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Abstract—We investigate a positive, decreasing function h(t)
that satisfies the inequality G(

∫ t

0
esh(s)ds) ≤ eξth(t). leading to

the condition (h−α)′′ ≥ 0. This condition implies the inequality
E
(
ϑ
√
ψ + ψt

)
≤

(
1 + τ

√
ψt

)− 1
ψ , our study explores the

impact of h(t) and another positive, decreasing function E(t).
The results contribute critical insights into these functions, with
significant implications for differential equations, and dynam-
ical systems. This work presents a framework for generating
novel inequalities, enhancing the theoretical understanding and
practical applications of these mathematical concepts.

Index Terms—Non-increasing functions, asymptotic behavior,
integral properties, power-law decay, inequalities.

I. INTRODUCTION

T he study of decreasing functions is crucial in vari-
ous mathematical and scientific disciplines, particularly

in analyzing differential equations and dynamical systems.
This paper delves into the asymptotic behavior and growth
conditions of such functions, focusing on h(t), a positive,
decreasing function that adheres to specific inequalities and
constraints. Our investigation centers around the disparity:

G(

∫ t

0

esh(s)ds) ≤ eξth(t),

which leads to a critical condition:

(h−α)′′ ≥ 0.

This condition is instrumental in understanding the asymp-
totic behavior of h(t) and its relationship with another
positive, decreasing function E(t). This analysis derives
important inequalities and growth conditions for these func-
tions.

The paper aims to elucidate how the exponential de-
cay of E(t) is transformed into corresponding bounds for
h(t) through the function G. Additionally, we explore how
constraints on derivatives and integral properties of E(t)
impact h(t). These insights are not only theoretical but
also have practical implications for mathematical modeling
and dynamical systems, offering a framework for generating
new inequalities and enhancing the understanding of these
functions’ behavior.

By presenting a detailed exploration of these functions and
their interactions, this research contributes to a deeper under-
standing of asymptotic analysis and growth conditions, with
broad applications in differential equations and dynamical
systems.
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II. ASYMPTOTIC ANALYSIS AND INEQUALITIES FOR
BOUNDED FUNCTIONS OF CLASS C2

This section provides scientific insights into the asymptotic
behavior and inequalities of bounded, twice continuously
differentiable functions (C2 class). We present key lemmas
that describe the decay rates, integral relationships, and
inequalities involving these functions and their derivatives.
Understanding these properties is essential in fields
such as differential equations and control theory, where
the stability and long-term behavior of systems are analyzed.

In each lemma presented in this section, we assume that
γ, γ′, a, b, and t are strictly positive real numbers, satisfying
the condition γ > γ′ + b and γ′ > b.

Lemma 1: Let h(t) : R+ → R+ be a bounded function
of class C2 such that

h(t) ≥ ae−γ′t + b

∫ t

0

e−γ(t−s)h(s)ds, (1)

then there exists δ > 0 verifying:

h′′(t) ≥ δh(t).

h(t) decreasing, and

lim
t→+∞

h′(t) = 0, lim
t→+∞

h(t) = 0

and for all t ≥ 0.

h′(t) +
√
δh(t) ≤ 0

Proof:
Let h(t) : R+ → R+ be a bounded function of class C2

such that

h(t) ≥ ae−γ′t + b

∫ t

0

e−γ(t−s)h(s) ds, (2)

Differentiating both sides with respect to t, we get

h′(t) ≥ −aγ′e−γ′t − bγ

∫ t

0

e−γ(t−s)h(s) ds+ bh(t), (3)

Differentiating again with respect to t, we obtain

h′′(t) ≥ a(γ′)2e−γ′t + b(γ)2
∫ t

0

e−γ(t−s)h(s) ds (4)

−bγh(t) + bh′(t).

