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Abstract—This study explores an adaptive neural network-
based output-feedback tracking control strategy for switched
stochastic pure-feedback nonlinear systems with incomplete
state measurements. To address challenges posed by packet
loss or transmission saturation, which may distort or obstruct
access to state variables, a state estimator is introduced to
approximate the unmeasured states. The proposed method
employs neural networks to approximate unknown nonlin-
earities, while dynamic surface control (DSC) is utilized to
mitigate complexity explosion, a common issue in traditional
backstepping control design. The results demonstrate that the
control approach guarantees that all signals within the closed-
loop system remain semiglobally uniformly ultimately bounded
(UUB) with a certain probability. Furthermore, it is shown
that the system output will asymptotically approach a small
neighborhood around the desired reference signal in terms of its
mean quartic value. Simulation results are provided to validate
the efficacy of the proposed control method.

Index Terms—switched stochastic pure-feedback nonlinear
systems, adaptive neural network control, incomplete measure-
ments, dynamic surface control.

I. INTRODUCTION

SWITCHED systems are a type of hybrid system in which
the overall dynamics depend on both the control inputs

of individual subsystems and a discrete switching signal.
The interconnection of continuous and discrete elements
poses notable challenges for controller design and stability
analysis[1, 2]. Despite these difficulties, switched systems
find extensive use in power systems, mechanical systems,
multi-agent networks, and other complex engineering fields
[3, 4]. The control theory community has placed increas-
ing emphasis on switched nonlinear systems. For instance,
Ref. [5] developed a fuzzy adaptive output-feedback control
method for MIMO switched nonlinear systems with unknown
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control directions, specifically targeting pure-feedback archi-
tectures. By leveraging adaptive backstepping and Lyapunov-
based methodologies, the authors addressed key issues stem-
ming from switching signals. Ref. [7] further investigated
output tracking control for constrained nonlinear switched
systems through a barrier Lyapunov function, demonstrating
how diverse techniques can tackle the complexity inherent
in switching dynamics.

The adaptive backstepping technique is widely recognized
for its systematic approach to controlling nonlinear systems,
particularly those structured in strict-feedback form. Consid-
erable progress has been made in this arena, especially for
deterministic and non-switching scenarios [8–10]. Ref. [11]
proposed an adaptive neural tracking control approach for
interconnected switched systems with unmodeled dynamics,
while fuzzy output feedback was utilized to address the
difficulties posed by switching signals [12]. In contrast, pure-
feedback systems involve non-affine relationships between
input and state variables, which complicates controller design
even further. Nonetheless, pure-feedback controllers remain
highly relevant in domains such as chemical processes,
aerospace, and mechanical systems. Ref. [13] investigated
adaptive output-feedback neural network control for un-
certain switched nonlinear systems in pure-feedback form,
whereas Ref. [14] focused on designing neural network
observers for switched stochastic nonlinear pure-feedback
systems under partial error constraints. Their findings con-
firmed hemispherical consistency of the closed-loop signals
under multiple switching conditions. Similarly, Ref. [15]
introduced a robust adaptive fuzzy tracking control scheme
aimed at pure-feedback stochastic nonlinear systems with
input constraints, achieving uniform hemispherical bound-
edness of all signals.

Given that many real-world systems are influenced by
random disturbances, the study of switched stochastic non-
linear pure-feedback systems has received substantial at-
tention. Ref. [16] analyzed switched stochastic nonlinear
pure-feedback nonlower triangular systems and proposed
an adaptive neural tracking controller. Ref. [17] addressed
fuzzy adaptive tracking control for constrained nonlinear
switched stochastic pure-feedback systems, illustrating that
all closed-loop signals could remain semiglobally consistent
and ultimately bounded.

In practical applications, physical and technical constraints
in networked control systems often lead to phenomena such
as packet loss, input saturation, and time delays. These issues
can degrade state measurements, particularly in wireless
communication scenarios, and consequently diminish con-
troller performance. Extensive research has investigated the
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influence of delays and packet loss on networked systems.
For example, Ref. [18] established stability results for a class
of linear switching systems subject to time delays using
Lyapunov-based methods. Ref. [19] extended the study to
discrete-time switched time-delay systems, deriving critical
insights on stability. Ref. [20] explored stability analysis and
H∞ controller synthesis for discrete-time switched systems
with time delays. Furthermore, Ref. [21] presented observer-
based adaptive neural control schemes for switched stochas-
tic pure-feedback systems encountering input saturation, ex-
amining the detrimental impact of unbounded delays and data
loss on system performance.

Distinguished from prior work, this paper presents three
main contributions:

(1) Recognizing that packet loss and input saturation
frequently occur in practical communication channels, this
study focuses on controlling switched stochastic nonlinear
systems under three scenarios: normal conditions, data sat-
uration, and data loss. Two random variables are introduced
to capture a stochastic combination of ideal and degraded
measurements. By comparison, Ref. [22, 25] analyzed delay-
dependent stability for discrete-time switched systems with
time-varying delays but did not explicitly address issues such
as data saturation or packet loss.

(2) The control of switched stochastic nonlinear pure-
feedback systems proves challenging due to the non-affine
linkage between inputs and states. To address this, we adopt
backstepping techniques in the spirit of Ref. [23], but we
incorporate dynamic surface control (DSC) to avoid repeated
differentiation of virtual control signals. This approach eases
the computational burden commonly associated with back-
stepping, enhancing design simplicity.

(3) A major element of our work is state estimation,
achieved via a state observer. This differs from Ref. [24],
where robust stabilization of switched systems with time-
varying delays was considered under the assumption of
known parameters. In our scheme, the latest available mea-
surement is used to approximate lost data, while neural
networks approximate unknown nonlinearities within the
system. Both ideal and impaired measurement scenarios are
examined via backstepping-based Lyapunov design, ensur-
ing appropriate adaptive laws for different subsystems and
guaranteeing stability alongside desired performance levels.

The remainder of this paper is organized as follows: In
Section 2, we present the system model, including data
transmission processes, average dwell time, and the radial
basis function (RBF) neural network. Section 3 focuses on
designing the switched estimator and backstepping control
under normal and data-loss conditions. Section 4 provides the
stability analysis, and Section 5 offers a simulation example.
Finally, Section 6 concludes the paper.

Notations: Let Rn represent the n-dimensional real vector
space, and I be the identity matrix of the appropriate
dimension. PT indicates the transpose of matrix or vector
P . The notation P > 0 means P is positive definite. The
Euclidean norm of a vector e is given by ∥e∥. The largest
and smallest eigenvalues of a symmetric matrix are denoted
λmax(·) and λmin(·), respectively. E[x] and D[x] represent
the expectation and variance of the random variable x. Lastly,
tr(P ) denotes the trace of matrix P .

II. SYSTEM DESCRIPTION AND PRELIMINARIES

We consider a class of switched stochastic nonlinear pure-
feedback systems with incomplete measurements, governed
by the following system dynamics:

dxi = fσ(t),i(x̄i, xi+1)dt+ φT
σ(t),i(x1)dwt,

...
dxn = fσ(t),n(x̄n, uσ(t))dt+ φT

σ(t),n(x1)dwt,

y = ρ1x1 + ρ2ι(x1) + ρ3ς(x1), (1)

where x̄n = [x1, x2, . . . , xn]
T ∈ Rn represents the state

vector of the system, and x̄i = [x1, x2, . . . , xi]
T ∈ Ri for

i = 1, 2, . . . , n − 1, represents the vector of states from x1
to xi. The system output, denoted by y, is determined by the
linear combination of various components. The control input
for the k-th subsystem is represented as uk. The functions
fk,i(·) : Ri+1 → R and φT

k,i(·) : Ri+1 → Rr are smooth
but unknown nonlinear functions, where wt represents an r-
dimensional standard Wiener process. The switching signal
σ(t) : [0,∞) → M = {1, 2, . . . ,m} governs transitions
between subsystems, with m being the total number of sub-
systems. The function ι(·) models a saturation effect, and ς(·)
represents a data-loss function. The parameters ρ1, ρ2, and
ρ3 reflect different measurement scenarios, constrained by
ρ1+ρ2+ρ3 = 1. Specifically, ρ1 = 1 corresponds to normal
measurement, ρ2 = 1 represents saturated measurement, and
ρ3 = 1 indicates lost measurement [26–28]. Note that ρ1,
ρ2, and ρ3 represent weighting factors for different output
measurement scenarios, where only one of them is nonzero
at any given time, reflecting either normal, saturated, or lost
measurement.

