
Abstract—The generalized hypercube ),,,( 21 ndddQ  is a
topological structure renowned for its exceptional symmetry
and performance. Based on its structure and properties, this
paper derives explicit expressions for its adjacency and
Laplacian spectra apply these results to compute its energy.
MATLAB is utilized for verification and to develop program
commands that calculate the adjacency spectrum, Laplacian
spectrum,and energy ),,,( 21 ndddQ  for specified parameters

nddd ,,, 21  .

Index Terms—Generalized hypercube, Characteristic polyno
mial, Adjacency spectrum, Laplacian spectrum, Graph energy

I. INTRODUCTION

HE topology of an interconnection network is usually
typically modeled as a mathematical graph, where ver

tices correspond to servers and edges represent connections.
The Generalized Hypercube, proposed in [1] as a variant of
the hypercube [2], is known for its excellent interconnection
properties[2].It features several advantageous properties, suc
h as regularity, symmetry, embeddability, and a short diamet
er. Its connection mode and recursive structure make it easy
to construct, and its topology is versatile.

Over the past five decades, spectral graph theory has
become an important field in graph theory and attracted wide
attention. Its research holds theoretical significance and
practical application in network optimization design. The
research covers many aspects, with the investigation of the
standard adjacency spectrum of hypercubes and variants
being common [3-12]. This paper examines the adjacency
and Laplacian spectral characterization of generalized
hypercubes constructed using Cartesian product operations.
These results are applied to consider the energy problem of
the generalized hypercubes. We use MATLAB to thoroughly
verify the conclusion and design program commands for
deriving the adjacency spectrum, Laplacian spectrum and
energy of the generalized hypercube with given parameters

nddd ,,, 21  .
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II. BASIC CONCEPTS

For convenience, let vu ~ represent vertex u , and v be
adjacent if the vertex is connected to vertex )(, GVvu  .
Definition2.1:[1] Let ),( 111 EVG  and ),( 222 EVG  be

two graphs. The Cartesian product of these graphs 21 GG  is
defined as follows:

The vertex set is 2121 )( VVGGV  ;
The Edge set is

 2121221121 ~,|))(()( vvanduuvuvuGGE 

2121 ~, uuandvvor  .
Definition 2.2: [1-2] The topology of a hypercube network

refers to n dimensional cube, with a graph-theoretic model as
a simple undirected graph. This is typically denoted as nQ .
Harary provides many equivalent definitions, of which two
are the most common:

1. The vertex set of nQ is the ordered n element array from
 1,0 , even if  nixxxxV in ,,2,1},1,0{:21   , two
vertices nxxxx 21 and nyyyy 21 being adjacent if
and only if x and y differ in exactly one coordinate, even if

1
1

 


n

i
ii yx .

2. nQ can be recursively defined as a Cartesian product:

21 KQ  ，…， 2,22211   nKKKQQQ
n

nn     .

Hypercubes possess several advantageous properties. In
this study, we focus on the regularity n of the hypercube nQ ,

characterized by n2 vertices and 12 nn edges.
Definition2.3:[1] Bhuyan and Agrawal generalize nQ to

the n dimensional generalized hypercube network, denoted as
follows:

niddddQ in  ,2,1,integer is2,),,,( 21  , and are
defined as follows:

The set of vertices of the generalized hypercube is
 nidxxxxV iin ,,2,1},1,1,0{:21   , where two

vertices nxxxx 21 and nyyyy 21 are connected if and
only if they differ in exactly one coordinate.

Alternatively, the generalized hypercube can be defined as

ndddn KKKdddQ  
21

),,,( 21 .

Specifically, when 221  dddd n , generalized
hypercube ),,,( dddQ  is called the d element n-dimension
cube )(dQn . Clearly, when 2d , )2(nQ corresponds to the
famous hypercube network nQ .

