classical weighted sum method, il-
lustrating the rankings of the alternatives under this approach.

TABLE 5
THE CLASSICAL WEIGHTED SORTING RESULTS

Ai rank Ai rank Ai rank
A1 8 A18 3 A35 17
A2 8 A19 2 A36 40
A3 13 A20 5 A37 42
A4 24 A21 10 A38 23
A5 22 A22 11 A39 34
A6 38 A23 6 A40 40
A7 20 A24 12 A41 39
A8 15 A25 7 A42 34
A9 29 A26 14 A43 31
A10 19 A27 18 A44 21
A11 36 A28 16 A45 28
A12 33 A29 26 A46 42
A13 29 A30 48 A47 37
A14 46 A31 50 A48 25
A15 46 A32 50 A49 42
A16 3 A33 48 A50 42
A17 1 A34 26 A51 32

To facilitate a better comparison between the MARCOS
method and the classical weighted sum method, we calcu-
lated the correlation coefficient between the ranking results
of both methods, which yielded a value of 0.9968. This
indicates that the results from these two methods are highly
correlated.

IV. CONCLUSION

In this short paper, we demonstrate through algebraic
calculations that the MARCOS method and the weighted
sum method are equivalent. Furthermore, to provide a more
intuitive comparison between these two methods, we use
examples to illustrate our findings. In future research, greater
attention should be paid to the inherent relationships among
different multi-attribute decision-making methods, in order to
avoid misinterpreting methods that are equivalent to existing
ones as entirely new approaches.
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