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Multi-modal Multi-objective Algorithm with
p-Norm and Adaptive Weight based Crowding
Measurement
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Abstract—Multi-modal multi-objective optimization problem
(MMOP) is a multi-objective optimization problem which
has multiple Pareto Sets (PSs) corresponding to the same
Pareto Front (PF). Since multiple PS can provide decision-
makers with more diverse decision options, the researches for
solving multi-modal multi-objective optimization problems has
attracted much attention. At present, how to define a more
effective crowding degree measurement, and how to make
the distribution of solutions on the PF more uniform are
still urgent issues. In order to obtain a uniformity, diversity,
and convergence PF, and diversity PS, a L, based crowding
degree measurement for solution space and objective space
was proposed. In addition, an adaptive weighting coefficient
for the crowding degree measurement was designed. To obtain
a more uniform PF and diversified PS, a solution merging
strategy based on the clustering of solutions after the K-
Means algorithm was designed. To demonstrate the efficiency
of the proposed algorithm (denoted as p-ACDCM), p-ACDCM
has been compared with eight benchmark algorithms in the
CEC’2019 standard test function, and the experimental results
show that the proposed algorithm in this paper can obtain better
rPSP, rHYV, IGDX, and IGDF than compared algorithms.

Index Terms—Multi-modal; Multi-objective; Crowding mea-
surement; L,; Merging strategy

I. INTRODUCTION

ULTI-OBJECTIVE Problem (MOPs) plays an impor-
tant role in optimization science. They are widely
used in many fields, such as base station location, network
optimization, resource scheduling[1], [2], [3], [4], [5]. Ac-
cording to the number of objective functions, optimization
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problems can divided into two categories: global-objective
optimization and multi-objective optimization[6], [7], [8],
[9], [10]. Global-objective optimization focuses on achieving
a single optimization goal, while multi-objective optimiza-
tion is more complex and can handle multiple objective
functions simultaneously[11]. A notable feature of multi-
objective optimization is that it can generate a series of
solutions, namely Pareto sets (PSs). These pareto sets can
provide a variety of potential solutions. Therefore, multi-
objective optimization provides a more flexible and effective
tool for solving multi-objective and constraint challenges in
real world. The mathematical formulation of multi-objective
optimization problem is shown as follows:

min F (X) = {f1(2), fa(), -+, fm(2)} € R™

s.t.
T = (x17x2>"' awn)T S Rn’

where X is a n-dimensional decision vector in the decision
space R™. R™ and R" are the objective space and decision s-
pace, respectively. g;(x) is the inequality constraint, h;(x) is
the equality constraint. F(X) = {f1 (), f2(x), - -, fm(z)}"
is an objective vector.

Multi-objective optimization can produce a series of so-
lutions, namely PSs, which can provide diversity potential
solutions. Thus, It allows decision-makers to independently
weigh different objectives. Multi-objective optimization is
much more suit to solve real word problems with complexity
and diversity. It can provide a more flexible solutions for
dealing with multi-objective and multi-constraint challenges
in the real world.

Multi-modal multi-objective optimization problems, as a
special form of multi-objective optimization problems, are
characterized by having two or more different PSs corre-
sponding to the same PF, as shown in Fig.1. Compared
with single-modal optimization, multi-modal optimization
increases the diversity of potential solution sets. At the same
time, multimodality significantly improves the robustness
of understanding by integrating information from different
modalities. Not only complexity and diversity are increased,
but also multimodals are richer.

In this paper, the multi-modal multi-objective optimization
problem was the focused. A multi-objective optimization
algorithm based on L, and adaptive weights was designed.
what’s more, an improved crowding measurement, and a
adaptive classification of cluster results are designed. In
summary, the main contributions are summarized as follows:

Volume 55, Issue 4, April 2025, Pages 957-971



TAENG International Journal of Applied Mathematics

Fig. 1. MMOPs. (a)Pareto Set; (b)Pareto Front

e The crowding measurement of the solution was pro-
posed, and a crowding degree evaluation method was
constructed by defining a norm-based distance function.

e An adaptive weighting method based on the L, crowd-
ing measurement is proposed to adjust the relative
importance of different objectives. By assigning weights
to each objective, the influence of each objective on the
final optimization solution can be specified.

o An adaptive classification method for solutions is de-
signed, which decomposed and merged classification
results based on clustering results to obtain an adaptive
classification scheme.

II. RELATED WORKS

In recent years, much more research has focused on
multi-objective multi-modal optimization [11], [12], [13],
[14]. Researches on multi-modal multi-objective evolutionary
algorithm MMEA can be categorized into three main areas:

A. Pareto-based MMEA

The basic idea of Pareto-based multi-modal multi-
objective evolutionary algorithms are to use evolutionary
algorithms to explore the solution space, which employs
the PF to maintain and identify solutions across different
modalities. This class of algorithms is mainly based on the
theory of PF and seeks for non-dominated solution sets in
multi-objective problems. Some mechanisms were sued, such
as effective Pareto ordering and crowding distance. In order
to obtain the widest possible range of PF, this approach
focused on maintaining diversity in the solution space.
Deb et al [15] proposed the Omni-optimizer, which uses
the NSGA-II framework and introduced a non-dominated
sorting method to increase diversity in the decision space.
In addition, selecting outstanding individuals for the next
generation based on environment selection strategy. Zhang et
al. [16] proposed the MOEA/D algorithm, which decomposes
a multi-objective problem into multiple scalar optimization
problems and optimizes these sub-problems simultaneously.
Euclidean distance is used to define neighborhood relation-
ships and manage objectives of different scales. Liang et
al. [17] proposed a clustering-based differential evolutionary

algorithm to solve MMOPs, which employs a specialized
crowding distance ranking and elite selection. Zhao et al. [18]
proposed a prediction-differential evolution strategy based on
reinforced evolution for solving multi-modal multi-objective
problems. A prediction strategy and reinforced evolution
were used to accelerate population convergence and approach
the global optimal solution. Yue [19] proposed a particle
swarm optimization algorithm for solving MMOPs based
on a ring topology. This algorithm used a metric-based ring
topology to create stable ecological niches. Thus, it can en-
able the identification of more Pareto-optimal solutions. Yue
et al. [20] proposed a multi-modal multi-objective differential
evolutionary algorithm that crowding measurement is used to
enhance solution diversity.

B. Decomposition-based MMEA

This type of algorithm employed decomposition tech-
niques to break a multi-objective problem into a series of
single-objective subproblems. By progressively optimizing
the subproblems, this class of algorithms can more efficiently
explore and exploit the multi-modal structure in the decision
space. Liu [21] used convergence and diversity profiles to
synergistically obtain multiple Pareto-optimal solutions, and
enhanced the diversity of the decision space. Literature
[22] proposed a reinforcement learning-based differential
evolutionary algorithm (DE-RLFR) that designd a reward
function to guide the population toward global convergence
on the PF. Qi et al. [23] adjusted the MOEA/D-AWA by using
weight vectors that adaptively redistribute the weights of the
subproblems through periodic adjustments. Hu et al. [24]
used the decomposition-based Multi-Objective Evolutionary
Algorithm (MOEA/D) to achieve effective results.

C. Metrics-based MMEA

Such algorithms use various performance metrics to guide
the search process, aiming to maintain both the diversity
and balance of the solution set. Commonly, some metrics
include convergence, distribution, which can help to discover
multiple PF solutions in the decision space and better address
multi-modal optimization problems. Zhang et al. [25] pro-
posed the MMO-EvoKnee algorithm to identify the boundary
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between the global knee solution and the objective space and
to retain solutions with good convergence. Literature [26]
employs a multi-modal multi-objective evolutionary algorith-
m with a dual-archive recombination strategy that ensures
diversity in the objective space. Bader et al. [27] proposed a
hypervolume-based MOEA that measures the superiority of
an individual by calculating its hypervolume. Subsequently,
Moffaert [28] analyzed the effectiveness of a multi-objective
evolutionary algorithm based on hypervolume metrics.