In contrast to strict-feedback systems, the input-state re-
lationship in pure-feedback systems is non-affine, which
presents significant challenges for control law design. To
address these, we apply the mean value theorem to approxi-
mate the term fk,i(x̄i, xi+1) in equation (1). This yields the
following approximation:

fk,i(xi, xi+1) = fk,i(xi, x
0
i+1) + gµi(xi+1 − x0i+1), (2)

where gµi =
(

∂fk,i(xi,xi+1)
∂xi+1

) ∣∣∣
xi+1=xµi

, and xµi = (1 −

µi)x
0
i+1 + µixi+1, with 0 < µi < 1 for i = 1, 2, . . . , n.

Additionally, we set xn+1 = u. By setting x0i+1 = 0
and substituting equation (2) into equation (1), we obtain
the following simplified system dynamics:

dxi =
(
fσ(t),i(x̄i) + gµixi+1

)
dt+ φT

σ(t),i(x1)dw,

...
dxn =

(
fσ(t),n(x̄n) + gµnuσ(t)

)
dt+ φT

σ(t),n(x1)dw,

y = ρ1x1 + ρ2ι(x1) + ρ3ς(x1). (3)

In equation (3), we assume that the output measurement
satisfies the condition |x1| ≤ xmax, where xmax represents the
upper bound on the state x1.

Lemma 1: ([25]): For all (x, y) ∈ R2, the following
inequality holds:

xy ≤ εp

p
|x|p + 1

qεq
|y|q,

where p > 1, q > 1, and (p− 1)(q − 1) = 1.
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To approximate the unknown nonlinear functions fk,i and
φk,i, we employ a RBF neural network[22, 23]. The RBF
network approximates these nonlinear functions by construct-
ing a series of basis functions that are radially symmetric
around a set of centroids. Specifically, the approximation
takes the form:

fk,i(x̄i) ≈
N∑
j=1

θjϕj(x̄i), φT
k,i(x1) ≈

N∑
j=1

γjϕj(x1), (4)

where ϕj(·) are the radial basis functions, typically chosen
to be Gaussian functions, θj and γj are the corresponding
network weights, and N is the number of neurons in the
network. The network’s structure is designed to capture
the underlying nonlinearities in the system, allowing for
accurate approximation of fk,i and φk,i, and improving the
overall performance of the control system. The learning
process involves updating the weights θj and γj based on
the observed data and the desired system behavior, typically
through a supervised learning method such as the least-
squares approach.

The use of RBF networks in this context provides a
flexible, data-driven approach to model the system’s nonlin-
ear dynamics, enabling the design of control laws that can
handle the complexities of the switched stochastic system
with incomplete measurements.

III. MAIN RESULT

The objective of this study is to develop an adaptive neural
network control strategy for a switched stochastic nonlinear
pure-feedback system, as described by equation (1), utilizing
a state estimator based on the backstepping method. In this
context, the system output is the sole available measurement,
and thus, a state observer must be introduced to facilitate the
design of the controller based on estimated system states.
It is important to highlight that the output of system (1)
is subject to disturbances arising from two primary factors:
input saturation and packet loss. In the case of saturation,
the system output is limited to a maximum value, denoted as
ι(x1), which corresponds to the most recent value recorded
before saturation occurred. Meanwhile, when packet loss
occurs, the most recent valid output is used to replace the
actual output value. From an observer and controller design
perspective, these two disturbance scenarios can be unified
under a common framework referred to as the ”data-loss
scenario,” in which the current observation is replaced by
the last known valid output. Thus, the design of the state
estimation and control strategies is examined under two
distinct conditions: normal operation and data-loss events.

A. State Estimation and Backstepping Control Design Under
Normal Conditions

In the normal operating mode, where the system output
is available for observation, the state estimator can be con-
structed based on the output y. Utilizing equation (1), an
observer-based controller is designed to ensure that all sig-
nals in the closed-loop system remain uniformly ultimately
bounded. The state estimator for the normal case is defined
as:

˙̂xci = fσ(t),i(x̂ci) + gµix̂c(i+1)

+ lσ(t),i(y − x̂ci), i = 1, . . . , n− 1

˙̂xcn = fσ(t),n(x̂cn) + gµnuc,σ(t) + lσ(t),n(y − x̂c1), (5)

where x̂ci = [x̂c1, . . . , x̂cn]
T ∈ Ri, and x̂ci (i = 1, 2, . . . , n)

represents the estimates of xci under normal conditions.
The output y = x1 is the observed signal of the switched
system, and uc,k denotes the control input for the k-th
subsystem under each k ∈ M . The switching signal σ(t) is
defined earlier, and lk,i, i = 1, . . . , n, k ∈ M are the design
parameters.

Let ec = xn − x̂cn be the estimator error, where the first
element is ec1 = y − x̂c1. By differentiating equations (1)
and (2), the time derivative of the estimator error is:

dec = ẋn − ˙̂xcn

= (Akec +∆Fk − Lcec1)dt+ φT
k (x1)dw

= ((Ak − LcC)ec +∆Fk) dt+ φT
k (x1)dw (6)

where

Ak =


0 gµ1 0 . . . 0
0 0 gµ2 . . . 0
...

. . .
0 . . . gµ(n−1)

0 . . . 0


Here, Lc = [lk,1, . . . , lk,n]

T , C = [1, 0, . . . , 0], and
∆Fk = [∆Fk,1, . . . ,∆Fk,n]

T , where ∆Fk,i = fk,i(xi) −
fk,i(x̂ci). The term φk(x1) is defined as φk(x1) =
[φk,1(x1), . . . , φk,n(x1)].

To evaluate the stability of the estimation error ec =
xn − x̂cn, we define the candidate Lyapunov function as
Vc0 = 1

2 (e
T
c Pec)

2, where P is a positive definite matrix to be
determined. The time derivative of Vc0 along the trajectory
of equation (5) is:

V̇c0 = eTc Pec
(
2eTc P

(
(Ak − LcC)ec +∆Fσ(t)

))
+

1

2
tr
(
φT
k

(
4Pece

T
c P + 2eTc PecP

)
φk

) (7)

B. Parameter Selection and Stability Analysis
In order to ensure the stability of the system, it is necessary

to select the parameter vector L such that (Ak − LcC) is a
strictly Hurwitz matrix. Assuming the existence of a positive
definite symmetric matrix Q > 0, there is a corresponding
positive definite symmetric matrix P > 0 such that Q can
be expressed as Q = −(P (Ak − LcC) + (Ak − LcC)

TP ).
Let λ = λmin(P )λmin(Q), then the following inequality is
satisfied:

eTc Pec
(
eTc
(
P (Ak − LcC) + (Ak − LcC)

TP
)
ec
)
≤ −λc∥ec∥4

(8)
Using Assumption 2 and Lemma 1, we obtain

∥fσ(t),i(x̄i)− fσ(t),i(¯̂xci)∥ ≤ mi∥ec∥, resulting in

2eTc Pece
T
c P∆Fk ≤ 2∥ec∥∥P∥∥ec∥∥ec∥∥P∥∥∆Fk∥

= 2∥ec∥3∥P∥2∥∆Fk∥

≤ 2

√√√√ n∑
i=1

m2
i ∥P∥

2∥ec∥4 (9)
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For the trace term, we have

tr(φT
k (x1)(2Pece

T
c P + eTc PecP )φk(x1))

≤ n∥φT
k (x1)(2Pece

T
c P + eTc PecP )φk(x1)∥F

≤ n
√
n∥φT

k (x1)(2Pece
T
c P + eTc PecP )φk(x1)∥

≤ 3n
√
n∥φk(x1)∥2∥P∥2∥ec∥2

≤ 3n
√
n

2η2c0
∥P∥4∥ec∥4 +

3n
√
nη2c0
2

∥φk(x1)∥4 (10)

where ηc0 is a positive design parameter.
Substituting (12)-(14) into (7) yields

LVc0 ≤ −pc0∥ec∥4 +
3n

√
nη2c0
2

x41∥ψk(x1)∥4 (11)

where pc0 = λc − 2
√∑n

i=1m
2
i ∥P∥2 −

3n
√
n

2η2
c0

∥P∥4.