Generalized hypercube exhibits several desirable
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properties.This paper uses the following important
properties:

),,,( 21 ndddQ  is nd
n

i
i 

1
regular, with i

n

i
d

1
 vertices

and ))((
2
1

11
ndd

n

i
ii

n

i



edges.

Definition 2.4:[3-4] Let G be a simple graph whose
adjacency matrix is represented as )(GA , the Laplace matrix
is expressed as )()()( GAGGL  , where )(G is the
degree-diagonal matrix of the graphG .

i.e. })(,),(),({)( 21    
n

nGGG vdvdvddiagG  .

The matrix )(GAI λ with unknown quantities λis called
the characteristic matrix of )(GA ( )(GLI λ called the
characteristic matrix), ))(det( GAI λ is called the
adjacency characteristic polynomial of the graph
( ))(det( GLI λ called the Laplace characteristic
polynomial). The zeros of ))(det( GAI λ are referred to as
the adjacency eigenvalues of graph G , while the zeros of

))(det( GLI λ are known as the Laplace eigenvalues of

)(GL . When all the adjacency eigenvalues (Laplace
eigenvalues) along with their respective multiplicities are
combined, they form the adjacency spectrum (Laplacian
spectrum) of graph G . These spectra can be simply denoted
as )(GASp ( )(GLSp ).

Definition 2.5:[8-9] If G is an ),( mn -graph, and its
Laplacian eigenvalues are n ，，， 21 , then the
Laplacian energy of G , denoted by )(GLE , is equal to

 


n

i
i n

mGLE
1

2)(  .

In addition, “  ” represents the tensor product of the
matrix (Kronecker product). The three important matrices of
the generalized hypercube ),,,( 21 ndddQ  are in order:

(1) Adjacency matrix )(GA
)())((

11 dKAdQA  ，

2121
)()()),(( 21 dddd IKAKAIddQA  ，

2133
)()),(()),,(( 21321 dddd IKAddQAIdddQA  ，

……

.)(
)),,,(()),,,((

121

12121




 

nn

n

dddd

ndn

IKA
dddQAIdddQA





(2) Degree matrix )(G

According to the properties of ),,,( 21 ndddQ  , let

nd
n

i
i 

1
be the regularity degree and i

n

i
d

1
 be the number of

vertices. Thus, the degree sequence

},,{)),,,((

1

11
21

  


i
n

i
d

n

i
i

n

i
in ndnddiagdddQ







of ),,,( 21 ndddQ  . Therefore, the degree matrix is:

},,{)),,,((

1

11
21

  


i
n

i
d

n

i
i

n

i
in ndnddiagdddQ





 .

(3) The Laplace matrix )(GL
)),,,(( 21 ndddQL 

)),,,((},,{ 21
11

1

n

d

n

i
i

n

i
i dddQAndnddiag

i
n

i


  

 






The generalized hypercube ),( 21 ddQ has 21dd vertices.
According to the decimal and binary conversion relationship,
we use the decimal number to represent the vertex. Thus, the
adjacency matrix of )3,2(Q and )5,3(Q can be expressed as
(see Figure 1 and Figure 2)

Fig.1. The generalized hypercube )3,2(Q
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Fig.2. The generalized hypercube )5,3(Q
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It is not difficult to verify that this fact is easily extended to
the general case. If 21 dd  , the following lemma holds.
Lemma 1: The adjacency matrix A of ),( 21 ddQ is a block

matrix of 11 dd  order, where each subblock on the main
diagonal is the adjacency matrix of the complete graph

2dK ,

and the rest of the subblocks are the identity matrix of the
same order, expressed as

 

 
11

22

22

)),(( 21

dddd

dd

KAI

IKA
ddQA
























.

Lemma 2: “ ab ”type determinant

1)]()1([  n
n babna

abbbb
babbb

bbabb
bbbab
bbbba

D









.