In the evolution of multi-objective multi-modal optimiza-
tion algorithms, there are still several challenges, including
inaccurate crowding measures and unbalanced classification
of solutions. This problem and corresponding solutions were
deeply analyzed. Crowding measurement is a crucial problem
for optimization algorithms. In order to improve the accuracy
of crowding evaluation, this paper introduced the norm
based crowding measurement. The norm not only provides
a flexible and mathematically rigorous method to measure
crowding, but also guides multi-objective optimization algo-
rithms to search efficiently the solution space. In addition,
clustering methods are often used to deal with multi-modal
problems to identify and distinguish solutions of different
modes. However, traditional clustering techniques always
lead to uneven or misclassified clustering results, as shown in
Figure3. In order to obtain better classification results, this
study proposed a clustering merging strategy to make the
classification of solutions more uniformly. By introducing
the norm and cluster merging method, this study aims to
solve the key problems in multi-objective and multi-modal
optimization algorithms.

III. PROPOSED ALGORITHM
A. Crowding degree measurement in decision space

In the decision space, the crowding distance (CD) mech-
anism is used to maintain diversity of the population. In
general, higher diversity in the decision space indicates that
the solutions has a better distribution. However, a good
distribution of solutions in the decision space does not
guarantee that the population will also have a corresponding
level of diversity in the objective space. Therefore, further
research is needed to address this issue rationally. To address
this problem, a new solution crowding degree measurement
is proposed. This involves designing a crowding degree
measurement method by defining a distance function, which
provides a basis for evaluating the similarity of solutions. The
main objective of this method is to maintain diversity within
the population and improve the uniformity of its distribution.
The distribution in the decision space is shown in Fig.2(a),
where PS;, PSs belong to different PS. The formulation of
crowding degree measurement in the decision space is given
by Eq. (2)

: [P — Tl
J1,? J2,?
CD; =" [ L il )
i=1 {/‘xMaLi - JJMzn,z|
where the
n .
j J
Z;é (l'gnaa: - xmzn)
J=1,j#i
i = T : (3)
J J
Zl (xmaw - ‘rmin)
j:

where n is the decision space dimension, as expressed in
Eq. (3). zj, i, x;,,; denote the two neighboring solutions in
the same dimension. s, ; and & priy, ; denote the bounded
minimum and bounded maximum of the solution in different
dimensions, respectively. As an example, the distribution of
solutions in the decision space is shown in Fig. 2(a), the
374 solution in the two-dimensional decision space has the
solutions (15, 27¢, 374 4th 5thy on PS; and (6", 7t", 8th,
9th 10'") on PS,. The z; solution 37¢ has two adjacent
solutions on PS; which are 2"™¢ and 4*", combined with
two adjacent solutions on P.Sy which are 8" and 9*", and
two adjacent solutions on x5 which are 2"¢ and 4, so the
crowding of the two-dimensional decision space is calculated

as:
) — jZ
{/ |509,1 €81 . +a
{/ \Ilo,l - I1,1|

{)Ta2 — 22 P

2
Yws 2 —x1 0"

CD3@ = (4)

B. Crowding degree measurement in the objective space

The main purpose of crowding degree measurement in the
objective space is to maintain diversity. In addition, it can
ensure a good distribution, and avoid over-concentration of
solutions in localized regions. The crowding degree measure-
ment can help to achieve an even distribution of solutions
in the objective space, resulting in a more diversity and
comprehensive set of solutions for decision-makers. This
uniform distribution allows decision-makers to have a more
complete view of the range of feasible solutions. Fig. 2(b)
gives an example of distribution of the objective in the
objective space. The crowding degree is calculated by Eq.

).

CD. = i 6 |yj17i - yj2,i|p (5)
Js - (3
i=1 {/\Z/Maz,i — YMin,i P
Similar to «;, [3; is defined as:
.71234#' (finaz - mi,n)
Bi= " _ (©6)
> (fhar = Fin)
J:

where m represents the dimension of the objective space,
Zj,,s and x;, ; denote the two solutions adjacent to each
other in the same dimension, respectively. z s, and T a0
denote the bounded minimum and bounded maximum of
the solutions in different dimensions, respectively. Objective
space of two-dimensional is used as an example to compute
the crowding degree, the two neighboring solutions on f;
are 4" and 6", and the two neighboring solutions on f, are
4th and 6"

CDs 5=/ |Y6,1 y4,1|p 1By |Ya,2 y6,2|p e
|y9,1 — y1}1| |y1’2 _ y9’2|

An example of how the crowding degree measurement
is calculated for the 5! objective function. By introducing
this novel measurement of crowding degree, it is possible to
simultaneously maintain the diversity of the population and
enhance the uniform distribution of the population in both the
decision space and the objective space. This approach offers
an effective way to address multi-modal multi-objective
optimization problems.
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Fig. 2. Crowding Distance. (a)Decision Space; (b)Objective Space

Fig. 3.

Classification of solutions

C. Merging strategies for solutions

It is difficult to determine which individuals belong to
the same PF. However, based on the analysis, it can be
inferred that the neighborhood of individuals should be
determined based on their surroundings. Therefore, clustering
algorithms can be used to divide the solutions in the same
non-dominated layer into multiple classes. The K-means al-
gorithm was used for this purpose in literature [17]. However,
the K-means algorithm may lead to an uneven distribution
of solutions and produce isolated solutions. To handle this
problem, a merging strategy has been designed. Fig. 3 gives
an example in the decision space. The K-means algorithm
was divided the solutions into three classes: (15¢, 2nd, 37d,
4thy (5thy (6th, 7M. 8h 9th). After this classification, a
classification judgment of automated is made on solutions,
and calculate the distance of isolated individual 5** from
the class of individual 4*". If its distance is smaller than the
average distance between several other classes, 5" is merged
into the class of individual 4** to obtain a new classification
result.

IV. EXPERIMENTAL SETUP
A. Benchmark and Compared Algorithms

In the experiments, comparisons were made with eight
algorithms to demonstrate the efficiency of the proposed
algorithm. The compared algorithm of MMODE_CSCD

Algorithm 1: Merging strategies for solutions

Input: Total number of front Totalpp;
average_distance of each front
average_distances; individuals of each front
POP;

Output: Merged front individuals POP;

1 Calculate the Euclidean distance between each pair of
individuals, and storing the results in a distance matrix;

2 Compute the average distance for each individual,
which is the average minimum distance to other
individuals;

3 Sort individuals based on their average distance;

4 for i =1 to Total_PF do

5 if cluster_sizes(i) > 2 then

6 Calculate the minimum average distance

between the current front and other front;

7 if min_distance > average_distances(i) then

8 Find the index of the nearest front
nearest_cluster to current front;

9 if nearest_cluster > i then

10 Increment the index of nearest_cluster

by 1;

11 end

12 Merge the individuals of current front ¢ into
the nearest front nearest_cluster;

13 Update the cluster size of nearest front
nearest_cluster;

14 Set the cluster size of current front ¢ to 0;

15 Set the average distance of current front ¢ to
infinity to prevent repeated merging;

16 end

17 end

18 end

—

9 Return the merged front POP;

[17] designed a special crowding measurement method
to calculate the degree of crowding in both the decision
space and the objective space, and utilized a distance-
based elite selection mechanism to generate new individ-
uals. MO_Ring_PSO_SCD [19] used an index-based ring
topology to create stable ecological niches, thereby facil-
itating the identification of more Pareto-optimal solutions.
It also employed a specialized notion of crowding dis-
tances as a parametric measurement in both the decision
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Algorithm 2: The MMO-pACDCM algorithmic frame-
work

Input: population size: N P; maximum number of
generations: G445
Output: PF and PSs.
1G=1;
2 Generate the initial population P with NP individuals
and evaluate all individuals on each objective;
3 while G < G4, do

4 Population after ordering based on decision space
crowding to Eq.(2);

5 Population after ordering based on crowded in the
object space crowding to Eq.(5);

6 Calculating crowding according to the formula;

7 if Classification results are not homogeneous then

8 Clustering the populations crowding to

algorithm crowding to algorithm 1;

9 end

10 Selecting an exemplar for each individual,

11 Performing mutation and crossover to obtain an
offspring population O P;

12 Combining offspring populations with parental

populationsPerform the environmental selection on
POP to obtain a new population P;

13 G=G+1;

14 end

and objective spaces. TiIMOEA_TAR [21] is a multi-modal
multi-objective evolutionary algorithm that utilized pairwise
archiving and recombination strategies. MO_PSO_MM [18]
was a novel multi-objective particle swarm optimizer with a
self-organizing mechanism. DE_RLFR [22] is a differential
evolutionary algorithm based on fitness-ranked reinforcement
learning (using the original parameters). To obtain average
results, each function was run 30 times independently for the
22 test functions.

