
 

  

Abstract—This paper aims to demonstrate the necessary and 

sufficient conditions for the existence of a model order 

reduction of continuous-time linear systems using the Linear 

Matrix Inequality (LMI) method. Generally, systems derived 

from partial differential equations are of high order, making 

them inefficient and ineffective in terms of time and 

computational resources, requiring an observer for practical 

use. The solution involves using order reduction to produce a 

system that is similar and represents the properties of the 

original system using the LMI method. Through algebraic 

manipulations, it is concluded that the necessary and sufficient 

conditions for a system to have a minimal realization and be 

reducible involve the existence of certain positive definite 

matrices and a real matrix satisfying specific conditions 

obtained in this research. Furthermore, the lower bound and 

the infimum error of model order reduction problem are also 

stated in the subsequent discussion. With these findings, an 

algorithm is derived for obtaining an optimally reduced system 

using the LMI method. As a case study, the model order 

reduction with LMI method is applied to a heat conduction 

problem in continuous-time linear systems. The heat 

conduction problem is one of the cases on heat network and 

accordance with one of the themes in SDG 7. 

 

Index Terms—linear system, model order reduction, linear 

matrix inequality, heat conduction problem, heat network, 

scientific research. 
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I. INTRODUCTION 

n many practical scenarios, systems derived from 

mathematical models often possess high orders [1]. The 

order of a system refers to the dimension of the state space 

formed as an alternative realization of the system. An 

example of a high-order system arises from the 

discretization of partial differential equations, such as heat 

conduction problems [1]. In heat conduction problem, the 

input supplied to the system comprises a heat source while 

the observed output corresponds to the temperature 

distribution along a rod. One of the objectives of 

temperature observation along the rod is to investigate 

temperature stability across its entire surface. However, this 

task becomes challenging due to the continuous nature of 

the points on the rod surface. Consequently, observations 

are made by measuring temperatures at selected locations on 

the rod. When the more partitions are taken from the rod, 

then the closer of the representation gets to the original 

system. The number of partitions indicates the order of the 

resulting system, thus yielding in a high-order system [1]. 

High-order systems lead to high-order controllers, which, 

from a numerical computation and implementation 

perspective are often impractical [2]. This is due to the high 

costs and extended computational burden associated with 

such controllers, as well as increased likelihood of 

numerical errors. Moreover, high-order systems are not 

efficient as certain states might have negligible influence on 

the input and output characteristics. The impact of states on 

these characteristics is represented by the Hankel singular 

values [3]. Hence, high-order systems require reduction to 

lower orders, resulting in lower-order controllers. The 

reduction must still adequately represent the original system, 

which means the model order reduction error should be 

minimal using the measured 
  norm. 

Several methods are commonly used to reduce the order 

of systems, including Balanced Truncation (BT) and Linear 

Matrix Inequality (LMI) methods. The BT method reduces 

the system order based on the lower-ranked Hankel singular 

values [3], whereas the LMI method focuses on model order 

reduction to achieve a new system with minimal deviation 

from the original system [4]. The principle of LMI-based 

model order reduction aims to obtain a reduced system with 

an order lower than the original system while maintaining 

minimal error introduced by the reduction process. The error 

associated with the LMI approach is measured using the 
  

norm and denoted as 


)(sE . The LMI-based model order 
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reduction is performed by formulating linear matrix 

inequalities that transform the non-linear norm 


)(sE  into 

a linear matrix inequality. The study regarding the 

application of the LMI method in optimal control of satellite 

system models was conducted by [5]. Another research on 

model order reduction was carried out by [6], focusing on 

the dual reduction strategy for model reduction of periodic 

control systems. 

Let )(sG  represent the transfer function of the system 

with order n , and )(sGr
 represent the transfer function of 

the reduced system with order r  where nr  . The 
  

norm of the error introduced by model order reduction is 

expressed as 


− )()( sGsG r
. Utilizing the Bounded Real 

Lemma, 


− )()( sGsG r
 can be transformed into a matrix 

inequality by finding a positive real value   such that 

−


)()( sGsG r
. However, this matrix inequality is 

nonlinear, requiring algebraic manipulations to linearize it. 

