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Spectral Properties and Energy of Generalized
Hypercubes

Jinxia Yang, Jier Liu, Zhipeng Liang*

Abstract—The generalized hypercube Q(d,,d,,---,d,) is a

topological structure renowned for its exceptional symmetry
and performance. Based on its structure and properties, this
paper derives explicit expressions for its adjacency and
Laplacian spectra apply these results to compute its energy.
MATLAB is utilized for verification and to develop program
commands that calculate the adjacency spectrum, Laplacian
spectrum,and energy O(d,,d,, --,d,) for specified parameters

dl,dz,"',dn.

Index Terms—Generalized hypercube, Characteristic polyno
mial, Adjacency spectrum, Laplacian spectrum, Graph energy

I. INTRODUCTION

HE topology of an interconnection network is usually

typically modeled as a mathematical graph, where ver
tices correspond to servers and edges represent connections.
The Generalized Hypercube, proposed in [1] as a variant of
the hypercube [2], is known for its excellent interconnection
properties[2].1t features several advantageous properties, suc
h as regularity, symmetry, embeddability, and a short diamet
er. Its connection mode and recursive structure make it easy
to construct, and its topology is versatile.

Over the past five decades, spectral graph theory has
become an important field in graph theory and attracted wide
attention. Its research holds theoretical significance and
practical application in network optimization design. The
research covers many aspects, with the investigation of the
standard adjacency spectrum of hypercubes and variants
being common [3-12]. This paper examines the adjacency
and Laplacian spectral characterization of generalized
hypercubes constructed using Cartesian product operations.
These results are applied to consider the energy problem of
the generalized hypercubes. We use MATLAB to thoroughly
verify the conclusion and design program commands for
deriving the adjacency spectrum, Laplacian spectrum and
energy of the generalized hypercube with given parameters

dl’dz""’dn
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II. BASIC CONCEPTS

For convenience, let u ~ v represent vertex u , and v be
adjacent if the vertex is connected to vertex u,v € V(G).

Definition2.1:[1] Let G, =(V},E;) and G, =(V,,E,) be
two graphs. The Cartesian product of these graphs G, x G, is
defined as follows:

The vertex set is V(G xG,) =V, xV, ;

The Edge set is

E(G xGy)= {{(M1V1)(U2V2) luy =uy,and v ~ v,
or v, =v,,and u; ~ uz}.

Definition 2.2: [1-2] The topology of a hypercube network
refers to n dimensional cube, with a graph-theoretic model as
a simple undirected graph. This is typically denoted as Q,, .

Harary provides many equivalent definitions, of which two
are the most common:

1. The vertex set of Q,, is the ordered n element array from
{0,1} , even if V = {xlxz X, i x; €{0,1},i = 1,2,-‘-,/1} , two
vertices x =x;x,---x, and y=y,y,---y, being adjacent if

and only if x and y differ in exactly one coordinate, even if
n
Z|xi - yi| =1.
i=l
2.0, can be recursively defined as a Cartesian product:

O =Ky0000 0, =0, %0 =Ky xKy XKy n22.
NS N

n
Hypercubes possess several advantageous properties. In
this study, we focus on the regularity 7 of the hypercube O, ,

characterized by 2" vertices and 72" edges.

Definition2.3:[1] Bhuyan and Agrawal generalize O, to
the n dimensional generalized hypercube network, denoted as
follows:

0d,,d,,--,d,),d; > 2isinteger,i =1,2,---n , and are
defined as follows:

The set of vertices of the generalized hypercube is
V= {xlxz---xn :x; €{0,L,---d; —l},i:1,2,---,n} , where two
vertices X = x;X, ---x,and y = y,¥, -+ y, are connected if and

only if they differ in exactly one coordinate.
Alternatively, the generalized hypercube can be defined as
0d,.d,,---,d)) =K, xK, x---xK, .
Specifically, when d, =d, =---=d, =d > 2, generalized
hypercube Q(d,d,---,d) is called the d element n-dimension
cube Q,(d) . Clearly, when d =2,0,(2) corresponds to the
famous hypercube network Q, .
exhibits desirable