B. Parameter Settings

The parameters setting for all 8§ comparison algorithms
were adopted as the references. The parameters of the
proposed algorithms in this paper are set as follows: the
values of o and (8 are as introduced. p is seted as 1/3,
1/2, 1,2, and 3. The best value is selected based on the
experimental results. To ensure a fair comparison, each of
the 22 test functions is iterated 30 times, independently.
Both the average and standard deviation are calculated. In
addition, a Wilcoxon test with a significance level of 0.05 is
used to estimate the significance of the difference between
two algorithms. The symbols ”+” and - indicated that the
comparative algorithm performed better or worse than the
algorithm proposed in this paper, respectively. The symbol
”=” indicates that the performance of proposed algorithm
and the compared algorithm are similarly.

C. Performance Metrics

In this paper, four performance indicators are used: (1)
Inverse of Pareto Sets Proximity (1/PSP, rPSP) [22]. (2)
Inverse of Hypervolume (1/HV, rHV) [29]. (3) Inverse of

Generational Distance (IGD) in the decision space (IGDX)
[30]. (4) IGD in the objective space (IGDF). Therefore, for
all four indicators, smaller values are better. The rPSP reflects
the overlap rate between the obtained PS and the true PS,
as well as the diversity and convergence of the obtained
solutions. rHV reflects the convergence and diversity of
the resulting PF. IGD is a commonly used indicator for
evaluating the convergence of the proposed PF to the true
PF, and the coverage of the proposed PF. IGDX measures the
convergence between the obtained PS and the true PS. IGDF
reflects the convergence between the obtained PF and the
true PF. The mathematical formulas for the four performance
indicators are as follows:

> min{ED (z*,X)}

IGDX = Z€X = (8)

where min ED(z, X™) represents the minimum Euclidean
distance between the solutions obtained in z and X*.

i\
CR(X) = (H m) ©)
=1

. 2
min (w’f’m‘m x’-””) — max (x%’mm xmi”)

K2 ) K2 K2 ’ 3

= *max f,min
g 1

(10)
where x; and z] represent the i*" solution of the true PSs
and the reference point, respectively. When z7*** < 27",
or " > 7™ p; = 0. When """ = 27"

IGDX
RPSP (X) = % =

Y

12)

where NN is the number of solutions in the PF, and h; is
the volume contribution between each solution 7 and the
reference point.

> min{ED (f*, F)}
IGDF = L€

- (13)
[E

where minED(f, F*) represents the minimum Euclidean

distance between the solutions obtained in f and F™.

V. RESULTS AND DISCUSSION

A. Experimental results and analysis of crowding strategy
based on different norms

For different scenes, the test results are shown in Table
I to Table IV. In p-ACDCM algorithm, when the p-value is
set to 1/2, the minimum mean values (rPSP, rHV, IGDX, and
IGDF) are better than other p-values. Therefore, the a p-value
of 1/2 in the other experiments. The L, distance metric helps
improve the convergence of the PF by computing distances
between points. This metric facilitates operations such as
clustering, selection, and merging, ensuring that the points on
the PF are more evenly distributed. L,, metric can efficiently
cluster or merge points, contributing to the convergence of
optimization process. Selecting an appropriate value for p
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RPSP RESULTS WITH DIFFERENT NORMS (MEAN AND STANDARD DEVIATION)

TABLE I

p=1/3 p=1/2 p=1 p=2 p=3
MMF1 0.0409+0.0012  0.0400+0.0413+  0.0413+0.0014—  0.0416+0.0015—  0.0412+0.0015—
MMF2 0.0258+0.0215  0.0091+0.0105+  0.0156+0.00924+  0.0303+0.0297—  0.025140.00464-
MMF3 0.0163+0.0083  0.0083+0.0077+  0.01174+0.00474+  0.02264+0.0201—  0.018240.0038—
MMF4 0.02184+0.0012  0.021740.0209+  0.022140.0010—  0.021740.00084+  0.0216+40.0008+
MMF5 0.0719£0.0029  0.0720+£0.0680—  0.0723+0.0036—  0.07224+0.0030—  0.073140.0028—
MMF6 0.06284+0.0035  0.0639+0.0621—  0.06324+0.0025—  0.062540.00284  0.063840.0021—
MMF7 0.0248+0.0026  0.0225+£0.0224+  0.0231+0.0020+  0.025140.0037—  0.023740.0012+
MMF8 0.0516+0.0039  0.0471£0.0506+  0.0507+£0.0069+  0.0524+0.0050—  0.052240.0025—
MMF9 0.0055+0.0002  0.0057+0.0058—  0.0056+0.0002—  0.005740.0002—  0.005740.0003—
MMFI0  0.11654+0.1528  0.0017£0.0017+  0.0645+0.1196+ 0.0717+0.1288+  0.0605+0.1077+
MMF11  0.00364+0.0002  0.0037£0.0034—  0.0035+0.0001+ 0.003640.0002~  0.00364-0.0003~
MMF12  0.00154£0.0000 0.0015+0.0014~  0.00154+0.0000~ 0.00154+0.0001~ 0.00154-0.0000~
MMF13  0.02574+0.0007  0.0251£0.0254+  0.0262+0.0010—  0.0263+0.0008—  0.026410.0014—
MMF14  0.06244+0.0024 0.0646+£0.0625—  0.0628+0.0022—  0.06341+0.0024—  0.0636+0.0022—
MMF15  0.0486+0.0018 0.0517£0.0470—  0.0507+0.0021—  0.0514%+0.0023—  0.051940.0024—
MMF16  0.02964+0.0023  0.0284£0.0310+  0.0290+0.0011+  0.02944+0.0013+  0.0307+0.0011—
MMF17 1.4441£3.7947  0.3975+0.21434+  0.3738+£0.33144 0.4741£0.33524+  0.5555+0.0735+
MMF18  0.07384+0.0021  0.0754+0.0753—  0.0737£0.0021+ 0.0751+0.0026—  0.075740.0024—
MMF19  0.0569+0.0019  0.05534£0.0545+  0.0599+0.0027—  0.0626+0.0035—  0.0635+0.0021—
MMF20  0.9557+1.2766  0.0641£0.0565+  0.2046+0.4516+ 0.13184+0.2525—  0.131740.0036+
MMF21  0.3803+0.6594  0.0616+£0.0504+  0.0985+0.21184+  0.3334+0.6054+  0.2707+0.0048+
MMF22  0.721140.2354  0.3722+£0.5169+  0.6332+0.1745+  0.54954+0.1420+ 0.558440.1313+
+/ -/ = 14/7/1 12/9/1 7/13/2 8/10/2
TABLE I
RHV RESULTS WITH DIFFERENT NORMS (MEAN AND STANDARD DEVIATION)
p=1/3 p=1/2 p=1 p=2 p=3