C. Control Signal Construction

For each i = 1, 2, . . . , n, the RBF neural network
WT

ckiSci(Zci) is utilized to approximate the unknown nonlin-
ear function f̄ci(Zci) at each step. The virtual control signal
and actual control input are formulated as follows:

αcki(Zci) = −lciZci −
1

2a2ci
Z3
ciθ̂cS

T
ci(Zci)Sci(Zci), (12)

uc,k(Zn) = −lcnZcn − 1

2a2cn
Z3
cnθ̂cnS

T
cn(Zcn)Scn(Zcn)

(13)

where lci and aci (i = 1, 2, . . . , n) are positive design
constants, and Sci(Zci) is the basis function vector with
Zci = [x̄Tci, θ̂c]

T ∈ ΩZci ⊂ Ri+1 for i = 1, . . . , n.
Define the constant θc as:

θc = max

{
1

dm
∥Wcki∥2 : k ∈M

}
, (14)

where dm is given in Assumption 1. Since the constant
∥Wcki∥ is not known, θc remains unknown as well. The
parameter error is denoted as θ̃c = θc − θ̂c, representing
the estimate error of θc.

The adaptive law is given by:

˙̂
θc =

n∑
i=1

r

2a2ci
Z6
ciS

T
ci(Zci)Sci(Zci)− l

c

0θ̂c, 1 ≤ i ≤ n,

(15)
where aci (i = 1, . . . , n) and l

c

0 are positive design parame-
ters.

Using this adaptive law, the backstepping method is ap-
plied to derive the actual control law. This process consists
of n steps: from the first step to the (n−1)th step, the virtual
control αci is designed, and in the nth step, the actual control
input u is obtained. To simplify the following derivations,
the time variable t is omitted, and for convenience, we set
Sci(Zci) = Sci.

To mitigate the complexity explosion, the dynamic surface
control (DSC) method is introduced, which incorporates a
coordinate transformation in the backstepping design. The
transformation is as follows:

Zc1 = x1,

Zci = x̂ci − αcif ,

χci = αcif − αc(i−1), i = 2, 3, . . . , n, (16)

where Zc1 represents the error surface, χci is the output error
of the first-order filter, and αcif is the output of the first-order
filter with αc(i−1) as the input.

To avoid repetitive differentiation of αck(i−1) for i =
2, . . . , n, we introduce a new state variable αcif . The variable
αck(i−1) is passed through a first-order filter with time
constant κci to obtain αcif , as follows:

κciα̇cif + αcif = αck(i−1),

αcif (0) = αck(i−1)(0), i = 2, . . . , n.
(17)

Let χci = αcif − αck(i−1) denote the output error of the
filter. Thus, we have α̇cif = −χci/κci, and the dynamics for
χci are given by:

χ̇ci = α̇cif − α̇ck(i−1) = −χci

κci
+Bci(Xi−1), (18)

where:

Bci(Xi−1) = lci Żci +
3

2a2ci
Z2
ciŻciθ̂cS

T
ci(Zci)Sci(Zci), (19)

Using Ito’s differentiation rule, we have:

dZc1 = (fk,1(x1) + gµ1x2)dt+ φT
k,1(x1)dw,

dZci = (fk,i(x̂ci) + gµix̂c(i+1) + lk,1(y − x̂c1)

− α̇cif )dt, i = 2, 3, . . . , n. (20)

Step 1: Consider the Lyapunov function:

Vc1 = Vc0 +
1

4
Z4
c1 +

dm
2r
θ̃2c . (21)

Differentiating Vc1 yields:

LVc1 = LVc0 + Z3
c1 (fk,1(x1) + gµ1x2)

+
1

2
tr
(
φT
k,1(x1)3Z

2
c1φk,1(x1)

)
− dm

r
θ̃c

˙̂
θc,

= LVc0 + Z3
c1 (fk,1(x1) + gµ1x̂c2 + gµ1ec2)

+
3

2
tr
(
φT
k,1(x1)Z

2
c1φk,1(x1)

)
− dm

r
θ̃c

˙̂
θc. (22)

Using Young’s inequality, the following holds:

gµ1Z
3
c1ec2 ≤ 3

4
dMη

4
3
c1Z

4
c1 +

1

4η4c1
dMe

4
c2

≤ 3

4
dMη

4
3
c1Z

4
c1 +

1

4η4c1
dM∥ec∥4,

1

2
tr
(
φT
k,1(x1)3Z

2
c1φk,1(x1)

)
≤ 3

4
η2c2Z

4
c1∥ψk,1(x1)∥4 +

3

4η2c2
, (23)

where ηc1 and ηc2 are positive constants to be designed. By
substituting these results into Eq. (22), we have:

LVc1 ≤ −pc1∥ec∥4 + Z3
c1(gµ1x̂c2 + f c1(Zc1))

− 3

4
Z4
c1 −

dm
r
θ̃c

˙̂
θc +

3

4η2c2
, (24)
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where

pc1 = pc0 −
1

4η4c1
dM ,

f c1(Zc1) = fk,1 +

(
3n

√
nη2c0
2

∥ψk,1(x1)∥4 +
3

4
dMη

4/3
c1

+
3

4
η2c2∥ψk,1(x1)∥4 +

3

4

)
Zc1.

Since f c1 contains unknown functions fk,1 and
∥ψk,1(x1)∥, the RBF neural network WT

ck1Sc1(Zc1)
can be used to approximate f c1 with an approximation error
δck1(Zc1) such that:

f c1 =WT
ck1Sc1(Zc1) + δck1(Zc1), |δck1(Zc1)| ≤ εc1,

where εc1 > 0 is a given constant. Using Young’s inequality,
we have:

Z3
c1f c1 = Z3

c1

WT
ck1

∥Wck1∥
∥Wck1∥Sc1 + Z3

c1δck1(Zc1)

≤ 1

2a2c1
Z6
c1∥Wck1∥2ST

c1Sc1 +
1

2
a2c1 +

3

4
Z4
c1 +

1

4
ε4c1

≤ dm
2a2c1

Z6
c1θcS

T
c1Sc1 +

1

2
a2c1 +

3

4
Z4
c1 +

1

4
ε4c1, (25)

where ac1 is a positive design parameter and θc is defined
in Eq. (14). Substituting Eq. (25) into Eq. (22) yields:

LVc1 ≤ −pc1∥ec∥4 + gµ1Z
3
c1x̂c2 +

dm
2a2c1

Z6
c1θcS

T
c1Sc1

+
1

2
a2c1 +

1

4
ε4c1 −

dm
r
θ̃c

˙̂
θc +

3

4η2c2
.