Lemma 3: Let the adjacency matrix A of the generalized
hypercube, ),,,( 21 ndddQ  and the Laplace matrix be L ,
the eigenvalue   , where  is the regularity degree
of ),,,( 21 ndddQ  and  is the eigenvalue of A .
Proof: The characteristic polynomial of the matrix L is:

AI

AIAILI

i

n

i
d








)()1(

)()(

1 



AIi

n

i
d

 


)()1( 1  （I）

Case 1: When nddd ,,, 21  has at least one even number,

equation (I) simplifies to AILI  )(  , that is, the
eigenvalue of the matrix L is   .
Case 2: When nddd ,,, 21  are odd, equation (I) is

simplified to AILI  )()1(  . Let it be equal to
zero, both sides simultaneously eliminate 1 , and we obtain
the eigenvalue of the matrix L is   .

Considering both cases, the eigenvalue of the Laplace
matrix L of ),,,( 21 ndddQ  is   .

III. SPECTRAL CHARACTERIZATION OF ),( 21 ddQ

3.1 The adjacency spectrum of ),( 21 ddQ
Theorem 3.1.1: For 21 dd  , the adjacency spectrum

),( 21 ddQ has four different eigenvalues:














)1)(1(111
2222

)),((
2121

1212
21 dddd

dddd
ddQASp .

Proof: For 21 dd  , according to Lemma 1 and 2, the
characteristic polynomial of the adjacency matrix A of

),( 21 ddQ of the generalized hypercube can be derived as
follows:

 

 
11

222

222

ddddd

ddd

KAII

IKAI
AI

















1
1

1
222222
)]())([()]()1())([(  d

dddddd IKAIIdKAI 

11
2

)1(
121

12

2

})]1()1[()]1)(1()1{(

})]1()1([()]1)(1()1({[(







dd

d

d

ddd





)1)(1(

1
2

1
121

21

12

)2(

)]2([)]2()][2([







dd

dd dddd




（1）

Therefore, if the above equation (1) is zero, there are four
different eigenvalues of the adjacency matrix of ),( 21 ddQ ,
and the spectrum is:



















 







2

1
12

21
2

1
21

)1(111

2222
)),((

i
i

i
i

ddd

ddd
ddQASp .

According to the conclusion proved in the above theorem,
specifically, for 221  dd , adjacency spectrum of the
generalized hypercube ),( 21 ddQ is concluded as:
Corollary 3.1.2: If 221  dd ,then ),( 21 ddQ has three

different eigenvalues, and adjacency spectrum is:












 2
11

11
21 )1()1(21

22)1(2
)),((

dd
dd

ddQASp .

3.2 The Laplacian spectrum of ),( 21 ddQ
From Lemma 1, the adjacency matrix A of ),( 21 ddQ is a

block matrix of order 11 dd  . Therefore, the Laplace matrix
AL  of ),( 21 ddQ is expressed as follows:

Lemma 3.2.1: The Laplace matrix L of the generalized
hypercube ),( 21 ddQ is expressed as：

 

 
11

22

22

)),(( 21

dddd

dd

KAI

IKA
ddQL



























.

Theorem 3.2.2: There are four different eigenvalues of
),( 21 ddQ . The spectrum of the Laplace matrix is as follows:














)1)(1(111
0

)),((
2112

1212
21 dddd

dddd
ddQLSp .

Proof: From Lemma 3, it is only necessary to determine
the regularity degree of the generalized hypercube ),( 21 ddQ ,

221  dd , and to find the eigenvalue  of the
adjacency matrix A , so as to obtain the eigenvalue of the
Laplace matrix L . Therefore, the Laplacian spectrum of the
generalized hypercube ),( 21 ddQ is:














)1)(1(111
0

)),((
2112

1212
21 dddd

dddd
ddQLSp .

According to the conclusion proved in the above theorem,
specifically, if 221  dd , the spectrum of the Laplace
matrix of ),( 21 ddQ is concluded as follows:
Corollary 3.2.3: If 221  dd , there are three different
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eigenvalues of ),( 21 ddQ , and the spectrum of the Laplace
matrix is as follows:











 2
11

11
21 )1()1(21

20
)),((

dd
dd

ddQLSp .