MMF1 1.145740.0003  1.1453+£0.0001+ 1.1455+0.0003+ 1.1456+0.0002~ 1.1457+0.0004~

MMF2 1.15004£0.0006  1.1499+£0.0009+ 1.1503+0.0008—  1.1508+0.0012—  1.1510+0.0013—

MMF3 1.149240.0007  1.1488+0.0005+  1.1493+0.0006—  1.1498+0.0007—  1.149740.0009—

MMF4 1.8535+£0.0012  1.852540.00084  1.852940.0009—  1.8531+£0.0009—  1.8536+0.0010—

MMF5 1.14574+0.0003  1.1454+£0.0002+  1.1455+0.0002+  1.1456+0.0002+  1.1456+0.0003+

MMF6 1.1459+0.0005  1.1456+0.00054+  1.145740.0007—  1.1460£0.0007—  1.1459+0.0007—

MMF7 1.14544+0.0001  1.1453£0.0001+ 1.1453+£0.0001~ 1.1454+0.0001~ 1.1454+0.0002~

MMF8 2.3749+£0.0014  2.3746+0.0013+ 2.3775+0.0119—  2.3759+0.0020—  2.3757+0.0017—

MMF9 0.1033£0.0000  0.1032+£0.0000+ 0.1033+0.0000~  0.1033+0.0000~  0.1033+0.0000~
MMF10  0.0809+0.0038  0.0800+0.0034+  0.0795+0.0033+  0.0799+0.0034+  0.0794+£0.0032+
MMF11 0.0689+0.0000  0.0688+£4.8910+  0.0689+0.0000~  0.0689+0.0000~  0.0689+0.0000~
MMF12  0.635440.0000 0.635440.0000~ 0.635440.0000~ 0.635540.0000—  0.635540.0000—
MMF13  0.0542+0.0000 0.05424+4.9817~ 0.05424+0.0000~ 0.0543+0.0000—  0.0542+0.0000~
MMF14  0.35074+0.0158  0.34954+0.0182—  0.35494+0.0149—  0.353140.0253—  0.350440.0247+
MMF15  0.25474+0.0086 0.25194+0.0087+ 0.2513+£0.0092+ 0.2516+0.0097—  0.2561£0.0107—
MMF16 1.145640.0003  1.1454+£0.0002+ 1.1455+0.0002+  1.14554+0.0002+  1.145740.0004—
MMF17 1.1643+0.0114 1.1736+0.0225—  1.1661+£0.0077—  1.1712+0.0202—  1.1740+0.0188—
MMF18  0.36654+0.0537  0.34984+0.0229+  0.34764+0.0174+  0.35924+0.0221+  0.345640.0236+
MMFI19  0.25044+0.0113  0.24954+0.0112+ 0.2535+0.0075—  0.2548+0.0090—  0.2562+0.0130—
MMF20  0.0600£0.0005 0.060043.2389~  0.060040.0000~  0.060040.0000~  0.0600+4.2533~
MMF21  0.0600+0.0000 0.060043.5595~ 0.06004+0.0000~ 0.0600+0.0000~ 0.0600+0.0000~
MMF22  0.06004£0.0000 0.0600£3.5595~  0.0600£0.0000~  0.0600+0.0000~  0.0600+0.0000~2
+/ -/~ 15/2/5 6/8/8 411/7 3/11/8
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IGDX RESULTS WITH DIFFERENT NORMS (MEAN AND STANDARD DEVIATION)

TABLE III

p=1/3 p=1/2 p=1 p=2 p=3
MMF1 0.0407£0.0012 0.0409+0.0010—  0.0411+0.0014—  0.0413+£0.0015—  0.0409+0.0014—
MMF2 0.0258+0.0215 0.0127£0.0089+ 0.015640.00924  0.0303+0.0297—  0.0251+£0.0235—
MME3 0.0163+£0.0083  0.0100£0.0049+ 0.011740.00474+  0.0226+0.0201—  0.0182+0.0082—
MMF4 0.0217£0.0011  0.0213£0.0009+ 0.02204+0.0010—  0.0216+0.0008—  0.0215+0.0010—
MMF5 0.0715+0.0028  0.0707£0.0017+ 0.071940.0035—  0.0718+0.0029—  0.0727+0.0037—
MMF6 0.0625+£0.0034  0.06344+0.0033—  0.062940.0024—  0.06224+0.00284+ 0.0636+0.0026—
MMEF7 0.0245+0.0027  0.023240.0026+  0.02294+0.00204+ 0.0249+0.0036—  0.0235+0.0025—
MMF8 0.0508+0.0037  0.04764+0.00304+ 0.05004+0.0065— 0.05164+0.0048—  0.051440.0047—
MMF9 0.0055£0.0002 0.0056+0.0002~~  0.0056+0.0002—  0.0057+0.0002—  0.005740.0002—
MMF10 0.1152+0.1526  0.07714+0.12954+  0.06284+0.11694+  0.0712+0.12874+  0.0588+0.1200+
MMF11 0.0036£0.0002  0.003640.0001—  0.00354+0.0001+ 0.00364-0.0002—  0.00364-0.0001—
MMF12 0.0015£0.0000  0.001440.00004+ 0.001540.0000—  0.00154+0.0001—  0.001540.0001—
MMF13 0.0254+0.0006 0.0259+0.0006—  0.0259+0.0009—  0.0260+£0.0008—  0.026140.0007—
MMF14 0.0624+0.0024 0.0634+0.0018—  0.0628+0.0022—  0.0634+0.0024—  0.0636+0.0025—
MMF15 0.0486+£0.0018 0.0492+0.0023~  0.0507+0.0021—  0.0514£0.0023—  0.051940.0023—
MMF16 0.0294+0.0022  0.0271£0.0016+ 0.0288+0.0011—  0.0292+0.0012—  0.0304+0.0041—
MMF17 0.6462+0.7721  0.333240.1469+  0.325740.21794+ 0.3999+0.23144+  0.4441+£0.4200—
MMF18 0.0735£0.0021 0.0746+0.0033—  0.0736+0.0021—  0.0750+0.0026—  0.0756+0.0036—
MMF19 0.0568+0.0019 0.0573+0.00314+  0.0597+0.0027—  0.0624+£0.0035—  0.0633+0.0044—
MMEF20 0.8705+1.0584 0.1651+0.3101+  0.20424+0.45094  0.1316+0.2522+  0.1312+£0.2508+
MMF21 0.3212+0.5185  0.1920£0.3488+  0.09254+0.18274  0.2939+0.5212—  0.2272+0.4618—
MME22 0.7083+0.2214  0.5905+0.1614+  0.62474+0.17084  0.5415+0.1388+  0.5514+0.1265+
+/ -/~ 14/6/2 9/13/0 5/17/0 4/18/0
TABLE IV
IGDF RESULTS WITH DIFFERENT NORMS (MEAN AND STANDARD DEVIATION)
p=1/3 p=1/2 p=1 p=2 p=3
MMF1 0.0023+0.0000  0.002240.0000+ 0.00234+0.0001—  0.0023+0.0001—  0.0023+0.0000—
MMEF2 0.0042+0.0003  0.0040£0.0003+  0.00444-0.00034  0.0047%0.0005—  0.0049+0.0006—
MME3 0.0039+0.0002  0.0037£0.0002+ 0.00394+0.0002—  0.0043+0.0004—  0.0043+0.0043—
MMF4 0.0023+£0.0001 0.0023+0.0001~  0.0023+0.0001~  0.0023£0.0001~  0.0023+0.0001~
MMF5 0.0023+0.0000 0.0023+0.0000~  0.0023+0.0000~  0.0023+£0.0000~ 0.002340.0000~
MMF6 0.0023+0.0000  0.002240.0000+  0.00234+-0.0000—  0.0023+0.00004+  0.0023+0.0001+
MMF7 0.0024+0.0000  0.0023£0.0000+  0.00234+0.00004+  0.0023+0.0000—  0.0024+0.0000—
MMF8 0.0028+0.0001  0.0027£0.0001+  0.00284+0.0002~  0.0028+0.0001~  0.0028+0.0001~
MMF9 0.0144+0.0015 0.0108£0.0008+ 0.01414+0.00134+  0.0144+0.0013~  0.0152+0.0015—
MMF10 0.1220+0.1347  0.153440.1375—  0.07154+0.1134+ 0.0801+0.1173—  0.0670+0.1077+
MMF11 0.0184+0.0039 0.0112+0.0008+ 0.01444+0.00184 0.0170+0.0021—  0.0175+0.0024+
MMF12 0.0020£0.0001  0.0020+0.0000~  0.0020+0.0001~  0.0020£0.0001~  0.0020£0.0001~
MMF13 0.0207+0.0078  0.0136%0.0028+  0.02044+0.00764+  0.0228+0.0111—  0.0184+0.0079+
MMF14 0.0907£0.0014 0.0913+0.0028—  0.0911+£0.0018—  0.0917£0.0026—  0.092540.0023—
MMF15 0.0986+0.0037  0.0968+0.0033+ 0.10094+0.0033—  0.1036+0.0039—  0.1048+0.0040—
MMF16 0.0023+0.0000  0.0021£0.0000+  0.00234+0.0000—  0.0022+0.0000+  0.0023+0.0011~
MMF17 0.0078£0.0018 0.0083+0.0010—  0.0086+0.0018—  0.0092+0.0015—  0.0080+0.0019—
MMF18 0.089040.0021 0.0903+0.0027—  0.0896+0.0026—  0.0906+0.0022—  0.0906+0.0024—
MMF19 0.0999+0.0039 0.1004+0.0047—  0.1041£0.0042—  0.1104£0.0065—  0.112240.0021—
MMEF20 0.010040.0009 0.0104+0.0010—  0.0100+£0.0010— 0.0106+0.0010—  0.0101+£0.0011—
MMEF21 0.0101£0.0007  0.0100£0.0009+  0.010040.0013~  0.0098+0.0009+ 0.0101£0.0011~
MMEF22 0.0171£0.0027 0.0200+0.0033—  0.0201+£0.0038—  0.0225+0.0042—  0.0202+0.0037—
+/ -/~ 12/7/3 71817 5/11/6 3/12/7
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TABLE V
STATISTICAL RESULTS (MEAN AND STANDARD DEVIATION) OF RPSP