Generalized hypercube several
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properties.This uses the

properties:

paper following important

oWd,,d,,---,d,) is 2.d;—n regular, with 'Hldi vertices
i=1 i=

1,7 n
andz(l_lldi)(Zdi —n) edges.
i= i=l
Definition 2.4:[3-4] Let G be a simple graph whose
adjacency matrix is represented as A(G) , the Laplace matrix
is expressed as L(G)=A(G)—A(G) , where A(G) is the

degree-diagonal matrix of the graph G .
i.e. AG) = diag{d;(v).dg (v;)..d(v,)}

n

The matrix A — 4(G) with unknown quantities Ais called
the characteristic matrix of 4(G) ( A —L(G) called the
det( 4 — A(G))

adjacency characteristic polynomial of the graph
( det( ¥ -L(G)) called the Laplace characteristic

polynomial). The zeros of det( 4 —A4(G)) are referred to as

characteristic matrix), is called the

the adjacency eigenvalues of graph G , while the zeros of
det( A —L(G)) are known as the Laplace eigenvalues of
L(G) . When all the adjacency eigenvalues (Laplace

eigenvalues) along with their respective multiplicities are
combined, they form the adjacency spectrum (Laplacian
spectrum) of graph G . These spectra can be simply denoted
as Sp A(G) (Sp L(G))-

Definition 2.5:[8-9] If G is an (n,m) -graph, and its

Laplacian eigenvalues are 44, fi,---» 4, , then the
Laplacian energy of G , denoted by LE(G) , is equal to
n 2m
LE(G) = Z|u b
i=1

In addition, “ ® ” represents the tensor product of the
matrix (Kronecker product). The three important matrices of
the generalized hypercube O(d,,d,, -+,d,) are in order:

(1) Adjacency matrix A(G)

AQ(d) = A(Ky,) »

A(Q(dy,dy) =T, ®AK, )+ AK, )OI,
AQ(d,,dy,d3)) =14, ® A(Q(dy,dy))+ AK ) @144, »

A(Q(dlad23"'3d)1)):[d" Q@ Ad,.d,,.d, )+
AK,; )B4y, -
(2) Degree matrix A(G)
According to the properties of O(d,,d,,---,d,) , let

n n
>.d; —nbe the regularity degree and I}l d; be the number of

i=1

vertices. Thus, the degree sequence

7(Q(d,,dy, +,d,)) =diag{21di —n,”',Zldi —nj

n
1d,
i=1

of O(d,,d,,--,d,) . Therefore, the degree matrix is:

n n
A(Q(dl’dZ’“"dn)) Zdlag{;ld, _n’.“’édi _n} .

(3) The Laplace matrix L(G)
L(Q(dl’dZ" "adn))

=diag{§1di —n,---,gldi —nj = A(Q(dy,dy,-,d,,)

The generalized hypercube O(d,,d,) has d,d, vertices.

According to the decimal and binary conversion relationship,
we use the decimal number to represent the vertex. Thus, the
adjacency matrix of 0(2,3) and O(3,5) can be expressed as

(see Figure 1 and Figure 2)

.
2 .
[ 7
\‘5
Fig.1. The generalized hypercube Q(2,3)
01 1100
101010
11 0.0 0 1| (AKy) I
AQ@3) =| =
1000 11 I, AKS)
010101
0 01:1 10

Fig.2. The generalized hypercube Q(3,5)

AKs) s 1
AQGN=| s  AKs) s
15 ]5 A(KS)

Volume S5, Issue 4, April 2025, Pages 972-978



TAENG International Journal of Applied Mathematics

It is not difficult to verify that this fact is easily extended to
the general case. If d; <d, , the following lemma holds.