The process of transforming non-linear matrix 

inequalities into linear matrix inequalities has been 

extensively studied by researchers. For instance, [7] derived 

the necessary and sufficient conditions for the existence of 

model order reduction through LMI-based approach. In [3], 

the authors provided an alternative derivation of necessary 

and sufficient conditions for the existence of model order 

reduction through LMI manipulation. The work in [3] also 

established lower bound and infimum for the error resulting 

from order reduction, along with an algorithm to obtain a 

suboptimal reduced system using the LMI method. Various 

alternatives for the necessary and sufficient conditions in the 

form of linear matrix inequalities, have been derived to 

facilitate understanding and implementation, particularly in 

the context of model order reduction. 

Based on the explanation above, the purpose of this 

research is to overcome the inefficiency and ineffectiveness 

of high-order systems in terms of time and calculation 

process. To solve this problem, the research establishes the 

necessary and sufficient conditions for the existence of 

model order reduction in continuous-time linear systems 

using the LMI method. Additionally, the research also 

determines the lower bound and infimum of the error 

resulting from model order reduction. An algorithm is 

designed to facilitate the attainment of lower-order reduced 

systems through a computational approach. As a case study, 

the LMI method is applied to a heat conduction problem, 

which demonstrates the practical application of the solution 

in the form of algorithm.  

II. MATRIX AND LINEAR SYSTEM 

In this section, the theoretical concepts of matrices and 

linear systems are discussed. These concepts are essential to 

support the research requirements and provide a basis for the 

subsequent analysis. 

Definition 1 [8] (Definite) An nn   symmetric matrix A  is 

said to be: 

a. positive definite if 0AxxT  for every 0x ; 

b. positive semidefinite if 0AxxT  for every x ; 

c. negative definite if 0AxxT  for every 0x ; 

d. negative semidefinite if 0AxxT  for every x ; 

where nRx  . 

Furthermore, a matrix A  that is positive definite, positive 

semidefinite, negative definite, and negative semidefinite is 

denoted by 0,0,0  AAA , and 0A , respectively. 

Additionally, BA   equivalent to 0− BA  or BA −  is a 

positive definite matrix. 

Definition 2 [8] (Schur Complement) Consider a square 

matrix A  partitioned as 








=

2221

1211

AA

AA
A  where 

11A  and 

22A  are also square matrices. 

a. If 
11A  is nonsingular, then 


















− −

2221

1211

1

1121

0

AA

AA

IAA

I









−
=

−

12

1

112122

1211

0 AAAA

AA  

and 








 −







 −

I

AAI

AA

AA

0

12

1

11

2221

1211










−
=

−

12

1

11212221

11 0

AAAAA

A , 

thus 








 −

















−

−

−
I

AAI

AA

AA

IAA

I

0

0
12

1

11

2221

1211

1

1121

 










−
=

−

12

1

112122

11

0

0

AAAA

A . 

Furthermore, the matrix 
12

1

112122 AAAA −−  is referred as 

the Schur Complement of 
11A , denoted by  . 

b. If 
22A  is nonsingular, then 
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 −
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Furthermore, the matrix 
21

1

221211 AAAA −−  is referred as 

the Schur Complement of 
22A , denoted by  . 

Theorem 3 [8] (Matrix Inversion Formula) Given a square 

matrix A  partitioned as 








=

2221

1211

AA

AA
A  with 

11A  and 

22A  also being square matrices.  

a. If 
11A  and 

12

1

112122 AAAA −−=  are both nonsingular, 

then 
1

2221

12111

−

−









=

AA

AA
A  

  









−

−+
=

−−−

−−−−−−

11

1121

1

1

12

1

11

1

1121

1

12

1

11

1

11

AA

AAAAAAA . 

b. If 
22A  and 

21

1

221211 AAAA −−=  are both nonsingular, 

then 
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1
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12111

−
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Theorem 4 [9] (Schur Complement Theorem) Let A  be a 

symmetric matrix partitioned as 








=

2212

1211

AA

AA
A

T
, where 

11A  and 
22A  are also symmetric matrices.  

 

The following statements are equivalent: 

a. 0A , 

b. 011 A  and 012

1

111222 − − AAAA T , 

c. 022 A  and 012

1

221211 − − TAAAA . 