Substituting h′(t) from (3) into (4), we get

h′′(t) ≥ a(γ′)2e−γ′t + b(γ)2
∫ t

0

e−γ(t−s)h(s) ds (5)

−bγh(t)

+b

(
−aγ′e−γ′t − bγ

∫ t

0

e−γ(t−s)h(s) ds+ bh(t)

)
,
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Simplifying the above equation, we have

h′′(t) ≥ a(γ′)2e−γ′t − baγ′e−γ′t + b2ae−γ′t (6)

+ b(γ)2
∫ t

0

e−γ(t−s)h(s) ds− bγh(t) (7)

(8)

+b

(
−bγ

∫ t

0

e−γ(t−s)h(s) ds+ b2
∫ t

0

e−γ(t−s)h(s) ds

)
,

which simplifies to

h′′(t) ≥ a
(
γ′(γ′ − b) + b2

)
e−γ′t (9)

+ b
(
γ(γ − b) + b2

) ∫ t

0

e−γ(t−s)h(s) ds (10)

−bγh(t).

Thus, we have

h′′(t) ≥ a
(
γ′(γ′ − b) + b2

)
e−γ′t (11)

+ b
(
γ′(γ′ − b) + b2

) ∫ t

0

e−γ(t−s)h(s) ds (12)

−bγh(t).

Therefore, we can write

h′′(t) ≥ (γ′(γ′ − b)− b(γ − b))h(t), (13)

If we take δ = γ′(γ′ − b)− b(γ − b) > 0, then (Table III)

h′′(t) ≥ δh(t), (14)

such that there exists δ verifying: h(t) decreasing, and we
have h′′(t) ≥ δh(t) ≥ 0. Thus, h′(t) increases. Hence, h′(t)
has a limit in R at +∞. Moreover, in the neighborhood of
+∞, h′(t) has a fixed sign and h(t) is monotone.
Since h(t) is bounded, it therefore has a finite limit at +∞.
Consequently,

∫ +∞
0

h′(t) dt converges, and the limit of h′(t)
at +∞ is necessarily 0.
h′(t) increases and limt→+∞ h′(t) = 0. Thus, h′(t) ≤ 0

and h(t) decreases. Let l = limt→+∞ h(t). We have l ≥ 0,
and h′′(t) ≥ δh(t) ≥ δl. Hence,

∀t ≥ 0, h′(t)− h′(0) ≥ δl.

But limt→+∞ h′(t) = 0, so l = 0. Let θ(t) = (h′(t) +√
δh(t))e−t

√
δ. We have:

θ′(t) = (h′′(t)− δh(t))e−t
√
δ ≥ 0.

Thus, θ is increasing. But limt→+∞ θ(t) = 0. Hence, θ ≤
0. Then, let φ(t) = h(t)e

√
δt. We have φ′(t) = θ(t)e2

√
δt.φ

decreases, so

h(t) ≤ h(0)e−
√
δt

for all t ≥ 0.

h′(t) ≤ −h(0)
√
δe−

√
δt ≤ −

√
δh(t)

Lemma 2: Let h(t) : R+ → R+ be a bounded function
of class C2 such that

h(t) ≥ ae−γ′t + b

∫ t

0

e−γ(t−s)h(s)ds, (15)

TABLE I
EXAMPLES OF δ = γ′(γ′ − b)− b(γ − b) > 0

Example γ γ′ b δ
1 0.9876 0.6543 0.3214 0.0036
2 1.2345 0.7654 0.3456 0.0141
3 0.5678 0.3214 0.1234 0.0087

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8 h′′(t) δ h(t) δ = 0.087
h′′(t) δ h(t) δ = 0.0036
h′′(t) δ h(t) δ = 0.0141

δ = 0.087

δ = 0.0036

δ = 0.0141

δ = 0.0036δ = 0.0141

δ = 0.087

t
h
′′
(t
)

Fig. 1. Function δh(t) ≤ h′′(t)

then
lim

t→+∞
h(t) = lim

t→+∞
h′(t) = 0,

−β ≤ h′(t)

h(t)
≤ −

√
δ

limt→+∞
h′(t)

h(t)
= −

√
δ,

and

limt→+∞
h′′(t)

h(t)
= δ.

Proof:
According to Lemma 1, we have h′(t) ≤ 0, which implies

that h(t) is a non-increasing function. Since h(t) is always
positive, we conclude that h(t) is decreasing and bounded
below by 0. Thus, by the properties of monotone sequences,
we can assert that:

∃l ∈ R+, l = lim
t→+∞

h(t).