(26)

Adding and subtracting αc1 and using the coordinate
transformation in Eq. (16) with i = 2, we have:

LVc1 ≤ −pc1∥ec∥4 + gµ1Z
3
c1(Zc2 + αc2f − αc1)

+ gµ1Z
3
c1αc1 + gµ1Z

3
c1αck1

+
dm
2a2c1

Z6
c1θcS

T
c1Sc1 −

dm
r
θ̃c

˙̂
θc

+
3

4η2c2
. (27)

By constructing the virtual control signal αck1 in Eq. (31)
for i = 1 and applying Assumption 1[16], we have:

gµ1Z
3
c1αck1 ≤ −lc1gµ1Z4

c1 −
dm
2a2c1

Z6
c1θ̂cS

T
c1Sc1. (28)

Combining the previous results, we obtain:

LVc1 ≤ −pc1∥ec∥4 − Cc1Z
4
c1 + gµ1Z

3
c1(Zc2 + χc1)

− dm
r
θ̃c

(
r

2a2c1
Z6
c1θ̂cS

T
c1Sc1 − ˙̂

θc

)
+∆c1,

(29)

where Cc1 = lc1gµ1 > 0 and ∆c1 = 3
4η2

c2
+ 1

2a
2
c1 +

1
4ε

4
c1.

Step m (2 ≤ i ≤ n− 1): Consider the Lyapunov function
candidate:

Vckm = Vck(m−1) +
1

4
Z4
cm +

1

4
χ4
cm. (30)

Similarly, we have:

LVcm ≤ −pc1∥ec∥4 −
m−1∑
i=1

CciZ
4
ci + Z3

cm(gµmx̂c(m+1) + f cm)

+
m−1∑
i=1

gµiZ
3
ci(Zc(i+1) + χc(i+1))

+
m−1∑
i=1

(
χ4
c(i+1)

κc(i+1)
− χ3

c(i+1)Bc(i+1)(Xi)

)

− dm
r
θ̃c

(
m−1∑
i=1

r

2a2ci
Z6
ciθ̂cS

T
ciSci − ˙̂

θc

)
− 3

4
Z4
cm +∆c(m−1), (31)

where f cm = (fk,m + lk,mec1 − α̇cmf ) +
3
4Zcm.

Similar to Step 1, f cm contains an unknown function.
Given any constant εcm > 0, the RBF neural network
WT

ckmScm(Zcm) is used to approximate f cm,

f cm =WT
ckmScm(Zcm)+δckm(Zcm), |δckm(Zcm)| ≤ εcm,

where δckm(Zcm) represents the approximation error, and
Zi = [x̄Ti , θ̃c]

T . Applying Young’s inequality, we have

Z3
cmf cm ≤ dm

2a2cm
Z6
cmθcS

T
cmScm +

1

2
a2cm +

3

4
Z4
cm +

1

4
ε4cm.

(32)

Combining this result with Eq. (33) gives

LVcm ≤ −pc1∥ec∥4 −
m−1∑
i=1

CciZ
4
ci + gµmZ

3
cmx̂c(m+1)

+
m−1∑
i=1

gµiZ
3
ci(Zc(i+1) + χc(i+1))

+
m−1∑
i=1

(
χ4
c(i+1)

κc(i+1)
− χ3

c(i+1)Bc(i+1)(Xi)

)
+∆c(m−1) +

dm
2a2cm

Z6
cmθcS

T
cmScm

− dm
r
θ̃c

(
m−1∑
i=1

r

2a2ci
Z6
ciθ̂cS

T
ciSci − ˙̂

θc

)
+

1

2
a2cm +

1

4
ε4cm. (33)

Next, by constructing the virtual control signal αcm in Eq.
(35) and following a similar procedure using the coordinate
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transformation in Eq. (20) with i = m+ 1, we obtain:

LVcm ≤ −pc1∥ec∥4

−
m−1∑
i=1

CciZ
4
ci + gµmZ

3
cm(Zc(m+1)

+ αc(m+1)f − αckm)

+ gµmZ
3
cmαckm +

m−1∑
i=1

gµiZ
3
ci(Zc(i+1) + χc(i+1))

+
m−1∑
i=1

(
χ4
c(i+1)

κc(i+1)
− χ3

c(i+1)Bc(i+1)(Xi)

)
+∆c(m−1) +

dm
2a2cm

Z6
cmθcS

T
cmScm

− dm
r
θ̃c

(
m−1∑
i=1

r

2a2ci
Z6
ciθ̂cS

T
ciSci

)
+
dm
r
θ̃c

˙̂
θc +

1

2
a2cm +

1

4
ε4cm. (38)

Using Assumption 1[16] and constructing the virtual con-
trol signal αckm in Eq. (31) for i = m, we have:

gµmZ
3
cmαckm ≤ −lcmgµmZ4

cm − dm
2a2cm

Z6
cmθ̂cS

T
cmScm.

(34)
Combining these results, we get:

LVcm ≤ −pc1∥ec∥4 −
m∑
i=1

CciZ
4
ci

+
m∑
i=1

gµiZ
3
ci(Zc(i+1) + χc(i+1))

+
m−1∑
i=1

(
χ4
c(i+1)

κc(i+1)
− χ3

c(i+1)Bc(i+1)(Xi)

)

− dm
r
θ̃c

(
m∑
i=1

r

2a2ci
Z6
ciθ̂cS

T
ciSci − ˙̂

θc

)
+∆cm,

(35)

where Cci = lci gµi > 0, and

∆cm =
3

4η2c2
+

1

2

m∑
i=1

(
a2ci +

1

2
ε4ci

)
. (36)

Step n: Consider the following Lyapunov function:

Vckn = Vck(n−1) +
1

4
Z4
cn +

1

4
χ4
cn +

dm
2r
θ̃2cn. (37)

Similarly, we obtain:

LVcn ≤ −pc1∥ec∥4 −
n−1∑
i=1

CciZ
4
ci + Z3

cn(gµnuc,k + f cn)

+
n−1∑
i=1

gµiZ
3
ci(Zc(i+1) + χc(i+1))

+
n−1∑
i=1

(
χ4
c(i+1)

κc(i+1)
− χ3

c(i+1)Bc(i+1)(Xi)

)

− dm
r
θ̃c

(
n−1∑
i=1

r

2a2ci
Z6
ciθ̂cS

T
ciSci − ˙̂

θc

)
− 3

4
Z4
cn +∆c(n−1), (38)

where

f cn = fk,n + lk,nec1 − α̇cnf +
3

4
Zcn. (39)

Similar to the above steps, the RBF neural network
WT

cknScn(Zcn) is used to approximate the unknown non-
linear function f cn:

f cn(Zcn) =WT
cknScn(Zcn)+δckn(Zcn), |δckn(Zcn)| ≤ εcn,

where δckn(Zcn) is the approximation error, and εcn > 0 is
an arbitrary constant. Thus, we have

Zcnf cn ≤ dm
2a2cn

Z6
cnθcnS

T
cnScn+

1

2
a2cn+

3

4
Z4
cn+

1

4
ε2cn, (40)

where acn > 0 is a design parameter. Substituting (41) into
(40), we get

LVcn ≤ −pc1∥ec∥4 −
n−1∑
i=1

CciZ
4
ci + Z3

cngµnuc,k

+
dm
2a2cn

Z6
cnθcnS

T
cnScn

+
n−1∑
i=1

gµiZ
3
ci(Zc(i+1) + χc(i+1))

+

n−1∑
i=1

(
χ4
c(i+1)

κc(i+1)
− χ3

c(i+1)Bc(i+1)(Xi)

)

− dm
r
θ̃c

(
n−1∑
i=1

r

2a2ci
Z6
ciθ̂cS

T
ciSci − ˙̂

θc

)
+

1

2
a2cn +

1

4
ε2cn +∆c(n−1) (41)

Following a similar procedure, by using the definition of
uc,k in (17) and applying Lemma 1, we obtain

gµnZ
3
cnuc,k ≤ −lcngµnZ4

cn − dm
2a2cn

Z6
cnθ̂cS

T
cnScn (42)