Example 1: MATLAB verification confirms that the
adjacency spectrum of )5,3(Q agrees with Theorem 3.1.1
and the Laplacian spectra comply with Theorem 3.2.3.
Solution: The generalized hypercube )5,3(Q , as shown in

Figure 2 above, has an adjacency spectrum








 


8241
2316

)),(( 21 ddQASp .

This result is obtained using MATLAB commands.
Meanwhile, according to the conclusion of Theorem 3.1.1,
the result is consistent.

According to the MATLAB programming command, its
Laplacian spectrum is











8241
8350

)),(( 21 ddQLSp .

According to the conclusion of Theorem 3.2.2, the
conclusion is consistent.

IV. SPECTRAL CHARACTERIZATION OF ),,( 321 dddQ

4.1 The adjacency spectrum of ),,( 321 dddQ
Let 321 ddd  , and based on Lemma 1, the following

results are established:
Lemma 4.1.1: The adjacency matrix A of ),,( 321 dddQ is a

partition matrix of 33 dd  order, where each subblock on the
main diagonal is an adjacency matrix of ),( 21 ddQ , and the
rest of the subblocks are identity matrices of equal order as

),( 21 ddQ , expressed as

 

 
33

21

21

),(

),(
)),,((

21

21

321

dddd

dd

ddQAI

IddQA
dddQA
























.

Theorem 4.1.2: The characteristic polynomial of the
adjacency matrix of ),,( 321 dddQ is given by:

1
31321

2)]3([)]3([  dddddd 
)1)(1(

3
1

32
211 )]3([)]3([   ddd ddd 

)1)(1(
1

1
21

323 )]3([)]3([   ddd ddd 
)1)(1)(1()1)(1(

2
32131 ]3[)]3([   dddddd 

Proof: From the above Lemma 2 and lemma 4.1.1, the
characteristic polynomial of the adjacency matrix of

),,( 321 dddQ is:

)),,(( 321 dddQAI 

 

 
33

2121

2121

),(

),(

21

21

dddddd

dddd

ddQAII

IddQAI
















1
21

321

3
2121

2121

)]())),(([(

)]()1())),(([(



 d

dddd

dddd

IddQAI

IdddQAI





1
21

213

3
21

21

))],(()1[(

))],(())1([(



 d

dd

dd

ddQAI

ddQAId





1
23

123

1
22

22

)]()))(())1([((

)])(1()))(())1([((



 d

dd

dd

IdQAId

IddQAId





1

1
2

12
3

1
22

22

)]()))(()1[((

)])(1()))(()1[(( 






d

d
dd

dd

IdQAI

IddQAI





1
23

231

1
2

2

))](())2([(

))(())2((




d
d

d

dQAId

dQAIdd





)1)(1(
2

1
21

31
2

3

2

))](()2[(

))(())2((








dd
d

d
d

dQAI

dQAId





1
31

231

2)]1())2([(

)]1)(1())2([(



ddd

ddd





)1)(1(
3

1
23

21

1

)]1())2([(

)]1)(1())2([(







dd

d

d

dd





)1)(1(
1

1
21

32

3

)]1())2([(

)]1)(1())2([(







dd

d

d

dd





)1)(1)(1(

)1)(1(
2

321

31

)]1()2[(

)]1)(1()2[(







ddd

ddd





1
31321

2)]3([)]3([  dddddd 
)1)(1(

3
1

32
211 )]3([)]3([   ddd ddd 

)1)(1(
1

1
21

323 )]3([)]3([   ddd ddd 
)1)(1)(1()1)(1(

2
32131 ]3[)]3([   dddddd  （3）

If the above equation (3) is zero, the adjacency spectrum of
),,( 321 dddQ is obtained as:
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According to the conclusion proved in the above theorem,
specifically, if 2321  ddd , the adjacency spectrum of