p-ACDCM MMODE_CSCD DN_NSGAII MO_Ring_PSO_SCD MMOPIO

MMF1 0.0400£0.0413 0.0414+0.0014 —  0.08824+0.0119 — 0.0467+0.0022 — 0.0419+0.0025 —
MMEF2 0.00914+0.0105 0.0102+0.0018 —  0.12514+0.0776 — 0.0272+0.0108 — 0.0124+0.0036 —
MMF3 0.0083+0.0077 0.0085+0.0018 —  0.082740.0378 — 0.0188+0.0031 — 0.0118+0.0038 —
MMF4 0.021740.0209 0.0223+0.0011 —  0.101740.0365 — 0.0261£0.0019 — 0.0288+0.0042 —
MMF5 0.0720£0.0680 0.0721+0.0034 —  0.160440.0157 — 0.0800+0.0039 — 0.0847+0.0070 —
MMF6 0.0639+£0.062  0.0625+0.0022 + 0.13884+0.0180 — 0.0683+0.0040 — 0.0722+0.0045 —
MMF7 0.0225+0.0224  0.0221+0.0014+  0.0461+0.0090 — 0.0257+0.0010 — 0.0346+£0.0047 —
MMF8 0.04714+0.0506  0.0489+0.0031 —  0.305740.0970 — 0.0587+0.0032 — 0.0634+0.0132 —
MMF9 0.005740.0058  0.0057+0.0003 ~  0.022840.0095 — 0.0072£0.0004 — 0.0122+0.0025 —
MMF10  0.0017£0.0017 0.0370+0.1063 —  0.1390+0.1457 — 0.0158+0.0047 — 0.0051+£0.0022 —
MMF11 0.003740.0034 0.0041+0.0003 —  0.004640.0002 — 0.0047+0.0001 — 0.0072+0.0017 —
MMF12  0.0015£0.0014 0.0016+0.0001 — 0.004440.0094 — 0.0030£0.0003 — 0.0022+0.0005 —
MMF13 0.025140.0254 0.0277+0.0008 —  0.07204+0.0130 — 0.0316+£0.0011 — 0.0335+0.0022 —
MMF14  0.064640.0625 0.0624+0.0016 + 0.130640.0141 — 0.0663+0.0023 — 0.03354+0.0022 +
MMF15 0.051740.0470  0.0504+0.0019 +  0.08484+0.0092 — 0.0505+0.0018 + 0.0489+0.0026 +
MMF16  0.0284+0.0310 0.0288+0.0009 — 0.0722+0.0162 — 0.0334+0.0016 — 0.0319+0.0025 —
MMF17 0.39754+0.2143  0.3617+0.1759 +  1.68454+1.0459 — 0.4114+0.0978 — 0.6117+0.3614 —
MMF18 0.0754+0.0753  0.0741+0.0026 + 0.1452+0.0114 — 0.0747+0.0019 + 0.0736£0.0025 +
MMF19  0.05534+0.0545 0.0591+£0.0029 — 0.10954+0.0162 — 0.0550+0.0023 + 0.0548+0.0023 +
MMF20  0.06414+0.0565 0.0539+0.0039 + 5.0409+2.8973 — 0.1107+0.0156 — 0.0708+0.0105 —
MMEF21 0.06164+0.0504 0.1075+0.2512 —  7.008449.0814 — 0.1309+0.0131 — 0.1215+0.2058 —
MMF22  0.37224+0.5169 0.5636+£0.1177 — 1.7879+0.4169 — 0.3675+0.0820 =~ 0.6689+0.1403 —

+/ -/ = 7/14/1 0/22/0 3/18/1 4/18/0
p-ACDCM MO_PSO_MM Omni_optimizer DE_RLFR TriMOEA TAR
MMF1 0.0400£0.0413  0.0418+0.0025 —  0.0880+0.0170 — 0.0529+0.0059 — 0.0648+0.0080 —
MMF2 0.0091£+0.0105 0.0191+0.0059 —  0.115440.0670 — 0.0846+0.0505 — 0.0724+0.0457 —
MMEF3 0.0083+£0.0077 0.0137+0.0018 —  0.0925+0.0692 — 0.0566+0.0390 — 0.1100+0.0736 —
MMF4 0.021740.0209 0.0276+0.0022 — 0.116940.0341 — 0.0306+0.0036 — 0.0792+0.1544 —
MMEF5 0.0720£0.0680 0.0751+0.0036 — 0.1632+0.0163 — 0.0868+0.0091 — 0.1028+0.0100 —
MMF6 0.0639+0.062  0.0679+0.0030 —  0.144240.0293 — 0.0754+0.0045 — 0.0862+0.0140 —
MMF7 0.02254+0.0224  0.0321+0.0037 —  0.038740.0084 — 0.0392+0.0078 — 0.0546+0.0507 —
MMF8 0.0471£0.0506  0.0480+0.0033 —  0.3230+0.1714 + 0.0743+0.0164 — 0.4676+0.1072 —
MMF9 0.005740.0058  0.0098+0.0017 —  0.028040.0160 — 0.0066+0.0012 — 0.0032+0.0001 +
MMF10  0.001740.0017 0.0019+0.0003 —  0.060740.0925 — 0.0656+0.1397 — 0.0029+0.0001 —
MMF11 0.003740.0034 0.0069+0.0018 —  0.004440.0002 — 0.0048+0.0034 — 0.0037£0.0001 =
MMF12  0.00154+0.0014 0.0017+0.0002 —  0.0020+0.0001 — 0.0017£0.0004 — 0.0023+0.0001 —
MMF13 0.0251£0.0254 0.0282+0.0013 —  0.071040.0240 — 0.0317+0.0030 — 0.0533+0.0133 —
MMF14  0.06464+0.0625 0.0631+£0.0023 =~ 0.11544+0.0118 — — 0.0382+0.0006 +
MMF15 0.0517£0.0470  0.0475+0.0018 +  0.0710+0.0059 — — 0.0385+0.0006 +
MMF16  0.0284+0.0310 0.0308+0.0018 —  0.0689+0.0196 — 0.0422+0.0049 — 0.0636+0.0146 —
MMF17 0.3975+£0.2143  0.3043+0.1008 + 2.3871+1.8144 — 6.4334+4.6594 — 4.897342.5963 —
MMF18 0.075440.0753  0.0726+0.0024 4+  0.144240.0161 — - 0.0718+0.0016 +
MMF19  0.05534+0.0545 0.0535+0.0023 — 0.0915+0.0115 — — 0.0476+0.0013 +
MMF20  0.064140.0565 0.0727£0.0093 — 5.4645+2.2086 — 0.070740.0155 0.0292+0.0165+
MMF21 0.06164+0.0504 0.1257+0.0104 —  6.94984+4.3783 — 0.1684+0.2523 — 1.9208+£1.3825 —
MMF22  0.37224+0.5169 0.3133£0.0788 + 1.9829+0.5164 — 0.150240.0597 + 0.6523+0.3016 +