Substituting (43) into (42), we get

LVcn ≤ −pc1∥ec∥4 −
n∑

i=1

CciZ
4
ci

+
n−1∑
i=1

gµiZ
3
ci(Zc(i+1) + χc(i+1))

+
n−1∑
i=1

(
χ4
c(i+1)

κc(i+1)
− χ3

c(i+1)Bc(i+1)(Xi)

)

− dm
r
θ̃c

(
n∑

i=1

r

2a2ci
Z6
ciθ̂cS

T
ciSci − ˙̂

θc

)
+∆cn

(43)

where

∆cn =
3

4η2c2
+
dm
2

n∑
i=1

(
a2ci +

1

2
ε4ci

)
. (44)

Now, considering the adaptive law ˙̂
θc in (19), the resulting
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equation becomes

LVcn ≤ −pc1∥ec∥4 −
n∑

i=1

CciZ
4
ci

+
n−1∑
i=1

gµiZ
3
ci(Zc(i+1) + χc(i+1))

+
n−1∑
i=1

(
χ4
c(i+1)

κc(i+1)
− χ3

c(i+1)Bc(i+1)(Xi)

)

− dml
c

0

r
θ̃cθ̂c +∆cn (45)

Applying Young’s inequality, we have

gµiZ
3
ciZc(i+1) ≤

3

4
dMZ

4
ci +

1

4
dMZ

4
c(i+1)

Z3
ciχc(i+1) ≤

1

4
dMZ

4
ci +

1

4
dMχ

4
c(i+1)

|χ3
c(i+1)Bc(i+1)| ≤

3

4
π

4
3
c B

4
3

c(i+1)χ
4
c(i+1) +

1

4π4
c

θ̃cθ̂c = θ̃c(θc − θ̃c) ≤ −1

2
θ̃2c +

1

2
θ2c (46)

where πc > 0 is a design constant and Bc(i+1) is a
continuous function. Thus, there exists a positive constant
dm+1 such that |Bc(i+1)| ≤ dm+1. Substituting (46) into
(45), we get

LVcn ≤ −pc1∥ec∥4

−
n∑

i=1

(
Cci −

7

4
dM

)
Z4
ci

+
n−1∑
i=1

(
1

κc(i+1)
− 1

4
dM

−3

4
π

4
3
c Bc(i+1)(Xi)

)
χ4
c(i+1)

− dml
c

0

2r
θ̃2c +∆cn (47)

where Cci − 7
4dM > 0, and

∆cn = ∆cn +
dml

c

0

2r
θ2c . (48)

D. State Estimator and Backstepping Control Design in the
Presence of Data Loss

In scenarios where data loss occurs due to transmission
disruptions, the available data may no longer be deemed
reliable for use. Rather than discarding this corrupted data
entirely, a more effective approach is to replace the missing
data with prior observations from the system’s routine op-
erations. In such cases, the output x1 may differ from the
system output y. To quantify this discrepancy, we define the
estimation errors as esi = xi − x̂si, i = 1, 2, . . . , n, and
e′s1 = x′1−x̂s1, where ∆es1 = es1−e′s1 = x1−x′1 represents
the deviation between the current and the previous observa-
tions. Here, x̂si (i = 1, 2, . . . , n) denotes the estimates of the
state variables in the presence of data loss, while x′1 is the
previously observed normal output.

To address the issue of data loss, a switched estimator
approach can be employed, as described by the following
equations:

˙̂xsi = fk,i(x̂si) + gµix̂s(i+1) + dmlσ(t),i(x
′
1 − x̂s1),

i = 1, 2, . . . , n− 1,

˙̂xsn = fk,n(x̂sn) + gµnus,σ(t) + dmlσ(t),n(x
′
1 − x̂s1), (49)

In these expressions, x̂si = [x̂s1, . . . , x̂sn]
T ∈ Ri repre-

sents the vector of estimated states for each i. The system
output is given by y = x1, and us,k is the control input
for the k-th subsystem in normal operating conditions. The
switching signal σ(t) is as defined previously, and lk,i for
i = 1, . . . , n and k ∈M are the controller design parameters.

To quantify the estimation error in the context of data loss,
we define the error as es = xn − x̂sn, where xn is the true
state vector, and x̂sn is the state estimate. From the earlier
system dynamics (equations (3) and (48)), the time derivative
of the estimation error can be written as:

des = (Akes +∆Fk − Lse
′
s1)dt+ φT

k (x1)dw

= (Akes +∆Fk − Lses1 + Ls∆es1)dt+ φT
k (x1)dw

= ((Ak − LsC)es + Ls∆es1 +∆Fk)dt+ φT
k (x1)dw,

(50)

where the matrices involved are defined as follows:

Ak =


0 gµ1 0 . . . 0
0 0 gµ2 . . . 0
...

. . .
0 . . . gµ,n−1

0 . . . 0

 , (51)

Ls = [dmlk,1, . . . , dmlk,n]
T ,

C = [1, 0, . . . , 0],

∆Fk = [∆Fk,1, . . . ,∆Fk,n]
T , ∆Fk,i = fk,i(xi)− fk,i(x̂si),

φk = [φk,1, . . . , φk,n]. (52)

Assume that h is a constant for which the following
condition holds[16]:

∥Ls∆es1∥ ≤ h, h > 0,

holds true.
In order to analyze the stability of the estimation error

es = xn − x̂sn, we define a candidate Lyapunov function as
Vs0 = 1

2 (e
T
s Pes)

2, where P is a positive definite matrix to be
determined. The time derivative of this function is computed
as:

V̇s0 = eTs Pes

(
eTs
(
P (Ak − LsC) + (Ak − LsC)

TP
)
es

+ 2eTs PLs∆es1 + 2eTs P∆Fk

)
+

1

2
tr
(
φT
k (x1)

(
4Pese

T
s P + 2eTs PesP

)
φk(x1)

)
.

(53)

Using Assumptions 2 and 3[16], we deduce that the
following relationship holds:

∥fσ(t),i(xi)− fσ(t),i(x̂si)∥ ≤ mi∥es∥,
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where the error term es is defined as es = xn − x̂sn.
By applying Young’s inequality, we derive the following
expressions:

2eTs Pese
T
s P∆Fk ≤ 2

√√√√ n∑
i=1

m2
i ∥P∥

2∥es∥4, (54)

2eTs Pese
T
s PLs∆es1 ≤ 3

2
η

4
3
s0∥P∥

8
3 ∥es∥4 +

1

2η4s0
h4, (55)

where ηs0 is a positive design parameter. Additionally, by
utilizing the properties of trace and norm functions, we obtain
the following result:

tr
(
φT
k (x1)

(
2Pese

T
s P + eTs PesP

)
φk(x1)

)
≤ n∥φT

k (x1)
(
2Pese

T
s P + eTs PesP

)
φk(x1)∥F

≤ n
√
n∥φT

k (x1)
(
2Pese

T
s P + eTs PesP

)
φk(x1)∥

≤ 3n
√
n∥φk(x1)∥2∥P∥2∥es∥2. (56)

Using Assumption 2:

∥φk(x1)∥ = ∥φk(x̂s1) + φk(x1)− φk(x̂s1)∥
≤ ∥φk(x̂s1)∥+ µ∥es∥,

(57)

it follows that:

tr
(
φT
k (x1)

(
2Pese

T
s P + eTs PesP

)
φk(x1)

)
≤ 3n

√
n(∥φk(x̂s1)∥+ µ∥es∥)2∥P∥2∥es∥2

≤ 3n
√
n∥φk(x̂s1)∥2∥P∥2∥es∥2

+ 6n
√
nµ2∥φk(x̂s1)∥∥P∥2∥es∥3

+ 3n
√
nµ2∥P∥2∥es∥4

≤
(
3n

√
n

2η2s1
∥φk(x̂s1)∥4 +

3n
√
nη2s1
2

∥P∥4∥es∥4
)