Lemma 1: The adjacency matrix 4 of Q(d;,d,) is ablock
matrix of d; xd; order, where each subblock on the main
diagonal is the adjacency matrix of the complete graph K, ,

and the rest of the subblocks are the identity matrix of the
same order, expressed as

A(Kdz) ST
AQ(d,,dy)) = ' : -
Lemma 2: *“ ab "type determinant
a b b b b
b a b -~ b b
b b a - b b el
D,=|. . . . |=la+(n-1)bl(a=b)"".
b b b - ab
b b b - b a

Lemma 3: Let the adjacency matrix A4 of the generalized
hypercube, O(d,,d,,---,d,) and the Laplace matrix be L ,

the eigenvalue 1 =A—-A, where A is the regularity degree

of 0(d,.d,,-,

Proof: The characteristic polynomial of the matrix L is:
|AI—L|=|AT - (A A)| =|(A- M) + 4

d,) and A is the eigenvalue of 4 .

fd,
=D |- (A=A - 4|

— ) A -4 (D
Case 1: Whend,,d,,--,d, has at least one even number,
equation (I) simplifies to |ﬂl —L| = |(A—/1)I —A| , that is, the
eigenvalue of the matrix Lis y=A—-A41.
Case 2: When d,,d,,--,d, are odd, equation (I) is
simplified to |ZJ —L| = (—1)|(A—/1)I —A| . Let it be equal to

zero, both sides simultaneously eliminate —1 , and we obtain
the eigenvalue of the matrix Lis u=A-A1.

Considering both cases, the eigenvalue of the Laplace
matrix L of O(d,,d,,"--,d,) is u=A-1.

III. SPECTRAL CHARACTERIZATION OF Q(d,,d,)

3.1 The adjacency spectrum of Q(d,,d,)
Theorem 3.1.1: For d, <d, , the adjacency spectrum
0(d,,d,) has four different eigenvalues:
dy+d, -2 dy-2 d, -2 -2 ]
1 d-1 d,-1 (d,-1)(d,-1)

Proof: For d, <d, , according to Lemma 1 and 2, the

Sp A(Q(d,,d,)) =(

characteristic polynomial of the adjacency matrix A4 of
0(d,,d,) of the generalized hypercube can be derived as

follows:

a, -AlK,) -
|AI - 4= : '
_1d2
=[[a1, — 4K )+ () =1 (1 L g, = AK g )= (11"
= {[(A—(d, =) +(d, ~D(D]-[(A—(d, =)= (=D}
{A+D+(dy ~ DD [(A+1]) = (-] =4
=[A—(d, +dy = DIA—(d, - 21> '[A~(d, - 21"
(ﬂ + 2)(d1—])(dz—1)

Therefore, if the above equation (1) is zero, there are four
different eigenvalues of the adjacency matrix of Q(d,,d,) ,

QP)

and the spectrum is:

2
Yd, -2 d -2 dy-2 -2
Sp A(Q(d,,d,))=| ! 2 :
1 dy-1 d,-1 TId,-1)
i=1

According to the conclusion proved in the above theorem,
specifically, for d;, =d, =2 , adjacency spectrum of the
generalized hypercube Q(d,,d,) is concluded as:

Corollary 3.1.2: If d,=d, 22 ,then Q(d,,d,) has three
different eigenvalues, and adjacency spectrum is:

2d\ =) d,-2 -2
SpAQUL =l @ -1

3.2 The Laplacian spectrum of Q(d,,d,)

From Lemma 1, the adjacency matrix 4 of Q(d,,d,) is a
block matrix of order d, xd, . Therefore, the Laplace matrix
L=A-A4 of O(d,,d,) is expressed as follows:

Lemma 3.2.1: The Laplace matrix L of the generalized
hypercube O(d,,d,) is expressed as:

L(0Wd,.d,)) = ’ :

-1, A—A(Kdz)

dyxd,
Theorem 3.2.2: There are four different eigenvalues of
0(d,,d,) . The spectrum of the Laplace matrix is as follows:

Sp L(Q(;,d;)) = [0 hoodo b J
1 d,-1 d,-1 (d,-1)(d,-1)
Proof: From Lemma 3, it is only necessary to determine
the regularity degree of the generalized hypercube Q(d,,d,),
A=d +d,—-2 , and to find the eigenvalue A of the

adjacency matrix 4 , so as to obtain the eigenvalue of the
Laplace matrix L . Therefore, the Laplacian spectrum of the
generalized hypercube Q(d,,d,)is:

S L. ) =[° B G J
1 dy-1 d,-1 (d,-1)(d,-1)
According to the conclusion proved in the above theorem,
specifically, if d, =d, =22 , the spectrum of the Laplace
matrix of O(d,,d,) is concluded as follows:
Corollary 3.2.3: If d; =d, 22, there are three different
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eigenvalues of Q(d,,d,), and the spectrum of the Laplace
matrix is as follows:
Sp LO(;.d2) {0 “o 2)
1 2(d,-1) (d,-))
Example 1: MATLAB verification confirms that the
adjacency spectrum of Q(3,5) agrees with Theorem 3.1.1

and the Laplacian spectra comply with Theorem 3.2.3.
Solution: The generalized hypercube Q(3,5), as shown in

Figure 2 above, has an adjacency spectrum

6 1 3 -2
SpA(Q(dl,dz)):l 4 2 8 )

This result is obtained using MATLAB commands.
Meanwhile, according to the conclusion of Theorem 3.1.1,
the result is consistent.

According to the MATLAB programming command, its
Laplacian spectrum is

05338
SpL(Q(dpa’z)){1 4 2 8J~

According to the conclusion of Theorem 3.2.2, the
conclusion is consistent.

IV. SPECTRAL CHARACTERIZATION OF Q(d,,d,,d5)

4.1 The adjacency spectrum of Q(d,,d,,d5)
Let d, <d, <d;, and based on Lemma 1, the following

results are established:

Lemma 4.1.1: The adjacency matrix 4 of Q(d,,d,,d;) isa
partition matrix of d5 x d; order, where each subblock on the
main diagonal is an adjacency matrix of O(d,,d,), and the
rest of the subblocks are identity matrices of equal order as
0(d,,d,), expressed as

A(Q(d,.d,)) Ly,
A(Q(d,,dy,d3)) = : :

[d]dz

Aoddy)),
Theorem 4.1.2: The characteristic polynomial of the
adjacency matrix of Q(d|,d,,d)is given by:
[A—(d, +dy+dy =3)-[A—(d, +dy -3)]>""
A= (dy +dy =3 [A-(dy =3 AT
[A=(dy +dy =3 2 (dy =3 AT
[ﬂ, —(dz _3)](d1—l)(d3—l) [24_ 3](d|—])(d2—l)(d3—])

Proof: From the above Lemma 2 and lemma 4.1.1, the
characteristic polynomial of the adjacency matrix of

o(d,,d,,d5) is:
| - A(0(d,d,. dy))|

Ay, ~ A0y, dy)) -

L4,

—1yq, © Mg, - A0(d,,d,) J
(A4, — AQ(dy,dy)+(dy =1 (=11
(A g0, = AQ(dy,d) = (14 1"

3xd5

[(A—(dy =)0, — AO(dy, )]
[(A+D)1 44, - AQ(dy.dy )]
[(2—(dy =D)1,, - AQ(d))+(d) ~1)(-1,))]"
Tl s~ — AQ) ~ (L T

dy-1

[(A+D1,, = AQ(d,))+(dy ~D)(~1 )]

| A+, — A0y~ (=1, )]

= (A= (d, +d5 =2))1,, - AQ(d,)
(2~ (dy =21, - 40N

ds-1

Ja=(d -2)1,, - 40(,))
[+ 21, — Q)4

=[(A=(d, +d3 =2))+(d, =)(=D)]-
[(A=(d, +d5 =2)—(=D]""
(A= (d; =2)+(d, - DD
(2 (d; =2))— (=D 47
[(2=(dy =2) +(d, ~D(DI" -
[(A=(dy =2)) = (-] =4
L(A+2)+(dy ~D(=1)) DB
[(4+2) = (=] @-NEDED
=[A—(d) +d, +d; =3)]-[A—(d, +d5 =3)]""
A (dy +dy =3 [A-(dy =3 ATED
A= (d +dy =3 [A=(d, =3 AT
'[i _ (dz _ 3)](d| ~1)(d5-1) ~[ﬂ + 3](dI ~1)(d,—1)(d;-1) ( 3 )
If the above equation (3) is zero, the adjacency spectrum of

0(d,,d,,d;) is obtained as:

3 3 3 3
Sp AQ, dy.di=| 5473 FAT3 FATS R4
1 d-1 d-1 dy-1
d-3 d,-3 d,-3 -3
[, ~) 1@, ~) T1(d,~1) 11d, _1)}

According to the conclusion proved in the above theorem,
specifically, if d, =d, =d, 22, the adjacency spectrum of
0(d,,d,,d,)is as follows:

Corollary 4.1.3: Let dy=d, =d; 22 . There are four
different eigenvalues of O(d,,d,,d;) , and the adjacency
spectrum is as follows:

S0 AQ(d, ;)= (3(‘1‘ e
1 3(d, -1

d -3 -3
3(d1 _1)2 (dl _1)3 '
4.2 The Laplacian spectrum of O(d,,d,,d5)

According to the definition of Laplace matrix L = A— 4 of
0(d,,d,,d;) and Lemma 4.1.1, the following lemma can be

obtained:
Lemma 4.2.1: The Laplace matrix L of O(d,,d,,d;) is

expressed as:
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A-AQ(d,.dy)) - -1,
L(Q(d],d2,d3)): .
A=A, dy)),

Theorem 4.2.2 There are eight different eigenvalues of
0(d,,d,,d5) , and the spectrum of the Laplace matrix is as

- Idldz

follows:
0 d, d, d, d, +d,

Sp L(Q(d,d,,d,)) = 3
p L(O(d,,d,,d;)) 1 d -1 d,~-1 d,~1 Hl(dl-—l)

d+d, d +d, iz]d,

3 3 "
16D 16D 11~
Proof: From lemma 3, we only need to determine the
regularity degree of Q(d,,d,,d;)as A=d,+d, +dy—3and
find the eigenvalue A of the adjacency matrix A , thus
obtaining the eigenvalue of the Laplace matrix L . Therefore,
the Laplacian spectrum of QO(d,,d,,d;) is
0 d, d, d, d,+d,
Sp L(Q(d,,d,,d,)) = 3
p L(O(d,,d,,d})) 1 d -1 d,~1 d,~1 r{(d,‘_l)
d, +d,

d+d,  3d,
i1

3 3 ]
1@, - 1@~ I (@-1)

According to the proof conclusion of the above theorem,
specifically, if d, =d, =d; > 2, the spectrum of the Laplace
matrix of Q(d,,d,,d;) is as follows:

Corollary 4.2.3: Let d; =d, =d; 22 . The generalized
hypercube O(d,,d,,d5) has four different eigenvalues, and
the Laplacian spectrum is as follows:

Sp L(Q(dy,d,,d;)) = (O “ RV 3)
L3 -1 3d -7 (d-D)

Example 2: Experimentally verify that the adjacency

spectrum of Q(2,3,4) complies with Theorem 4.1.2 and that

its Laplacian spectrum complies with Theorem 4.2.2.
Solution: The MATLAB programming command shows
that the characteristic polynomial of Q(2,3,4) is:
(=6 + ) (~4+ A)(=3+ 1)* (=2 + 1)’
1+ )220+ 03B+ 2)°
The spectrum is,
&A&MﬁFF 4 3 2 10—1—1.
1 12323 6 6
According to the conclusion of Theorem 4.1.2, the
adjacency spectrum is consistent with the theoretical result.
After the command designed by the MATLAB program,
the Laplacian spectrum of Q(2,3,4)is calculated as follows:
2 345 6 709
123236 J'

According to the conclusion of Theorem 4.2.2, the
Mathematica is consistent.

0
Sp L(O(2,3,4)) = (1

V. SPECTRAL CHARACTERIZATION OF Q(d,,d,,---,d,)

5.1 The adjacency spectrum of O(d,,d,,--,d,)

From Lemma 4.1.1, the following lemma can be obtained:
Lemma 5.1.1: The adjacency matrix A of the generalized
hypercube O(d,,d,, --,d,) is a partition matrix of order

d, xd, , where each subblock on the main diagonal is an
adjacency matrix of O(d,,d,,"--,d,_;) , and the rest of the

subblocks are identity matrices of equal order as
0(d,,d,, --,d,_;) , expressed as
AQWd,,d, ) -

ly..a,,

A(Q(dl""’dn)):

- Ay d, )
Theorem 5.1.2: The characteristic polynomial of the
adjacency matrix A4 of Q(d,,d,, -,d,) is given by:

]dl o 'dnfl

g i 'i',(d"l) " n (d -1y
M_(Zldf -n)] ’,Hl[(i—(di -m)Y : /Hl[(ﬂ—(zd,« -m)]™’
i= i= j= i%]
n 1 (d-1)d;-1) "
. _ _ ij#k.l I(d;-1
kl;[l[(ﬂL d;+d; -n)]” ,MHI],-:I( ).