Applying the Monotone Convergence Theorem, we con-
sider the auxiliary function:

g(t) = h′(t) + βh(t),

where β = γ − b. We then have:

eβtg(t) = eβth′(t) + eβtβh(t).

Rewriting the above equation, we get:

eβtg(t) =
(
eβth(t)

)′
.

Integrating both sides from 0 to t:∫ t

0

eβsg(s) ds = eβth(t)− h(0).
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Rearranging, we obtain:

h(t) = h(0)e−βt + e−βt

∫ t

0

eβsg(s) ds.

Or equivalently:

h(t) = h(0)e−βt +

∫ t

0

e−β(t−s)g(s) ds.

Next, we apply the Cauchy-Schwarz inequality:(∫ t

0

eβsg(s) ds

)2

≤
∫ t

0

g2(s) ds

∫ t

0

e2βs ds

≤ 1

2β
e2βt

∫ +∞

0

g2(s) ds.

Therefore, we find that:

|h(t)| ≤ |h(0)|+ 1√
2β

√∫ +∞

0

g2(s) ds.

This implies that h(t) is bounded. To establish further
properties of h(t), consider:

|h(t+ ξ)| ≤ |h(ξ)|e−βt +
ϵ

2
,

where ξ > 0 and
√∫ +∞

ξ
g2(s) ds ≤ ϵ

2
√
2β

.
Thus,

∀t ≥ ξ

β
, |h(t)| ≤ |h(ξ)|eξ−βt +

ϵ

2
.

Moreover,
lim

t→+∞
|h(ξ)|eξ−βt = 0.

Therefore, ∃ζ > 0 such that ∀t ≥ 0, |h(ξ)|eξ−βt ≤ ϵ
2 .

Thus,
∀t ≥ sup(ζ, ξ), |h(t)| ≤ ϵ.

This implies that ultimately,

lim
t→+∞

h(t) = 0.

Then, we have:

lim
t→+∞

h′(t) = 0, and − β ≤ h′(t)

h(t)
≤ −

√
δ.

Thus,

lim
t→+∞

h′(t)

h(t)
= −

√
δ.

By L’Hopital’s rule, we get:

lim
t→+∞

h′(t)

h(t)
= lim

t→+∞

h′′(t)

h′(t)
= lim

t→+∞

h′′(t)
h(t)

h′(t)
h(t)

.

Therefore,

−
√
δ = lim

t→+∞

h′′(t)
h(t)

−
√
δ
,

and hence:
lim

t→+∞

h′′(t)

h(t)
= δ.

Lemma 3: If a C2−function h(t) > 0 satisfies for t ≥ 0,

h(t) ≥ ae−γ′t + b

∫ t

0

e−γ(t−s)h(s)ds, (16)

then

limt→+∞
e−βt

∫ t

0
eβsh(s)ds

h(t)
=

1

β −
√
δ
,

and

limt→+∞

∫ t

0
eβsg(s)ds

eβth(t)
=

1

(β −
√
δ)2

.

Proof:
According to Lemma 2, we have

g(t) = e−βt

∫ t

0

eβsh(s) ds

which is the forcing term of the ordinary differential equation
(7). As t → ∞, it can be shown that g(t) → 0.

For all t ≥ τ ≥ 0, we have:

g(t) = e−βt

∫ t

0

eβsh(s) ds

≤ e−βt

∫ τ

0

eβsh(s) ds+ sup
s∈[τ,t]

h(s)e−βt

∫ t

τ

eβs ds.

Thus,

g(t) ≤ e−βt

∫ τ

0

eβsh(s) ds+
1

β
sup

s∈[τ,t]

h(s)(1− e−β(t−τ)).

As a result,

g(t) ≤ e−βt

∫ τ

0

eβsh(s) ds+
1

β
sup

s∈[τ,t]

h(s).