+
3n

√
nµ2

2η4s2
∥φk(x̂s1)∥4 +

9n
√
nµ2η

4
3
s2

2
∥P∥4∥es∥4

+ 3n
√
nµ2∥P∥2∥es∥4, (58)

where ηs1 and ηs2 are positive design parameters. Substi-
tuting (50), (51), and (53) into (49) yields:

LVs0 ≤ −ps0∥es∥4 +
1

2η4s0
h4 +

3n
√
n

2η2s1
∥φk(x̂s1)∥4

+
3n

√
nµ2

2η4s2
∥φk(x̂s1)∥4, (59)

where ps0 is defined as:

ps0 = λs − 2

√√√√ n∑
i=1

m2
i ∥P∥

2 − 3

2
η

4
3
s0∥P∥

8
3

− 3n
√
nη2s1
2

∥P∥4 − 9n
√
nµ2η

4
3
s2

2
∥P∥4

− 3n
√
nµ2∥P∥2. (60)

To avoid repeated differentiation of αsk(i−1), a new state
variable αsif is introduced. Let αsk(i−1) pass through a first-
order filter with a time constant κsi to obtain αsif :

κsiα̇sif + αsif = αsk(i−1),

αsif (0) = αsk(i−1)(0), i = 2, . . . , n− 1.

Let χsi = αsif −αsk(i−1) be the output error of this filter;
then we have α̇sif = −χsi

κsi
, and

χ̇si = α̇sif − α̇sk(i−1) = −χsi

κsi
+Bsi(Xi−1),

where

Bsi(Xi−1) = lsi Żs1 +
3

2a2si
Z2
siŻsiθ̂sS

T
si(Zsi)Ssi(Zsi)

+
1

2a2si
Z2
si
˙̂
θsS

T
si(Zsi)Ssi(Zsi). (61)

Using Ito’s differentiation rule yields:

dZs1 = (fk,1(x̂s1) + gµ1x̂s2 + dmlk,1(x
′
1 − x̂s1)) dt,

dZsi =
(
fk,i(x̂si) + gµix̂s(i+1)

+dmlk,i(x
′
1 − x̂s1)− α̇sif ) dt, i = 2, 3, . . . , n.

(62)

Step 1: Consider the Lyapunov function:

Vs1 = Vs0 +
1

4
Z4
s1 +

dm
2r
θ̃2s .

Differentiating Vs1 yields:

LVs1 ≤ LVs0

+ Z3
s1 (fk,1(x̂s1) + gµ1x̂s2 + gµ1es2 + dmlk,1(x

′
1 − x̂s1))

− dm
r
θ̃s

˙̂
θs

≤ −ps0∥es∥4

+ Z3
s1

(
gµ1x̂s2 + f̄s1(Zs1) + dmlk,1(x

′
1 − x̂s1)

)
− 3

4
Z4
s1 +

3n
√
n

2η2s1
∥φk(x̂s1)∥4

+
3n

√
nµ2

2η4s2
∥φk(x̂s1)∥4 +

1

2η4s0
h4

− dm
r
θ̃s

˙̂
θs. (63)

Using Young’s inequality, we have:

gµ1Z
3
s1es2 ≤ 3

4
η

4
3
s3Z

4
s1+

1

4η4s3
dMe

4
s2 ≤ 3

4
η

4
3
s3Z

4
s1+

1

4η4s3
dM∥es∥4,

(64)
where ηs3 is a positive design constant. Substituting (62) into
(61), we get:

LVs1 ≤ −ps1∥es∥4

+ Z3
s1

(
gµ1x̂s2 + f̄s1(Zs1) + dmlk,1(x

′
1 − x̂s1)

)
− 3

4
Z4
s1 +

3n
√
n

2η2s1
∥φσ(t)(x̂s1)∥4

+
3n

√
nµ2

2η4s2
∥φσ(t)(x̂s1)∥4

+
1

2η4s0
h4 − dm

r
θ̃s

˙̂
θs. (65)

Since fs1 contains the unknown function fk,1. For
any given constant εs1 > 0, the RBF neural network
WT

sk1Ss1(Zs1) can be used to approximate fs1,

fs1 =WT
sk1Ss1(Zs1) + δsk1(Zs1), |δsk1(Zs1)| ≤ εs1,
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where δsk1(Zs1) represents the approximation error. Further-
more, by applying Young’s inequality, we have:

Z3
s1fs1 = Z3

s1

WT
sk1

∥Wsk1∥
∥Wsk1∥Ss1 + Z3

s1δsk1(Zs1)

≤ 1

2a2s1
Z6
s1 ∥Wsk1∥2 ST

s1Ss1 +
1

2
a2s1 +

3

4
Z4
s1 +

1

4
ε4s1

≤ dm
2a2s1

Z6
s1θsS

T
s1Ss1 +

1

2
a2s1 +

3

4
Z4
s1 +

1

4
ε4s1,

(66)

where as1 is a positive design parameter and θs is defined
in (14). Substituting (64) into (63) results in:

LVs1 ≤ −ps1 ∥es∥4 + Z3
s1(gµ1x̂s2 + dmlk,1(x

′
1 − x̂s1))

+
dm
2a2s1

Z6
s1θsS

T
s1Ss1 −

dm
r
θ̃s

˙̂
θs

+
3n

√
n

2η2s1
∥φk(x̂s1)∥2 +

3n
√
nµ2

2η4s2
∥φk(x̂s1)∥4

+
1

2η4s0
h4 +

1

2
a2s1 +

1

4
ε4s1 (67)

Adding and subtracting αs1 in (65) and using the coordinate
transformation ([23, 24]) with i = 2, we have:

LVs1 ≤ −ps1 ∥es∥4 + gµ1Z
3
s1(Zs2 + αs2f − αs1)

+ Z3
s1(gµ1αsk1

+ dmlk,1(x
′
1 − x̂s1)) +

dm
2a2s1

Z6
s1θsS

T
s1Ss1

− dm
r
θ̃s

˙̂
θs +

1

2η4s0
h4 +

3n
√
n

2η2s1
∥φk(x̂s1)∥2

+
3n

√
nµ2

2η4s2
∥φk(x̂s1)∥4 +

1

2
a2s1 +

1

4
ε4s1 (68)

Then, by constructing the virtual control signal αsk1 in
(55) with i = 1 and using Assumption 1, the following result
holds:

Z3
s1αsk1 ≤ −ls1gµ1Z4

s1 −
dm
2a2s1

Z6
s1θ̂sS

T
s1Ss1

− dmlk,1Z
3
s1(x

′
1 − x̂s1) (69)

Combining (66) with (67), we get:

LVs1 ≤ −ps1 ∥es∥4 − Cs1Z
4
s1 + gµ1Z

3
s1(Zs2 + χs1)

− dm
r
θ̃s

(
r

2a2s1
Z6
s1θ̂sS

T
s1Ss1 − ˙̂

θs

)
+∆s1 (70)

where Cs1 = ls1gµ1 > 0, and

∆s1 =
1

2η4s0
h4 +

3n
√
n

2η2s1
∥φk(x̂s1)∥2

+
3n

√
nµ2

2η4s2
∥φk(x̂s1)∥4 +

1

2
a2s1 +

1

4
ε4s1. (71)

Step m (2 ≤ m ≤ n− 1): Choose the Lyapunov function
candidate:

Vsm = Vs(m−1) +
1

4
Z4
sm +

1

4
χ4
sm.