Proof: From the Lemma 2 and lemma 5.1.1 above, the
characteristic polynomial of the adjacency matrix is as
follows:

7 -4

ﬂd}"'d,,—] _A(Q(dl >t "dn—l)) e _Idr“‘ln—l

1y, My~ AQ) 0 d, ) i,
(M ya,..a, —AOd dy-d, )+, =D (=L yg,..q, )]
M g, , =~ AQdrdy +dy )= (T g, q, N
[((A=(d, = yg,..q,, — AQ\dyd, )]

[(A+D 4  —AQddy--d, )]
[(A=(d,~D)y,..q , —AQ(dyd, )+ (d, =Dy )]
[A=(dy =Dy, = AQ)d )= (=L g q ]

[((A+ Dy g, Ay dy ) +(dy g ~D(~T g )"
| A DLy~ A, dy )~ (g N
=2~ +d\s =2V 44, , — Ay -++d, )]
N2 =y =20 44,.0, , ~ 4Oy - d )|

d,-1

A=y =D gy, , =4Oy +d, )]

(d,~1)(d, -1
N+ 4 4y.ca, , — 4Oy d, )]

=4~ (d =] (S = (G S -y

k#i,j

-1 T1(d;-1)

T (d, 1) ,
A=, =n)* " [A+n]"

(5

Thus, setting the above characteristic equation (5) to zero,
0(d,,d,,+,d,) have Cp+Ch+Cy+-+Ci+Cr=2"
different with the
spectrum:

eigenvalues, following adjacency
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0 a c
id,—n idk—n idk—n
SpAQ,++.d,)) =| G
1 d, -1 Il(d,-1)
k=i.j
a <
d,—n -n

f1(d, 1) T(d, -1 |

Specifically, if d, =d, =---=d, 22 ,the adjacency spectrum
of 0(d,,d,, --,d,) is as follows:
Corollary 5.1.3: Let dy =d, =---=d, =2 2, the adjacency
spectrum of O(d,,d,,---,d,) is as follows:
c C,
| nd, =) (n-Dd, -n
Sp A(Q(dl’dZ’ 5dn )) - 1 C:l (dl _1)
ar' cr
d,—n -n

G =1 T, -1 |

Specifically, if d, =d, =---=d, =2, 0(d,,d,,-+,d,) is
hypercube Q(n) given adjacency spectrum:
cc C ! cr
Sp A _(n n=2 n-4 - 2-n -n
p A(Q(n)) = 1 2 ool

This is consistent with the conclusion found in the
literature [10].

5.2 The Laplacian spectrum of Q(d,,d,,---,d,)

Theorem 5.2.1: There are 2" different eigenvalues of
0(,,d,,--,d,) , and the spectrum of the Laplace matrix is

determined as follows:

&G c ar c
0 d  d+d, $d, Sd,
Sp L(Q(d,,dy,.d,)) = ki =

1 d,-1 T (d-1) - T(d,-1) Ti{d,-1)
k=i, j k#i i=1

Proof: From Lemma 3, it suffices to determine the
n

regularity degree A= d;—n of Q(d,,d,,--,d,) . By
i=l

finding the eigenvalue A of the adjacency matrix 4 , we can
obtain the eigenvalue of the Laplace matrix L . Therefore,
the Laplacian spectrum of Q(d,,d,, :-,d,) is