Definition 5 [10] A linear time-invariant (LTI) system is 

defined as a linear differential equation with constant 

coefficients as follows: 

),()()(

),()()(

tuDtxCty

tuBtxA
dt

dx
tx

+=

+==                            (1) 

where nRtx )(  is called the state vector, pRtu )(  is 

called the input vector, qRty )(  is called the output 

vector, and DCBA ,,,  are constant real matrices of 

appropriate size. 

Furthermore, equation (1) is denoted by the system 

),,,( DCBA  and the solution of the system ),,,( DCBA  is 

 dBuexeuxtx

t

t

tAttA


−−

+=

0

0 )(),,( )(

0

)(

0
 

and the output vector )(ty  is 

)()(),,(

0

0 )(

0

)(

0 tDudBuexeCuxty

t

t

tAttA
+














+= 

−−  , 

where 
00)( xtx =  is called the initial value of the system. 

The vector space whose elements are state vectors is 

called the state space. 

Definition 6 [10] The order of the system ),,,( DCBA  is the 

dimension of the state space. 

Definition 7 [10] Let )(sY  and )(sU  be the Laplace 

transforms of )(ty  and )(tu  respectively, with 0)0( =x . 

The transfer function of the system ),,,( DCBA , denoted 

by )(sG , that is DBAsICsG +−= −1)()(  which satisfies 

)()()( sUsGsY =  and has the corresponding transfer 

function )(sG  in state-space form: 









=

DC

BA
sG )( . 

Definition 8 [10] A linear system Axx =  is considered 

asymptotically stable if all eigenvalues of A , denoted as 

)(Ai  have negative real parts that is  

0))(Re( Ai . 

Definition 9 [10] A system ),,,( DCBA  is said to be 

controllable if for every pair of states 
0x  and 

1x  with 

01 t , there exist an input u  such that 
101 ),,( xuxtx = . 

Theorem 10 [10] A system ),,,( DCBA  is controllable if 

and only if the controllability Gramian matrix 


 deBBeP

t

ATA
T

=
0

 

is positive definite for all 0t . 

Definition 11 [10] A system ),,,( DCBA  is considered 

observable if for every input u , there exist 01 t  such 

that ),,(),,( 10 uxtyuxty =  implies 
10 xx =  for ],0[ 1tt  . 

 

Theorem 12 [10] A system ),,,( DCBA  is observable if and 

only if the observability Gramian matrix  

 dCeCeQ

t

ATAT

=
0

 

is positive definite for all 0t . 

Theorem 13 [10] The state space realization of the system 

),,,( DCBA  is said to be the minimal realization of )(sG  

if the state space of system ),,,( DCBA  has the smallest 

dimensions. 

Theorem 14 [10] The realization of the state space 

),,,( DCBA  of )(sG  is said to be minimal if and only if 

the system ),,,( DCBA  is controllable and observable.  

Definition 15 [10] Given a system ),,,( DCBA  and matrix 

nnRX  . 

a. The Lyapunov equation is defined as  

0=++ QXAXAT , where nnRQ  . 

b. The controllability Lyapunov equation can be 

expressed as  

0=++ TT BBXAAX . 

c. The observability Lyapunov equation can be 

expressed as  

0=++ CCXAXA TT . 

Theorem 16 [1] Given a system ),,,( DCBA  and matrix 

nnRQ  . If all eigenvalues of matrix A  have negative 

real parts, then 

a. there exist a solution of Lyapunov equation, namely 

matrix P , satisfying QPAPAT −=+ ; 

b. for every given matrix 0Q , there exist matrix 

0P  satisfying QPAPAT −=+ . 

Definition 17 [11] Let A ,Q , and R  be real-valued matrices 

of size nn  where Q  and R  are symmetric matrices. 

The Riccati equation of the system ),,,( DCBA  is  

0=+++ QXRXXAXAT . 

Definition 18 [12] Let mT

m Rxxxx = ),...,,( 21
 be a 

variable, )(xF  be a polynomial matrix that is linear with 

respect to x , and nn

i RF   be symmetric matrices for 

mi ,...,2,1,0= . A Linear Matrix Inequality (LMI) is given 

by the equation  


=

+=
m

i

iiFxFxF
1

0 0:)( . 