+/ -/~ 4/17/1 1/21/0 1/17/0 7/14/1
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TABLE VI

STATISTICAL RESULTS (MEAN AND STANDARD DEVIATION) OF RHV

p-ACDCM MMODE_CSCD DN_NSGAII MO_Ring_PSO_SCD MMOPIO
MMF1 1.1453+£0.0001  1.145540.0003—  1.14904+0.0016— 1.1476+0.0005— 1.1481+0.0009—
MMF2 1.1499+0.0009  1.149740.0009+  1.165540.0209— 1.1694+0.0045— 1.1504+0.0013—
MMF3 1.1488+0.0005 1.148840.0006~ 1.157440.0140— 1.1617+0.0030— 1.1495+0.0017—
MMF4 1.8525+0.0008  1.852940.0009—  1.858240.0017— 1.8595+0.0022— 1.8607+0.0039—
MMF5 1.14544£0.0002  1.145440.0003~ 1.148140.0011— 1.1473+0.0003— 1.1481+0.0016—
MMF6 1.1456+£0.0005  1.145740.0006—  1.148240.0010— 1.147740.0007— 1.1474+0.0006—
MMF7 1.1453+£0.0001  1.145440.0002—  1.150140.0024— 1.1481+0.0005— 1.1515+0.0016—
MMF38 2.3746+0.0013  2.374740.0018—  2.380540.0032— 2.3917+0.0098— 2.3799+0.0030—
MMF9 0.103240.0000 0.10324+0.0000~  0.10334-0.0000— 0.103440.0000— 0.1034+0.0001—
MMF10  0.08004+0.0034 0.0781+£0.0018+  0.0810+0.0034— 0.0788+0.0003+ 0.077940.0004+
MMF11 0.0688+4.8910 0.0689+0.0000—  0.0689+0.0000— 0.0690+0.0000— 0.0690+0.0000—
MMF12  0.63544+0.0000 0.6355+0.0000—  0.6468+0.0402— 0.6375+0.0009— 0.635840.0002—
MMF13 0.0542+4.9817 0.05424+0.0000~ 0.054340.0000— 0.0544+0.0000— 0.0543+0.0000—
MMF14  0.34954+0.0182 0.3581+£0.0151—  0.3350+0.0206— 0.3624+0.0345— 0.3274+0.0179+
MMF15 0.251940.0087  0.24434+0.0103+  0.23994+0.0138— 0.2448+0.0150— 0.225740.0103+
MMF16 1.1454+£0.0002 1.14554+0.0002—  1.147940.0007— 1.1475+0.0004— 1.1471£0.0005—
MMF17 1.1736+0.0225 1.17114+0.01094+  1.1206+0.3944+ 1.1647+0.0135+ 1.1488+0.0018+
MMF18 0.3498+0.0229  0.36004+0.0199—  0.31754+0.0135+ 0.3296+0.0318+ 0.3079£0.0134+
MMF19 0.2495+£0.0112  0.24984+0.0096—  0.2358+0.0157+ 0.2396+0.0106+ 0.2228+0.0068+
MMF20  0.0600+3.2389 0.0600+£0.0000~  0.0601£0.0000— 0.0602+0.0000— 0.0601+£0.0000—
MMF21 0.0600+3.5595 0.0600+0.0000~  0.060140.0000— 0.0603+0.0000 0.060140.0000—
MMF22  0.0188+7.4243 0.0190+0.0000—  0.0189+0.0000— 0.0190+0.0000— 0.0190+0.0000—
+/ -/ = 4/12/6 4/18/0 5/17/0 6/16/0
p-ACDCM MO_PSO_MM Omni_optimizer DE_RLFR TriMOEA TAR
MMF1 1.1453+0.0001  1.14734+0.0007—  1.14734+0.0007— 1.147740.0007— 0.9924+0.4970+
MMF2 1.1499+0.0009  1.16024+0.0022—  1.159640.0190— 1.2002+0.0229— 1.1731£0.0098—
MMF3 1.1488+0.0005 1.1560+0.0011—  1.1640+0.0301— 1.1793+0.0183— 1.0572+0.3842—
MMF4 1.8525+0.0008  1.865940.0049—  1.854840.0005— 1.8638+0.0094— 1.5042+1.1165+
MMF5 1.1454+£0.0002  1.147040.0007—  1.146740.0010— 1.1484+0.0030— 0.4526+£2.2123—
MMF6 1.1456+0.0005  1.147340.0007—  1.146540.0005— 1.148940.0041— 1.0296+0.3743+
MMF7 1.1453+£0.0001 1.15154+0.0011—  1.147040.0004— 1.1482+0.0008— 1.1743+0.0639—
MMF8 2.3746+0.0013  2.379240.0023—  2.374440.0008+ 2.4169+0.1205— 2.0725+0.9758+
MMF9 0.1032£0.0000 0.10354+0.0001—  0.103340.0000— 0.1034+0.0001— 0.1047+0.0002—
MMF10  0.08004+0.0034 0.0778+0.00014+  0.0792+0.0024+ 0.0790+0.0030+ 0.07874+0.0000+
MMF11 0.0688£4.8910 0.06904+0.0000—  0.0689+0.0000— 0.0691+0.0002— 0.069640.0001—
MMF12  0.63544+0.0000 0.6385+0.0002— 0.6356+0.0000— 0.6395+0.0052— 0.636140.0000—
MMF13 0.0542£4.9817 0.05434+0.0000—  0.054340.0001— 0.0543+0.0000— 0.055040.0000—
MMF14  0.349540.0182  0.318940.0280x  0.3400+0.0109— - 0.3153+0.0156+
MMF15 0.251940.0087  0.2286+0.0079—  0.2416+0.0130— - 0.2217+0.0078+
MMF16 1.1454+0.0002 1.1469+0.0003—  1.14674+0.0010— 1.1480+0.0007— 1.1485+0.0023—
MMF17 1.1736+£0.0225 1.152640.0017+  1.157140.0085+ 1.151940.0074+ 1.1520+0.0024+
MMF18 0.3498+0.0229  0.3148+0.0144+  0.3331+0.0104+ 0.3432+0.0209— —
MMF19 0.2495+£0.0112  0.227340.00924  0.2367+0.0124+ 0.2296+0.0173— -
MMF20  0.0600+3.2389 0.0601+£0.0000—  0.0601£0.0000— 0.0601+0.0000— 0.0602+0.0000—
MMF21 0.0600£3.5595 0.0603+0.0000—  0.060140.0000— 0.0601+0.0000— 0.0601£0.0000—
MMF22  0.0188+7.4243 0.0190+0.0000—  0.0189+0.0000— 0.0190+0.0000— 0.0190+0.0000—
+/ -/ = 6/16/0 7/15/0 6/16/0 6/12/0
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TABLE VII