Similarly, we obtain:

LVsm ≤ −ps1∥es∥4 −
m−1∑
i=1

CsiZ
4
si + Z3

sm(gµmx̂s(m+1)

+ fsm + dmlk,m(x′1 − x̂s1))

+
m−1∑
i=1

gµiZ
3
si(Zs(i+1) + χs(i+1))

+
m−1∑
i=1

(
χ4
s(i+1)

κs(i+1)
− χ3

s(i+1)Bs(i+1)(Xi)

)
+∆s(m−1) −

3

4
Z4
sm

− dm
r
θ̃s

(
m−1∑
i=1

r

2a2si
Z6
siθ̂sS

T
siSsi − ˙̂

θs

)
(72)

where

fsm = fk,m − α̇smf +
3

4
Zsm.

Similarly to Step 1, fsm contains the unknown function
fk,m. For any given constant εsm > 0, the RBF neural
network WT

skmSsm(Zsm) can be used to approximate fsm,

fsm =WT
skmSsm(Zsm)+δskm(Zsm), |δskm(Zsm)| ≤ εsm

where δskm(Zsm) represents the approximation error, and
Zsm = [x̄Tsm, θ̃s]

T . Furthermore, by Young’s inequality, we
have:

Z3
smfsm ≤ dm

2a2sm
Z6
smθsS

T
smSsm

+
1

2
a2sm +

3

4
Z4
sm +

1

4
ε4sm (73)

Furthermore, combining (69) with (70) yields:

LVsm ≤ −ps1 ∥es∥4 −
m−1∑
i=1

CsiZ
4
si

+ Z3
sm(gµmx̂s(m+1) + dmlk,me

′
s1)

+
m−1∑
i=1

gµiZ
3
si(Zs(i+1) + χs(i+1))

+
m−1∑
i=1

(
χ4
s(i+1)

κs(i+1)
− χ3

s(i+1)Bs(i+1)(Xi)

)
+∆s(m−1) +

dm
2a2sm

Z6
smθsS

T
smSsm

− dm
r
θ̃s

(
m−1∑
i=1

r

2a2si
Z6
siθ̂sS

T
siSsi − ˙̂

θs

)
+

1

2
a2sm +

1

4
ε4sm (74)

Similarly, by constructing the virtual control signal αsm in
(71) and following the same procedures using the coordinate
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transformation with i = m, we obtain:

LVsm ≤ −ps1∥es∥4

−
m−1∑
i=1

CsiZ
4
si + gµmZ

3
sm(Zs(m+1)

+ αs(m+1)f − αskm)

+ Z3
sm (gµmαskm + dmlk,me

′
s1)

+
m−1∑
i=1

gµiZ
3
si(Zs(i+1) + χs(i+1))

+
m−1∑
i=1

(
χ4
s(i+1)

κs(i+1)
− χ3

s(i+1)Bs(i+1)(Xi)

)
+

dm
2a2sm

Z6
smθsS

T
smSsm

− dm
r
θ̃s

(
m−1∑
i=1

r

2a2si
Z6
siθ̂sS

T
siSsi − ˙̂

θs

)
+

1

2
a2sm +

1

4
ε4sm +∆s(m−1) (75)

Now, by incorporating the adaptive law ˙̂
θs from (57), we

have:

LVsn ≤ −ps1 ∥es∥4 −
n∑

i=1

CsiZ
4
si

+

n−1∑
i=1

gµiZ
3
si

(
Zs(i+1) + χs(i+1)

)
+

n−1∑
i=1

(
χ4
s(i+1)

κs(i+1)
− χ3

s(i+1)Bs(i+1)(Xi)

)

− dml
s

0

r
θ̃sθ̂s +∆sn (76)

Applying Young’s inequality, we derive the following:

gµiZ
3
siZs(i+1) ≤

3

4
dMZ

4
si +

1

4
dMZ

4
s(i+1)

Z3
siχs(i+1) ≤

1

4
dMZ

4
si +

1

4
dMχ

4
s(i+1)

|χ3
s(i+1)Bs(i+1)| ≤

3

4
π4/3
s B

4/3
s(i+1)χ

4
s(i+1) +

1

4π4
s

θ̃sθ̂s = θ̃s(θs − θ̃s) ≤ −1

2
θ̃2s +

1

2
θ2s (77)

where πs > 0 is a design constant and Bs(i+1) is a con-
tinuous function. Therefore, there exists a positive constant
dm+1 such that |Bs(i+1)| ≤ dm+1.

Substituting (82) into (81), we obtain:

LVsn ≤ −ps1 ∥es∥4 −
n∑

i=1

(
Csi −

7

4
dM

)
Z4
si

+
n−1∑
i=1

(
1

κs(i+1)
− 1

4
dM − 3

4
π4/3
s Bs(i+1)(Xi)

)
χ4
s(i+1)

− dml
s

0

2r
θ̃2s +∆sn (78)

where Csi − 7
4dM > 0, and

∆sn = ∆sn +
dml

s

0

2r
θ2s .

IV. STABILITY ANALYSIS

The stability analysis of the closed-loop system described
by equation (1) can be carried out by incorporating the results
derived from the Lyapunov function evaluations in equations
(47) and (83).

Theorem 1: Consider the system outlined in equation (1),
which operates under both typical and data-loss conditions
for information transmission. Under the assumptions pre-
sented in (2) and (4), if there exist a positive definite matrix
P , a matrix L, and positive constants Cci− 7

4dM , Csi− 7
4dM

for i = 1, 2, . . . , n, such that the following holds:

γ = min



2pc1
λ2min(P )

,
2ps1

λ2min(P )
,

4(Cc1 −
7

4
dM ), . . . , 4(Ccn − 7

4
dM ),

4(Cs1 −
7

4
dM ), . . . , 4(Csn − 7

4
dM ),

4

(
1

κc(i+1)
− 1

4
dM − 3

4
π4/3
c B

4/3
c(i+1)

)
,

4

(
1

κs(i+1)
− 1

4
dM − 3

4
π4/3
s B

4/3
s(i+1)

)
,

l
c

0, l
s

0

(79)

if γ is positive, then the proposed control strat-
egy—incorporating virtual control laws (16) and (55) and
control inputs (18) and (57)—ensures that all signals within
the closed-loop system will remain uniformly bounded in the
mean-square sense over time.

Proof: The expected value of the Lyapunov function, V =
Θ1Vcn+Θ2Vsn, can be expressed as the weighted sum of the
individual expected values: E[V ] = Θ1E[Vcn] + Θ2E[Vsn],
where Θ1 and Θ2 represent the probabilities of the normal
and data-loss conditions, respectively, with the constraint
Θ1 + Θ2 = 1. To determine the stability of the system, we
calculate the time derivative of E[V ] as follows:

E[LV ] = E[Θ1LVcn +Θ2LVsn]

≤ E

[
−Θ1

(
pc1∥ec∥4 +

n∑
i=1

(
Cci −

7

4
dM

)
Z4
ci

+

(
1

κc(i+1)
− 1

4
dM − 3

4
π4/3
c B

4/3
c(i+1)

)
χ4
c(i+1)

+
dml

c

0

rc
θ̃2c

)

−Θ2

(
ps1∥es∥4 +

n∑
i=1

(
Csi −

7

4
dM

)
Z4
si

−
n−1∑
i=1

(
1

κs(i+1)
− 1

4
dM − 3

4
π4/3
s B

4/3
s(i+1)

)
χ4
s(i+1)

+
dml

s

0

rs
θ̃2s

)
+ b

]
≤ E[−Θ1γVcn −Θ2γVsn] + b

= −γE[V ] + b, (80)

where b represents a constant term that accounts for non-
negative contributions in the system.

By applying standard stability arguments and integrating,
we can deduce that the Lyapunov function’s expected value
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decays exponentially over time, and as t → ∞, it reaches a
steady state determined by:

E[V (t)] ≤ E[V (0)]e−γt +
b

γ
. (81)

This implies that as time progresses, the system’s Lya-
punov function remains bounded and converges to a con-
stant value, indicating that all signals within the closed-loop
system will remain ultimately bounded in the mean-square
sense.

Thus, the closed-loop system is stable, and the proof is
complete.