Lemma 19 [13] Given a symmetric matrix mmR   and 

two matrices Y  and Z  with column sizes of m . The 

following statements are equivalent: 
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a. There exist a matrix   of appropriate size such that 

0++ YZZY TTT  . 

b. 0)( ⊥⊥ YY T   and 0)( ⊥⊥ ZZT  , where ⊥Y  and 

⊥Z  represent the orthogonal complements of 

matrices Y  and Z , respectively, that implies 

0=⊥YY  and 0=⊥ZZ . 

Definition 20 [14] Let P  and Q  be the controllability and 

observability Gramian matrices of size nn , 

respectively. The Hankel singular values of the system 

),,,( DCBA  with transfer function )(sG  are defined as 

)(PQii  = , where )(PQi  represents the i -th largest 

eigenvalue of the matrix PQ  for i = 1,2, …, n. 

Definition 21 [3] Suppose we have controllability Gramian 

matrix 0P  and observability Gramian matrix 0Q . 

The system ),,,( DCBA  of order n  with transfer function 

)(sG  said to be balanced if == QP  so that   

satisfies Lyapunov equations 

0=++ TT BBAA  and 0=++ CCAA TT , 

where ),...,,,...,(
11 11 mjj kmkjkjk IIIIdiag 

++= ,  

0...... 11  + mjj  ,

nkkkk mjj =+++++ + ...... 11
. 

Definition 22 [10] Let )( jRL
 or simply 

L  is a Banach 

space of matrix-valued (or scalar-valued) functions that 

are (essentially) bounded on jR  with norm  

)])([(sup: 


jFessF
R


= . 

The rational subspace of 
L , denoted by )(

~
jRLR 

 or 

simply 
LR

~
, consists of all proper and real rational 

transfer matrices with no poles on the imaginary axis. 

Definition 23 [10] 
  is a (closed) subspace of 

L  with 

analytic and bounded functions in the open right-half 

plane. The 
  norm is defined as 

)])([(sup)]([sup:
0)Re(




jFsFF
Rs 


== . 

The expression )])([(sup 


jF
R

 can be regarded as a 

generalization of the maximum modulus theorem for 

matrix functions. The real rational subspace of 
  is 

denoted by 
R , which consists of all proper and real 

rational stable transfer matrices. 

Lemma 24 [15] (Bounded Real Lemma) Let   be real 

positive number and transfer function 








=

DC

BA
sG )(  of 

the system ),,,( DCBA . The two statements below are 

equivalent: 

a. 


)(sG  (equivalent to 02 − DDI T ). 

b. There exist matrix 0P  such that 

02 

















−

−

+

IDC

DIPB

CPBPAPA
TT

TT

 . 

A system ),,,( DCBA  of order n  has a transfer function 









=+−= −

DC

BA
DBAsICsG 1)()( . 

Furthermore, the transfer function of reduced system 

),,,( rrrr DCBA  with order nr  , can be formed as  









=+−= −

rr

rr

rrrrr
DC

BA
DBAsICsG 1)()( . 

The errors resulting from model order reduction are  









=−=

ee

ee

r
DC

BA
sGsGsE )()()(  

which correspond to the transfer function 

eeeee DBAsICsG +−= −1)()( . Based on the rules of addition 

operation on the system, the state space realization for )(sE  

is 

















−−

=

rr

rr

DDCC

BA

BA

sE 0

0

)( , where ,,
0

0








=








=

r

e

r

e
B

B
B

A

A
A  

   rere DDDCCC −=−= , . 

III. RESULT AND DISCUSSION 

This section presents the result of this research, 

highlighting the contributions of Theorem 25, Corollary 26, 

and Algorithm 27 related on model order reduction for heat 

conduction problem. We discuss the results and their 

significance, providing insights into how these elements 

contribute to understanding and applying model order 

reduction effectively. 

Let 0  and 

















−

=−

rr

rrr

DDCC

BA

BA

sGsG 0

0

)()( . 