STATISTICAL RESULTS (MEAN AND STANDARD DEVIATION) OF IGDX

p-ACDCM MMODE_CSCD DN_NSGAII MO_Ring_PSO_SCD MMOPIO
MMF1 0.0409+0.0010 0.0412+0.0013—  0.0870+0.0114— 0.046340.0022— 0.041640.0025—
MMF2 0.0127+£0.0089  0.0102+0.0018+ 0.1030+0.0526+ 0.0261£0.0106— 0.0120+0.0034~
MMEF3 0.0100+0.0049  0.0085+0.0018+ 0.0738+0.0318— 0.0180+0.0030— 0.011540.0036—
MMF4 0.021940.0009 0.0221+0.0011—  0.1013+0.0359— 0.025840.0019— 0.028640.0041—
MMF5 0.07074£0.0017 0.0718+0.0034—  0.1594+0.0155— 0.0795+0.0037— 0.0841+0.0070—
MMF6 0.0634+0.0033  0.06224+0.0022+ 0.13724+0.0169— 0.067840.0039— 0.071740.0043—
MMEF7 0.0232+0.0026  0.0220£0.0013+  0.04544-0.0085— 0.0254+0.0010— 0.034440.0046—
MMF8 0.047640.0030 0.0484+0.0029—  0.3006+0.0967— 0.058240.0031— 0.062640.0121—
MMF9 0.0056£0.0002  0.005740.0003—  0.022840.0095— 0.0072+0.0004— 0.0122+0.0025—
MMF10 0.0771£0.1295 0.03684+0.10634+  0.138340.1461— 0.0154+0.0042+ 0.0051£0.0022+
MMF11 0.00364+0.0001 0.0041+0.0003—  0.0046+0.0002— 0.0047+0.0001— 0.0072+0.0017—
MMF12  0.00154+0.0000 0.0016+0.0001—  0.0044+0.0094— 0.003040.0003— 0.002240.0005—
MMF13 0.025940.0006 0.0276+0.0008—  0.0719+0.0129— 0.0314+0.0011— 0.0333+0.0022—
MMF14 0.0634+0.0018  0.06244+0.0016+  0.13064+0.0141— 0.0663+0.0023— 0.066240.0027 —
MMF15 0.0492+0.0023  0.05044+0.0019—  0.0848+0.0092— 0.050540.0018— 0.0488+0.0026~
MMF16  0.0271£0.0016 0.0286+0.0009—  0.0709+0.0155— 0.0332+0.0015— 0.031740.0024—
MMF17 0.3332+0.1469  0.31984+0.1320~ 1.11264+0.5107— 0.373240.0725— 0.504140.2247—
MMF18 0.0746£0.0033  0.07404+0.0026—  0.14524+0.0114— 0.0745+0.0019— 0.0734+0.0025+
MMF19 0.0573£0.0031  0.05904+0.0029—  0.10954+0.0162— 0.0549+0.0022+ 0.0547+0.0023+
MMF20 0.1651£0.3101  0.0538+0.0038+  4.39454+1.4891— 0.1105+0.0155+ 0.0707+0.0105+
MMEF21 0.1920+0.3488  0.09974+0.21714+  4.25304+1.7326— 0.129740.0130+ 0.1205+0.2037+
MMEF22 0.5905+0.1614  0.556040.1159+  1.64914+0.2145— 0.3633+0.0808+ 0.6623+0.1386—
+/ -/~ 9/12/1 1/21/0 5/17/0 5/15/2
p-ACDCM MO_PSO_MM Omni_optimizer DE_RLFR TriMOEA TAR
MMF1 0.0409+0.0010 0.0416+0.0024—  0.0855+0.0156— 0.0524+0.0057— 0.0637+0.0071—
MMF2 0.0127+£0.0089  0.01854+0.0057—  0.102540.0530— 0.0717+0.0367— 0.0656+0.0380—
MMEF3 0.0100+£0.0049  0.013340.0018—  0.079040.0459— 0.0500+0.0318— 0.0900+0.0398—
MMF4 0.021940.0009 0.0275+0.0022—  0.1162+0.0339— 0.030240.0035— 0.064240.1068—
MMF5 0.0707£0.0017 0.0749+0.0036—  0.1602+0.0153— 0.0860+0.0087— 0.1016+£0.0098—
MMF6 0.0634+0.0033  0.0676+0.0030—  0.141540.0268— 0.074640.0042— 0.084740.0126—
MMF7 0.0232+£0.0026  0.03204+0.0036—  0.03784+0.0079— 0.0360+£0.0056— 0.0398+0.0223—
MMF8 0.04764+0.0030 0.0478+0.0033—  0.3105+0.1594— 0.073240.0157— 0.412740.0819—
MMF9 0.0056£0.0002  0.0098+0.0017—  0.028040.0160— 0.0066+0.0012— 0.0032+£0.0001—
MMF10 0.0771£0.1295  0.001940.0003+  0.06024-0.0925+ 0.0644+0.1388+ 0.0029+0.0001+
MMF11 0.0036+0.0001 0.0069+0.0018—  0.0044+0.0002— 0.0047+0.0032— 0.0037+0.0001—
MMF12  0.00154+0.0000 0.0017+0.0002—  0.0020+0.0001— 0.001740.0004— 0.002340.0001—
MMF13 0.0259+0.0006 0.0279+0.0012—  0.0690+0.0173— 0.031040.0027— 0.046940.0096—
MMF14 0.0634+0.0018  0.06314+0.0023~ 0.11544+0.0118— - 0.0382-0.0006+
MMF15 0.0492+0.0023  0.047540.0018+  0.071040.0059— — 0.0385+0.0006+
MMF16  0.0271+0.0016 0.0306+0.0018—  0.0669+0.0179— 0.041840.0047— 0.062540.0138—
MMF17 0.3332+0.1469  0.28454+0.0683+  1.308740.6787— 2.3082+0.7334— 2.1337+0.6565—
MMF18 0.0746+0.0033  0.072440.0024—  0.14414+0.0161— - 0.0718+0.0016+
MMF19 0.0573+£0.0031  0.053440.0023+ 0.09154+0.0115— — 0.0475+0.0013+
MMF20 0.1651£0.3101  0.07264+0.00934  5.05444+1.3630— 0.0705+0.0154+ 0.029240.0165—
MMF21 0.1920+0.3488  0.124640.0102+  4.805641.8665— 0.1581+£0.2130— 1.6371£1.1647—
MMEF22 0.5905+0.1614  0.3104+0.0776+  1.732940.2275— 0.1484+0.0588+ 0.6085+0.2512—
+/ -/ = 7/14/1 1/21/0 4/14/0 5/17/0
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STATISTICAL RESULTS (MEAN AND STANDARD DEVIATION) OF IGDF

TABLE VIII

p-ACDCM MMODE_CSCD DN_NSGAII MO_Ring_PSO_SCD MMOPIO
MMF1 0.0023£0.0000  0.0023£0.0001~  0.0041£0.0010— 0.0034+0.0002— 0.0037£0.0004—
MMEF2 0.0040=£0.0003  0.0043£0.0004—  0.0158+0.0176— 0.0135+0.0024— 0.0041+0.0004—
MMF3 0.0037£0.0002  0.0039£0.0003—  0.0087+0.0085— 0.0098+0.0014— 0.0037£0.0009~
MMF4 0.0023£0.0001  0.0023£0.0001~  0.0033+0.0003— 0.0034£0.0003— 0.0040+0.0007—
MMF5 0.0023+£0.0000  0.0023+0.0000~  0.0034+0.0002— 0.0032£0.0001— 0.0037+0.0007—
MMF6 0.0022£0.0000  0.0023£0.0001—  0.0034+0.0002— 0.0033£0.0001— 0.0034+0.0003—
MMF7 0.0023+£0.0000 0.0024+0.0001—  0.0041£0.0005— 0.0037£0.0002— 0.0063+0.0009—
MMEF8 0.0027£0.0001  0.0028-+0.0001—  0.0037=40.0004— 0.0039£0.0002— 0.0034+0.0003—
MMF9 0.0108+£0.0008  0.0104=£0.0006+  0.0141£0.0018— 0.0149+0.0018— 0.0207+£0.0056—
MMF10 0.1534£0.1375  0.0399+£0.0883+  0.1432+0.1181+ 0.0630£0.01014 0.0223+0.0235+
MMF11 0.0112+0.0008 0.0114+0.0010—  0.0131£0.0013— 0.0159+0.0016— 0.0221+0.0048—
MMF12 0.0020=£0.0000  0.0021£0.0001—  0.0057+0.0113— 0.0047£0.0003— 0.0038+0.0007—
MMF13 0.0136£0.0028  0.0149£0.0035—  0.0174+0.0039— 0.0242+0.0061— 0.0231+0.0067—
MMF14 0.0913£0.0028  0.0914£0.0029~  0.1390+0.0098— 0.1013£0.0039— 0.1020+0.0036—
MMF15 0.0968+0.0033  0.1004+0.0036—  0.1744+0.0198— 0.1053£0.0033— 0.1093+0.0071—
MMF16 0.0022£0.0000  0.0023£0.0001—  0.0034+0.0003— 0.0033£0.0001— 0.0033+0.0002—
MMF17 0.0083+0.0010  0.0089+0.0023—  0.0150+0.0107— 0.0074+0.0007+ 0.0035=0.0003+
MMF18 0.0903£0.0027  0.0894£0.0021+  0.1514+0.0164— 0.0971£0.0032— 0.0954+0.0034—
MMF19 0.1004+£0.0047  0.1028+0.0048—  0.1825+0.0214— 0.1026£0.0043— 0.1088+0.0058—
MMF20 0.0104£0.0010  0.0105£0.0012—  0.0129+0.0014— 0.0245+0.0030— 0.0141+£0.0019—
MMEF21 0.0100£0.0009  0.0098=£0.00114+  0.0145+0.0013— 0.0273£0.0037— 0.0139+0.0018—
MMF22 0.0200=£0.0033  0.0207£0.0024—  0.0116+0.0005+ 0.0361£0.0036— 0.0113£0.0014+