),,( 321 dddQ is as follows:
Corollary 4.1.3: Let 2321  ddd . There are four

different eigenvalues of ),,( 321 dddQ , and the adjacency
spectrum is as follows:
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4.2 The Laplacian spectrum of ),,( 321 dddQ
According to the definition of Laplace matrix AL  of

),,( 321 dddQ and Lemma 4.1.1, the following lemma can be
obtained:
Lemma 4.2.1: The Laplace matrix L of ),,( 321 dddQ is

expressed as:
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Theorem 4.2.2 There are eight different eigenvalues of
),,( 321 dddQ , and the spectrum of the Laplace matrix is as

follows:
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Proof: From lemma 3, we only need to determine the
regularity degree of ),,( 321 dddQ as 3321  ddd and
find the eigenvalue  of the adjacency matrix A , thus
obtaining the eigenvalue of the Laplace matrix L . Therefore,
the Laplacian spectrum of ),,( 321 dddQ is
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According to the proof conclusion of the above theorem,
specifically, if 2321  ddd , the spectrum of the Laplace
matrix of ),,( 321 dddQ is as follows:
Corollary 4.2.3: Let 2321  ddd . The generalized

hypercube ),,( 321 dddQ has four different eigenvalues, and
the Laplacian spectrum is as follows:
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Example 2: Experimentally verify that the adjacency
spectrum of )4,3,2(Q complies with Theorem 4.1.2 and that
its Laplacian spectrum complies with Theorem 4.2.2.
Solution: The MATLAB programming command shows

that the characteristic polynomial of )4,3,2(Q is:
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According to the conclusion of Theorem 4.1.2, the
adjacency spectrum is consistent with the theoretical result.

After the command designed by the MATLAB program,
the Laplacian spectrum of )4,3,2(Q is calculated as follows:
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
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
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66323211
97654320

))4,3,2((QLSp .

According to the conclusion of Theorem 4.2.2, the
Mathematica is consistent.

V. SPECTRAL CHARACTERIZATION OF ),,,( 21 ndddQ 

5.1 The adjacency spectrum of ),,,( 21 ndddQ 

From Lemma 4.1.1, the following lemma can be obtained:
Lemma 5.1.1: The adjacency matrix A of the generalized

hypercube ),,,( 21 ndddQ  is a partition matrix of order

nn dd  , where each subblock on the main diagonal is an
adjacency matrix of ),,,( 121 ndddQ  , and the rest of the
subblocks are identity matrices of equal order as

),,,( 121 ndddQ  , expressed as
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Theorem 5.1.2: The characteristic polynomial of the
adjacency matrix A of ),,,( 21 ndddQ  is given by:
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Proof: From the Lemma 2 and lemma 5.1.1 above, the

characteristic polynomial of the adjacency matrix is as
follows:
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Thus, setting the above characteristic equation (5) to zero,
),,,( 21 ndddQ  have nn

n
n
nnnn CCCCC 21210  

dif ferent eigenvalues, with the following adjacency
spectrum:
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Specifically, if 221  nddd  ,the adjacency spectrum
of ),,,( 21 ndddQ  is as follows:
Corollary 5.1.3: Let 221  nddd  , the adjacency

spectrum of ),,,( 21 ndddQ  is as follows:
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Specifically, if 221  nddd  , ),,,( 21 ndddQ  is
hypercube )(nQ given adjacency spectrum:
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This is consistent with the conclusion found in the
literature [10].