I c c ¢
n n

0 d, d;+d, Yd, >d,
Sp L(Q(d,,dy,-.d,)) = k=i =

1 d,-1 T (d-1) - T(d,-1) TI{d,-1)
k=i, j ki i=1

According to the proof conclusion of the above theorem, in

particular, if d,=d,=:--=d, =2 ,the spectrum of
0(d,.,d,, --,d,) Laplace matrix is as follows:
Corollary5.2.2: Let d, =d, =---=d, =2 ,the generalized

hypercube Q(d,,d,, -,d,) have n+1 different eigenvalues,

and its Laplacian spectrum is given by

SpL(Q(dl,dz,---,d,,»:[Cg(dl_l)o C}T(Zl_l)l
(n—1yd, nd, ]
Crld, -n"" Cid-n")
Specifically, if d,=d,=---=d,=2, 0(d,,d,,--,d,)

reduces to hypercube Q(n), and its Laplacian spectrum is

0 2 - 2(n-1) 2n
Sp L(Q(n)):[co C! o CnJ'

n

This result is consistent with the conclusion in the
literature [11].

VI. THE ENERGY OF Q(d,,d,,--,d,)

Lemma 6.1:[13]
LE(G)=E(G).

Based on the conclusion of the adjacency spectrum and

Laplacian spectrum of Q(d,,d,, :-,d,) , and its regularity

For any regular graph G ,

degree, O(dy,dyyryd,) is A=3d.—n and the
i=1

programming approach for computing the energy and
Laplace energy of Q(d,,d,,-:-,d,) can be obtained as
follows:

Algorithm 6.2:

Input: Input n and n variables of d,,d,,---,d,;

Step1: Design the adjacent matrix of O(d,,d,, --,d,) and
the program command for commuting its characteristic
polynomial;

Step2: Solve the characteristic polynomial equal to zero to
obtain the eigenvalue and design the program command for
computing them;

Step 3: According to the energy definition, the absolute
value of the eigenvalue is found and summed up.

Output: Adjacent matrix, factorization of characteristic
polynomial, eigenvalue, energy of O(d,,d,, -,d,) .

Example 3: To compute the energy of 0(2,3,4).

Solution: After the MATLAB programming command, the
energy of 0(2,3,4)is 48 .

VIL

Based on the structures and properties of the generalized
hypercube O(d,,d,, --,d,) , we have derived expressions
for its adjacency and Laplace spectra. As an application of
these results, we consider its energy problem. This is of great
relevance in studying the structural properties of
o(d,,d,,--,d,) in a new perspective. Meanwhile,
MATLAB is used to verify the conclusion and design
program commands for deriving the adjacency spectrum,
Laplacian spectrum and energy of Q(d,,d,,:--,d,) with

given parameters d,,d,, --,d, . In future work, we plan to

SUMMARY

extend our study to the spectral theory of other important
interconnection networks.
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APPENDIX

The analysis and visualization procedure for the adjacency
matrices of generalized hypercube Q(d,,d,,--,d,) is as

follows:

n = input('Enter the number of variables n: ');
d = zeros(1, n);

fori=1:n
d(i) = input(['Enter d' num2str(i) ' ="]);
end

matrix_size = prod(d);
A_total = zeros(matrix_size);
fori=1l:n
I di=eye(d(1));
K _di = ones(d(i)) - eye(d(i));
A i=1;
forj=1mn
ifj==i
A i=kron(A i, K di);
else
A _i=kron(A i, eye(d(j)));
end
end
A total = A total + A _i;
end
disp('Final adjacency matrix A_total:");
disp(A_total);
syms lambda;
result = det(lambda * eye(matrix_size) - A_total);
factor_result = factor(result);
disp('Factorized determinant:');
disp(factor_result);
eigenvalues A total = eig(A_total);
disp('Eigenvalues of A_total:");
disp(eigenvalues A_total);
sum_abs_eigenvalues = sum(abs(eigenvalues A_total));
disp("Sum of absolute values of eigenvalues:");
disp(sum_abs_eigenvalues);
G = graph(A_total);
node_labels = arrayfun(@num?2str, 1:matrix_size,
'UniformOutput', false);
figure;
p = plot(G, 'Layout', 'force', 'NodeLabel', node labels,
'MarkerSize', 7);
p.EdgeColor = 'k';
p.NodeColor = 'k';
title('Graph of adjacency matrix A_total');
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