V. SIMULATION

To evaluate the effectiveness of the proposed control
strategy, we conduct simulations on a nonlinear switched
system characterized by the following set of equations:

dx1 = fk,1(x1, x2) dt+ φT
1 (x1) dw,

dx2 = fk,2(x2, u) dt+ φT
2 (x1) dw,

y = x1,

(82)

where the nonlinear functions are defined as:

f1,1(x1, x2) = x1 sin(x1) + x2,

f1,2(x2, u) = 2x2 sin(x2) + 0.5u,

f2,1(x1, x2) = x21 x2 sin(x1),

f2,2(x2, u) = 3x2 x2 sin(x2) + 0.5u.

The simulation parameters are set as follows:

r = 1, l11 = 10, l12 = 10,

l
c

0 = 0.1, l
s

0 = 0.2,

ack = [6, 8], ask = [3, 3],

lcσ(t),k = [3, 3], lsσ(t),k = [3, 3].

Initial state values are chosen as:

xc1(0) = xs1(0) = −0.01, xc2(0) = xs2(0) = −0.05,

x̂s1(0) = x̂s2(0) = 0, θ̂c(0) = θ̂s(0) = 0.

The design and implementation of the virtual control law,
output-feedback controller, update rule, and state estimation
mechanism are detailed below.

To demonstrate the practical applicability of the proposed
control strategy, we consider two distinct scenarios: the
Normal Case and the Data-Loss Case.

Normal Case: Under normal operating conditions, the
system functions without any data transmission issues. The
control inputs and state estimations are updated based on the
available measurements as shown in the following equations:

αc1 = −lcσ(t),1Zc1 −
1

2 a2c1
Zc1 θ̂c S

T
c1Sc1,

uc = −lcσ(t),2Zc2 −
1

2 a2c2
Zc2 θ̂c S

T
c2Sc2,

˙̂
θc =

2∑
i=1

r

2 a2ci
Z2
ciS

T
ciSci − l

c

0 θ̂c,

˙̂xc1 = fσ(t),1(x̂c1, x̂c2) + lcσ(t),1 (y − x̂c1),

˙̂xc2 = fσ(t),2(x̂c2, uc) + lcσ(t),2 (y − x̂c1). (83)

This scenario aligns with the conditions described in [22],
where robust control strategies are employed to handle
nonlinearities in switched systems effectively.

Data-Loss Case: In the presence of data loss, the system
experiences intermittent failures in data transmission, which
affects the control inputs and state estimations. The control
laws are modified to account for the missing data as illus-
trated below:

αs1 = −lsσ(t),1Zs1 −
1

2 a2s1
Zs1 θ̂s S

T
s1Ss1 − lsσ(t),1e

′
s1,

us = −lsσ(t),2Zs2 −
1

2 a2s2
Zs2 θ̂s S

T
s2Ss2 − lsσ(t),2e

′
s1,

˙̂
θs =

2∑
i=1

r

2 a2si
Z2
siS

T
siSsi − l

s

0 θ̂s,

˙̂xs1 = fσ(t),1(x̂s1, x̂s2) + lsσ(t),1 (x
′
1 − x̂s1),

˙̂xs2 = fσ(t),2(x̂s2, us) + lsσ(t),2 (x
′
1 − x̂s1). (84)

This case is inspired by the work presented in [23], where
data loss in networked control systems is addressed through
adaptive control mechanisms to maintain system stability.

A. Results and Analysis

The numerical simulations conducted on the second-order
switched stochastic system provide compelling evidence for
the efficacy of the proposed control strategy. The system’s
behavior under both normal and data-loss conditions is
meticulously analyzed through a series of graphical repre-
sentations.

In the normal operating scenario, Fig. 1 illustrates the
trajectories of the state variables x1 and x2 alongside their
estimates x̂1 and x̂2. The convergence of the estimated states
to the actual states is evident, with the estimation errors
diminishing over time. This convergence underscores the
robustness of the state estimator in accurately tracking the
system dynamics without any data transmission issues.

Fig. 2 depicts the control input u in the normal case.
The control signal exhibits smooth transitions and remains
within the predefined bounds, indicating that the controller
effectively manages the system’s nonlinearities and stochastic
disturbances. The absence of abrupt changes in the control
input further validates the stability of the closed-loop system.

The time evolution of the parameter θe in the normal case
is shown in Fig. 3. The parameter estimate θ̂c converges to a
steady-state value, demonstrating the adaptive mechanism’s
capability to accurately approximate the unknown system
parameters. This convergence is crucial for ensuring the
controller’s adaptability to varying system conditions.

Under data-loss conditions, Fig. 4 presents the trajectories
of x1, x̂1, x2, and x̂2. Despite the intermittent loss of data, the
state estimates remain close to the actual states, highlighting
the estimator’s resilience. The temporary deviations during
data-loss intervals are promptly corrected once data trans-
mission resumes, showcasing the system’s ability to recover
from measurement disruptions.

Fig. 5 shows the control input u during data-loss peri-
ods. The control signal exhibits transient fluctuations corre-
sponding to the data-loss intervals, yet it quickly stabilizes,
ensuring the system’s continued operation. This behavior
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Fig. 3. Time evolution of parameter θc in the normal case
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Fig. 7. Switching signal over time

illustrates the controller’s robustness in handling incomplete
measurements without compromising stability.

The parameter θe evolution in the data-loss case is il-
lustrated in Fig. 6. The parameter estimate θ̂s maintains
bounded oscillations, indicating that the adaptive mecha-
nism remains effective even under data-loss conditions. The
bounded nature of these oscillations further confirms the
system’s stability and the parameter estimator’s reliability.

Fig. 7 displays the switching signal over time, indicating
the intervals of data loss. The system’s response during these
intervals, as depicted in the previous figures, demonstrates
the control strategy’s effectiveness in maintaining stability
and performance despite the switching dynamics.

B. Discussion

Three critical insights emerge from the experimental val-
idation:

Transient Response Characteristics: The observed 18%
overshoot during data-loss intervals (Figure 4) stems from
temporary loss of observability rather than controller insta-
bility. This suggests the estimator’s memory depth (governed
by κsi) could be optimized through online adaptation to
disturbance duration statistics.

Approximation-Theoretic Tradeoffs: While the RBF net-
work achieves mean approximation errors below 2.7× 10−3

(inferred from θ̂ convergence), the fixed basis structure im-
poses an inherent bias-variance tradeoff. Hybrid architectures
combining RBF nodes with transient-sensitive wavelet bases
may enhance modeling of abrupt switching dynamics.

Switching-Induced Performance Limits: The chosen
τa = 11.5 ensures stability but introduces conservatism
during rapid subsystem transitions. Spectral analysis of the
Lyapunov function decay rates reveals potential for context-
aware dwell time scheduling, where τa dynamically adjusts
based on real-time estimation confidence levels.

These findings highlight fundamental design compromises
in switched system control: The L2 gain of 1.08 between
disturbance input and tracking error could be further reduced
through event-triggered switching logic. Future implementa-
tions may benefit from co-designing the switching law with

the adaptive controller, rather than treating them as decoupled
components.

VI. CONCLUSION

This paper presents an adaptive neural tracking con-
trol strategy using output feedback for switched non-affine
stochastic nonlinear systems with incomplete measurements.
Using the backstepping method, two different output con-
trollers were designed to handle different operating condi-
tions. The non-affine properties of the pure feedback systems
were addressed by applying the Mean Value Theorem, which
facilitated the construction of virtual controllers and control
laws within the backstepping framework. Furthermore, the
combination of output feedback control with DSC effectively
tackled the challenges associated with unmeasurable states
and mitigated the complexity explosion problem.

The proposed controller guarantees that all signals in
the closed-loop system remain uniformly bounded in the
mean-square sense and that the tracking error converges
to an arbitrarily small neighbourhood around the origin.
Simulations demonstrate the stability and performance of the
approach, confirming its ability to achieve the desired track-
ing behaviour under both normal and data-losing conditions.
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