Let ϵ > 0. Choose τ ≥ 0 such that for all t ≥ τ , we have
h(t) ≤ ϵβ

2 . The function

t 7→ e−βt

∫ τ

0

eβsh(s) ds

tends to 0 as t tends to +∞. Therefore, there exists t0 ≥ 0
such that

t ≥ t0 implies e−βt

∫ τ

0

eβsh(s) ds ≤ ϵ

2
.

For t ≥ sup(t0, τ), we then have 0 ≤ g(t) ≤ ϵ. This
implies that g(t) tends to 0 as t tends to +∞.

Applying L’Hopital’s rule, we obtain:

lim
t→∞

g(t)

h(t)
= lim

t→∞

e−βt
∫ t

0
eβsh(s) ds

h(t)

= lim
t→∞

∫ t

0
eβsh(s) ds

eβth(t)
.

Evaluating the limit, we get:

lim
t→∞

∫ t

0
eβsh(s) ds

eβth(t)
= lim

t→∞

eβth(t)

βeβth(t) + eβth′(t)
.

Simplifying, we find:

lim
t→∞

h(t)

βh(t) + h′(t)
= lim

t→∞

1

β + h′(t)
h(t)

=
1

β −
√
δ
.

Using L’Hopital’s rule again, we have:

lim
t→∞

∫ t

0
eβsg(s) ds

eβth(t)
= lim

t→∞

eβtg(t)

βeβth(t) + eβth′(t)
.
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Therefore,

lim
t→∞

eβtg(t)

βeβth(t) + eβth′(t)
= lim

t→∞

g(t)
h(t)

β + h′(t)
h(t)

=

1
β−

√
δ

β −
√
δ
=

1

(β −
√
δ)2

.

Lemma 4: If a C2−function h(t) > 0 satisfies for t ≥ 0,

h(t) ≥ ae−γ′t + b

∫ t

0

e−γ(t−s)h(s)ds, (17)

then
h′(t) + βh(t) ≥ 0 with β = γ − b, (18)

and
1− h(0)

β
≥ 1−

∫ ∞

0

h(s)ds ≥ 1− h(0)√
δ
.

Proof:
Starting from the given inequality:

h(t) ≥ ae−γ′t + b

∫ t

0

e−γ(t−s)h(s) ds, (19)

we differentiate both sides concerning t:

h′(t) ≥ −aγ′e−γ′t − bγ

∫ t

0

e−γ(t−s)h(s) ds+ bh(t), (20)

which can be rewritten as:

h′(t)− bh(t) ≥ −aγ′e−γ′t − bγ

∫ t

0

e−γ(t−s)h(s) ds. (21)

Since γ > γ′ + b, we have:

h′(t)− bh(t) ≥ −aγe−γ′t − bγ

∫ t

0

e−γ(t−s)h(s) ds, (22)

which simplifies to:

h′(t)− bh(t) ≥ −γh(t). (23)

Thus,

h′(t) + βh(t) ≥ 0 with β = γ − b. (24)

Given that β >
√
δ, we have (Figure 2):

h(0)e−βt ≤ h(t) ≤ h(0)e−
√
δt.

Therefore, we can integrate h(t) over [0,∞) to obtain:

h(0)

β
≤
∫ ∞

0

h(s) ds ≤ h(0)√
δ
.

Hence,

1− h(0)

β
≥ 1−

∫ ∞

0

h(s) ds ≥ 1− h(0)√
δ
.

Lemma 5: If a C2−function h(t) > 0 satisfies for t ≥ 0,

h(t) ≥ ae−γ′t + b

∫ t

0

e−γ(t−s)h(s)ds, (25)

with β >
√
δ, then

h(t)h′′(t)− (1 + α)(h′(t))2 ≤ 0.