5.2 The Laplacian spectrum of ),,,( 21 ndddQ 

Theorem 5.2.1: There are n2 different eigenvalues of
),,,( 21 ndddQ  , and the spectrum of the Laplace matrix is

determined as follows:
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Proof: From Lemma 3, it suffices to determine the

regularity degree nd
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1
of ),,,( 21 ndddQ  . By

finding the eigenvalue  of the adjacency matrix A , we can
obtain the eigenvalue of the Laplace matrix L . Therefore,
the Laplacian spectrum of ),,,( 21 ndddQ  is
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According to the proof conclusion of the above theorem, in

particular, if 221  nddd  ,the spectrum of
),,,( 21 ndddQ  Laplace matrix is as follows:

Corollary5.2.2: Let 221  nddd  ,the generalized
hypercube ),,,( 21 ndddQ  have 1n different eigenvalues,
and its Laplacian spectrum is given by
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Specifically, if 221  nddd  , ),,,( 21 ndddQ 
reduces to hypercube )(nQ , and its Laplacian spectrum is
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This result is consistent with the conclusion in the
literature [11].

VI. THE ENERGY OF ),,,( 21 ndddQ 

Lemma 6.1:[13] For any regular graph G ,
)()( GEGLE  .

Based on the conclusion of the adjacency spectrum and
Laplacian spectrum of ),,,( 21 ndddQ  , and its regularity

degree, ),,,( 21 ndddQ  is nd
n

i
i 

1
and the

programming approach for computing the energy and
Laplace energy of ),,,( 21 ndddQ  can be obtained as
follows:
Algorithm 6.2:
Input: Input n and n variables of nddd ,,, 21  ;
Step1: Design the adjacent matrix of ),,,( 21 ndddQ  and

the program command for commuting its characteristic
polynomial;
Step2: Solve the characteristic polynomial equal to zero to

obtain the eigenvalue and design the program command for
computing them;
Step 3: According to the energy definition, the absolute

value of the eigenvalue is found and summed up.
Output: Adjacent matrix, factorization of characteristic

polynomial, eigenvalue, energy of ),,,( 21 ndddQ  .
Example 3: To compute the energy of )4,3,2(Q .
Solution:After the MATLAB programming command, the

energy of )4,3,2(Q is 48 .

VII. SUMMARY

Based on the structures and properties of the generalized
hypercube ),,,( 21 ndddQ  , we have derived expressions
for its adjacency and Laplace spectra. As an application of
these results, we consider its energy problem. This is of great
relevance in studying the structural properties of

),,,( 21 ndddQ  in a new perspective. Meanwhile,
MATLAB is used to verify the conclusion and design
program commands for deriving the adjacency spectrum,
Laplacian spectrum and energy of ),,,( 21 ndddQ  with
given parameters nddd ,,, 21  . In future work, we plan to
extend our study to the spectral theory of other important
interconnection networks.
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APPENDIX

The analysis and visualization procedure for the adjacency
matrices of generalized hypercube ),,,( 21 ndddQ  is as
follows:
n = input('Enter the number of variables n: ');
d = zeros(1, n);
for i = 1:n

d(i) = input(['Enter d' num2str(i) ' = ']);
end
matrix_size = prod(d);
A_total = zeros(matrix_size);
for i = 1:n

I_di = eye(d(i));
K_di = ones(d(i)) - eye(d(i));
A_i = 1;
for j = 1:n

if j == i
A_i = kron(A_i, K_di);

else
A_i = kron(A_i, eye(d(j)));

end
end
A_total = A_total + A_i;

end
disp('Final adjacency matrix A_total:');
disp(A_total);
syms lambda;
result = det(lambda * eye(matrix_size) - A_total);
factor_result = factor(result);
disp('Factorized determinant:');
disp(factor_result);
eigenvalues_A_total = eig(A_total);
disp('Eigenvalues of A_total:');
disp(eigenvalues_A_total);
sum_abs_eigenvalues = sum(abs(eigenvalues_A_total));
disp('Sum of absolute values of eigenvalues:');
disp(sum_abs_eigenvalues);
G = graph(A_total);
node_labels = arrayfun(@num2str, 1:matrix_size,
'UniformOutput', false);
figure;
p = plot(G, 'Layout', 'force', 'NodeLabel', node_labels,
'MarkerSize', 7);
p.EdgeColor = 'k';
p.NodeColor = 'k';
title('Graph of adjacency matrix A_total');
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