+/ -/ = 4/14/4 2/20/0 2/20/0 3/18/1

p-ACDCM MO_PSO_MM Omni_optimizer DE_RLFR TriMOEA TAR
MMF1 0.0023£0.0000  0.0034+0.0003—  0.0033£0.0003— 0.0036£0.0004— 0.0043+0.0011—
MMF2 0.0040£0.0003  0.0092£0.0012—  0.0115+0.0140— 0.0385+0.0203 — 0.0174£0.0079—
MMF3 0.0037£0.0002  0.0071+£0.0006—  0.0165+0.0256— 0.0207£0.0107— 0.0453+0.0824—
MMF4 0.0023£0.0001  0.0048+0.0010—  0.0027=+0.0002— 0.0037+0.0003 — 0.0188+£0.0498—
MMF5 0.0023£0.0000  0.0033+0.0003—  0.0030=£0.0002— 0.0036£0.0002— 0.0041+0.0013—
MMF6 0.0022£0.0000  0.0033£0.0003—  0.0029+0.0002— 0.0036+0.0004— 0.0035=0.0009—
MMEF7 0.0023£0.0000  0.0061+£0.0008—  0.0031£0.0002— 0.0041£0.0005— 0.0040+0.0014—
MMF8 0.0027£0.0001  0.0031£0.0001—  0.0030£0.0002— 0.0040=£0.0003 — 0.0058+0.0072—
MMF9 0.0108+0.0008  0.0254+0.0061—  0.0133£0.0013— 0.0192+0.0035— 0.0698+0.0070—
MMF10 0.1534£0.1375  0.0132£0.0032+  0.0707£0.0918+ 0.0606+0.1018+ 0.0378+0.0025+
MMF11 0.0112-£0.0008  0.0198+0.0034—  0.0120£0.0009— 0.0275+0.0119— 0.0740+0.0067—
MMF12 0.0020=£0.0000  0.0025+0.0001—  0.0023+0.0001— 0.0075+0.0045— 0.0057£0.0002—
MMF13 0.0136£0.0028  0.0177+0.0041—  0.0164+0.0068— 0.00754-0.0045+ 0.1043+0.0082—
MMF14 0.0913£0.0028  0.1010£0.0050—  0.1216+0.0051— - 0.0911£0.0011—
MMF15 0.0968+0.0033  0.1060+0.0047—  0.1400£0.0077— - 0.0918=+0.0013+
MMF16 0.0022£0.0000  0.0032£0.0001—  0.0029+0.0003 — 0.0037+0.0004— 0.00380.0005—
MMF17 0.0083£0.0010  0.0053£0.0005+  0.0087+0.0072— 0.0060£0.0049+- 0.0053+0.00074
MMF18 0.0903£0.0027  0.0966£0.0033—  0.1308+0.0085— - 0.0934£0.0013—
MMF19 0.1004+£0.0047  0.1055+0.0051—  0.1487£0.0137— - 0.0913£0.0026+
MMF20 0.0104£0.0010  0.0172£0.0024—  0.0119£0.0012— 0.0205£0.0035— 0.0400+0.0042—
MMEF21 0.0100£0.0009  0.0295+0.0035—  0.0131£0.0016— 0.0238+0.0057— 0.0278+0.0033—
MMF22 0.0200£0.0033  0.0340+0.0036—  0.010240.0005+ 0.0199+0.0051~ 0.0216+0.0052—

+/ -/ = 2/20/0 2/20/0 3/14/1 3/19/0

ensures better coverage of the search space by the

front.

pareto

B. Experimental results and analysis of weight-based crowd-

ing strategy

The comparison results with different comparison algo-
rithms on the four performance indicators (rPSP, rHV, IGDX
and IGDF) of the test problems is given in Fig. 4-7 by using

histograms.

The experimental results of the p-ACDCM algorithm and

the eight comparison algorithms are shown in Table V to
Table VI. Table V gives the statistical results (mean and
variance) of rPSP, Table VI gives the statistical results (mean
and variance) of rHV, Table VII gives the statistical results
(mean and variance) for the statistical results (mean and
variance) of IGDX. Table VIII gives the statistical results
(mean and variance) of IGDF.

The p-ACDCM had more minimum averages than the
other compared algorithms in four metrics, namely rPSP,
rHV, 1IGDX, and IGDF. p-ACDCM used L, for conver-
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gence, and adaptive weighting to maintain the diversity of
the populations, and improve the population uniformity of
distribution. The p-ACDCM algorithm used L,, and weights
to increase the diversity of solutions. In decision space, lower
decision space crowding usually means that the solutions
are more widely distributed in the decision space, which
can increase the diversity of PF so that the final solution
set contains more different types of solution and helps to
find diverse solutions in the search space. Second, the p-
ACDCM algorithm can reduce the effect of local optimal
solutions. Lower decision space crowding reduces the risk
of falling into local optimal solutions. When the solution-
s are more widely distributed, the optimization algorithm
is more likely to find the global optimal solution rather
than being restricted to the vicinity of some local optimal
solution. p-ACDCM algorithm reduces the decision space
crowding. On the one hand, it helps to generate uniform PF.
So, the solutions are uniformly distributed in the decision
space. It improved uniformity in multi-objective problems
and ensures good coverage in different problem domains.
Smaller decision space usually reduces the size of the search
space, which reduces the computational complexity of the
optimization algorithm. In objective space, the p-ACDCM
algorithm reduces the object space crowding, and reduces
the excessive aggregation between the solutions on the PF.
In genneral, lower objective space crowding usually increases
the performance of the algorithm, including convergence and
search ability, which helps the algorithm find better PF faster.

Clustering algorithms in the decision space may (e.g., K-
means) lead to an uneven distribution of solutions because
a value of K may lead to overfitting. With the merging
strategy in p-ACDCM algorithm, reasonable clusters can be
generated, which can better capture the details and internal
structure of the data.

VI. CONCLUSION

In order to improve the diversity of solutions and provide
more potential solutions for decision makers, this paper
proposed p-ACDCM to solve multi-modal multi-objective
problem. The algorithm can improve the performance of the
algorithm by defining an adaptive crowding measurement
formula and designing an automatic classification method
for solutions. Experimental results show that the improved
multi-modal multi-objective algorithm can effectively im-
prove the performance of the algorithm. In future research,
it is recommended to focus on finer and more accurate
crowding measurement metrics and more efficient solution
classification techniques.
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