TABLE II
EXAMPLES OF β >

√
δ AND β = γ − b

Example γ β b
√
δ

1 0.9876 0.6662 0.3214 0.06
2 1.2345 0.8889 0.3456 0.1187
3 0.5678 0.4444 0.1234 0.0932

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

β = 0.4444

√
δ = 0.06

√
δ = 0.1187√

δ = 0.0932

β = 0.6662
√
δ = 0.6662

β = 0.4444
√
δ = 0.0932

β = 0.8889
√
δ = 0.1187

β = 0.6662

β = 0.8889

t
h
(t
)

Fig. 2. Function h(0)e−βt ≤ h(t) ≤ h(0)e−
√
δt

TABLE III
EXAMPLES OF β AND

√
δ

Example β
√
δ

1 0.8889 0.1187
2 0.6662 0.06
3 0.4444 0.0932

0 1 2 3 4 5

−0.6

−0.4

−0.2

0

β = 0.6662
β = 0.4444

β = 0.8889

√
δ = 0.1187

√
δ = 0.0932

√
δ = 0.06

β = 0.6662
√
δ = 0.06

β = 0.4444
√
δ = 0.0932

β = 0.8889
√
δ = 0.1187

t

h
′ (
t)

Fig. 3. Function −βh(t) ≤ h′(t) ≤ −
√
δh(t)

Proof:
Given: (Figure 3)

−βh(t) ≤ h′(t) ≤ −
√
δh(t),

we have:

−βh(t)h′(t) ≥ (h′(t))2 ≥ −
√
δh(t)h′(t).

Thus,

h(t)h′′(t) + β(1 + α)h(t)h′(t) ≤ h(t)h′′(t)
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−(1 + α)(h′(t))2 ≤ h(t)h′′(t) + (1 + α)
√
δh(t)h′(t).

Next, we can write:

h(t)h′′(t) + β(1 + α)h(t)h′(t) ≥
(
δ − β2(1 + α)

)
h2(t)[

−
(
(β −

√
δ)(β +

√
δ)
)
− αβ2

]
h2(t) ≤ 0

which leads to:[
−
(
(β −

√
δ)(β +

√
δ)
)
− αβ2

]
h2(t) ≤ h(t)h′′(t)

−(1 + α)(h′(t))2 ≤ −αh(0)h(t)e−
√
δt < 0.

Therefore, we obtain:

h(t)h′′(t)− (1 + α)(h′(t))2 ≤ 0.

III. EXPONENTIAL BOUNDS AND INTEGRAL
RELATIONSHIPS FOR NON-INCREASING FUNCTIONS

This section explores key properties of non-increasing
functions, focusing on their exponential decay and integral
relationships. We present theorems that provide bounds on
these functions and their integrals, offering insights into
their long-term behavior and decay rates. This analysis
is essential for understanding the dynamics of systems
described by non-increasing functions in various scientific
and engineering applications.

Theorem 1: Let E: R+ → R+ be a non-increasing
function.
Then

E(t) ≤ E(0)

e−2(1+α)
e−2(1+α)e−βt . (26)

By invoking Lemma 5, we derive the following expression:[
(h′)

2
E
]′

= 2h′′h′E + (h′)2E′. (27)

Given the inequality

h(t)h′′(t) ≤ (1 + α)(h′(t))2,

we can further infer:

2h′h′′(t)E ≥ 2(1 + α)
(h′(t))3

h(t)
E.

Combining the above, we obtain:

2h′h′′(t)E + (h′)2E′ ≥ 2(1 + α)
(h′(t))3

h(t)
E + (h′)2E′.

Therefore:

0 ≥ 2(1 + α)
(h′(t))3

h(t)
E + (h′)2E′.

Dividing through by (h′)2E, we get:

E′

E
≤ −2(1 + α)

h′(t)

h(t)
.

Considering the condition h′ + βh ≥ 0 and the fact that
βe−βt < β, it follows that:

0 ≤ h′ + βe−βth ≤ h′ + βh.

This implies:

0 ≥ −(1+α)h′−(1+α)βe−βth ≥ −(1+α)h′−(1+α)βh,

and consequently:

0 ≥ −(1+α)
h′

h
− (1+α)βe−βt ≥ −(1+α)

h′

h
− (1+α)β.

Thus:
E′

E
≤ 2β(1 + α)e−βt.

Integrating both sides, we obtain:

E

E(0)
≤ e2β(1+α)

∫ t
0
e−βsds =

e−2(1+α)e−βt

e−2(1+α)
,

and therefore:

E(t) ≤ E(0)

e−2(1+α)
e−2(1+α)e−βt .

Theorem 2: Let E: R+ → R+ be a non-increasing
function.
If

h(t) = e
t
T

∫ ∞

t

E(s)ds, t ∈ R+, T =

√
δ(1 + α)

δ
. (28)

then ∫ ∞

t

E(s)ds ≤ 1 + α

4δ
E(t), (29)

and

E(t) ≤ 1

4

√
δ(1 + α)

δ
E(0)e1−t, t ∈ R+. (30)

Proof: We begin by noting that h is locally absolutely
continuous and non-increasing, as established in Lemma 5:

h′(t) =
1

T
h(t)− e

t
T E(t), t ∈ R+, T > 0. (31)

Considering the expression for the squared derivative, we
have:

(1 + α) (h′(t))
2
=

(1 + α)

T 2
h2(t) (32)

−2(1 + α)

T
e
t
T h(t)E(t)

+(1 + α)e
2t
T E2(t), t ∈ R+, T > 0.

Given that:
h′′(t)h(t) ≥ δh2(t), (33)

we obtain the inequality:

(1 + α)

T 2
h2(t)− 2(1 + α)

T
e
t
T h(t)E(t) (34)

+(1 + α)e
2t
T E2(t) ≥ δh2(t).

Assuming δ = (1+α)
T 2 , we get:

e
t
T E(t) ≥ 2

T
h(t). (35)

By multiplying both sides by T
2 , we have:

T

2
e
t
T E(t) ≥ h(t). (36)

Moreover, considering the integral form, we obtain:

T

2
e
t
T E(t) ≥ 2

T
e
t
T

∫ ∞

t

E(s)ds. (37)

Hence, it follows that:∫ ∞

t

E(s)ds ≤ 1 + α

4δ
E(t). (38)
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Given that h(t) = e
t
T

∫∞
t

E(s)ds, we can state:

h(t) ≤ h(0) =

∫ ∞

0

E(s)ds ≤ 1 + α

4δ
E(0), (39)

t ∈ R+.

Thus: ∫ ∞

t

E(s)ds ≤ 1 + α

4δ
E(0)e−

√
δ(1+α)

(1+α)
t, (40)

t ∈ R+.

Since E is nonnegative and non-increasing, we have:∫ ∞

t

E(s)ds ≥
∫ t+T

t

E(s)ds ≥ TE(t+ T ). (41)

Therefore:

E(t+T ) ≤ 1

4

√
δ(1 + α)

δ
E(0)e−

√
δ(1+α)

(1+α)
t, t ∈ R+. (42)

By setting t := t+

√
δ(1+α)

δ , we obtain:

E(t) ≤ 1

4

√
δ(1 + α)

δ
E(0)e1−t, t ∈ R+. (43)

Theorem 3: Let E : R+ → R+ be a non-increasing
function and assume that there is a constant α > 0.
If

h(t) =

∫ ∞

t

Eζ+1(s)ds, t ∈ R+, (44)

then∫ ∞

t

Eζ+1(s)ds ≤
√
δ(1 + α)

δ
Eζ(0)E(t), t ∈ R+. (45)

and

E

(√
δ(1 + α)

δ
+ (α+ 1)t

)

≤

(
1 +

δα
√
δ(1 + α)t

(1 + α)

)− 1
α+1

, t ∈ R+.

Proof: Given the inequality:

(1 + α) (h′(t))
2 ≥ h′′(t)h(t) ≥ δh2(t) t ∈ R+,

we can rewrite it as:

δh2(t)− (1 + α) (h′(t))
2 ≤ 0.

Factoring the left-hand side, we obtain:(√
(1 + α)h′(t) +

√
δh(t)

)(√
δh(t)−

√
(1 + α)h′(t)

)
≤ 0.

From the product being non-positive, we conclude:(√
(1 + α)h′(t) +

√
δh(t)

)
≤ 0.

This implies:

h′(t) ≤ −
√
δ√

(1 + α)
h(t).

Given that
−h′(t) = Eζ+1(t),

we have:

−Eζ+1(t) ≤ −
√
δ√

(1 + α)
h(t).

Or equivalently:

Eζ+1(t) ≥
√
δ√

(1 + α)
h(t).

Then

h(t) ≤
√

(1 + α)√
δ

Eζ+1(t).

Because E(t) ≤ E(0) for t ∈ R+, we find:

h(t) ≤
√
(1 + α)√

δ
Eζ(0)E(t).

Finally, ∫ ∞

t

Eζ+1(s) ds ≤
√
δ(1 + α)

δ
Eζ(0)E(t). (46)

By differentiating the function once again, and utilizing
equation (46), we may assume E(0) = 1, leading to the
following relationships:

h(t) =

∫ ∞

t

Eζ+1(s) ds, −h′(t) = Eζ+1(t)

where h(t) represents the integral of E(s)ζ+1 over the range
[t,∞), and h′(t) is its first derivative. Proceeding from this,
we derive:

hα+1(t) =

(∫ ∞

t

Eζ+1(s) ds

)α+1

≤

[√
δ(1 + α)

δ

]α+1

Eα+1(t)

This inequality provides an upper bound on hα+1(t), involv-

ing the factor
√

δ(1+α)

δ , where δ > 0 represents a constant
parameter of the system. Consequently, this implies:[√

δ(1 + α)

δ

]−α−1

hα+1(t) ≤ Eα+1(t)

By assuming ζ = α, we further deduce:[√
δ(1 + α)

δ

]−α−1

hα+1(t) ≤ −h′(t)

We now employ the identity:

(h−α(t))′ = −αh′(t)h−α−1(t)

Thus, multiplying by hα+1(t) and using the previous results,
we establish:

1

α
(h−α(t))′hα+1(t) = −h′(t) ≥

[√
δ(1 + α)

δ

]−α−1

hα+1(t)

Therefore:

(h−α(t))′ ≥ α

[√
δ(1 + α)

δ

]−α−1

Upon differentiating again, we obtain:

(h−α(t))′′ = −αh−α−2(t)
(
h′′(t)h(t)− (α+ 1)(h′(t))2

)
≥ 0
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This inequality suggests that h−α(t) is concave upwards,
ensuring the following relation:

(h−α(t))− (h−α(s)) ≥ (h−α(s))′(t− s)

≥ α

[√
δ(1 + α)

δ

]−α−1

(t− s)

which gives us:

h−α(t) ≥ h−α(s) + α

[√
δ(1 + α)

δ

]−α−1

(t− s)

In particular, we obtain the bound:

h−α(t) ≥

[√
δ(1 + α)

δ

]−α

+α

[√
δ(1 + α)

δ

]−α−1

(t− s)

Furthermore, since E(t) is nonnegative and non-increasing,
we conclude that:

h(t) =

∫ ∞

t

Eζ+1(τ) dτ ≥
∫ √

δ(1+α)

δ +(ζ+1)t

t

Eζ+1(τ) dτ

This integral inequality leads to:

h(t) ≥

[√
δ(1 + α)

δ
+ ζt

]
Eζ+1

(√
δ(1 + α)

δ
+ (ζ + 1)t

)

which holds for large t. We can rewrite this as:([√
δ(1 + α)

δ
+ ζt

]
Eζ+1

(√
δ(1 + α)

δ
+ (ζ + 1)t

))−α

+α

[√
δ(1 + α)

δ

]−α−1

s

≥

[√
δ(1 + α)

δ

]−α

+ α

[√
δ(1 + α)

δ

]−α−1

s

Finally, we can approximate E(t) for large t as follows:

E

(√
δ(1 + α)

δ
+ (α+ 1)t

)
≤

(
1 +

α
√
δ(1 + α)t

(1 + α)

)− 1
α+1

IV. CONCLUSION

This study provides a clear understanding of the function
h(t) = G(E(t)). It demonstrates how the exponential decay
of E(t) is transformed by G into corresponding bounds for
h(t). Additionally, it shows how derivative constraints and
integral properties of E(t) influence the behavior of h(t).
These findings enhance the understanding of these functions
in mathematical modeling and dynamical systems.
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