According to Lemma 24, it follows that −


)()( sGsG r
 

if and only if there exist matrix 0
2212

1211









=

PP

PP
P

T
 that 

holds the matrix inequality: 

,0
)()()(

)(
2

2313

232212

131211























−−−

−−

−



IDDCC

DDI

C

C

rr

T

r

TTT

T

r

T

T



              (2) 

where  

,111111 PAAP T+=   

,121212 PAAP T

r +=   

,121113 rBPBP +=   

,)( 121212

TT

r

TT PAAP +=   

,222222 PAAP T

rr +=   

,221223 r

T BPBP +=  

,)( 121113

TT

r

TT PBPB +=  and  

.)( 221223 PBPB T

r

TT +=  

The inequality (2) represents a nonlinear matrix 

inequality. In order to implement the model order reduction 

using the LMI method, this nonlinear matrix inequality (2) 

needs to be transformed into a linear matrix inequality using 

algebraic manipulation. Hence, the following theorem which 

states the necessary and sufficient conditions for the 
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existence of model order reduction using the LMI method, 

can be applied. 

Theorem 25 Given a system ),,,( DCBA  of order n  with 

the transfer function 
 RsG )(  and 









=

DC

BA
sG )(  is 

a minimal state space realization. There is a reduced 

system ),,,( rrrr DCBA  of order nr   with a transfer 

function 
 RsGr )(  where −


)()( sGsG r

 if and 

only if there are 
n

TPPPPX −= −− 1

12

1

22121111 )( , 
nP 11

, 

rnRP 12
, and 

rP 22
 which satisfy the following two 

matrix inequalities: 

0
1

21111 ++ TT BBAXAX


 and 01111 ++ CCPAAP TT . 

Proof: 

It is known that  

















−−

=







=−=

rr

rr

ee

ee

r

DDCC

BA

BA

DC

BA
sGsGsE 0

0

)()()( . 

By algebraic manipulation, the matrices 
eA , 

eB , 
eC , and 

eD  of the state space realization )(sE are given by 
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From matrix inequality (2) we have 
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Matrix 
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 is positive definite of size 

)()( rnrn ++  thus 
rnP + . By applying Theorem 4, we 

get 0
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P T

 is equivalent to 022 P  and 

012

1

221211 − − TPPPP . Suppose TPPPP 12

1

221211

−−  is denoted by  . 
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Therefore, based on the Matrix Inversion Formula in 
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By applying Lemma 19, the matrix inequality (3) is satisfied 
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With some algebraic manipulation, it follows that 
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Therefore, matrix inequality (4) is equivalent to the 

following matrix inequality: 
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From the multiplication of the first two matrices in matrix 

inequality (6), namely 
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then matrix inequality (6) can be expressed as follows: 
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Thus matrix inequality (8) eqivalent to 
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By substituting equations (7) into equations (9), then 
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Hence, matrix inequality (10) can be written as 
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In the same way, matrix inequalities (5) is equivalent to 
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By applying Theorem 4, we have 

a. from matrix inequality (11), we get 
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where ( ) 1
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22121111

−−−= TPPPPX ; 

b. from matrix inequality (12), we obtain 

,0)( 1

1111 −−+ − CICPAAP q

TT  

.0

,0)(

1111

1111

++

−−+

CCPAAP

CICPAAP

TT

q

TT

 

Because 
rnT
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= 

2212

1211  with ,, 1211 PP  and 
22P  are 

matrices of size rnnn  ,  and rr   respectively, then by 

applying Theorem 4, it is obtained 0
2212

1211









=

PP

PP
P T

 if 

and only if 0,0 2211  PP  and 012

1

221211 −
− TPPPP .Then we 

obtain ( ) 0
1

12

1

221211 −
−− TPPPP . In other words, 011 X . 

Because ,, 2211 PP  and 
11X  are positive definite matrices 

with sizes ,, rrnn   and nn   respectively, then it can be 

concluded that ,, 2211 rn PP    and 
rnX +11
. 

Furthermore, because 
12P  is a real matrix of size rn   then 

rnRP 12
. This completes the proof.           

The proof of Theorem 25 above guarantees the existence 

of a reduced order system while representing the 

characteristics of the original system. Consequently, the 

calculation of a quantitative measure leading to the 

determination of a lower bound on the error of the model 

order reduction formally presented in Corollary 26. 
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Corollary 26 Given a system ),,,( DCBA  of order n  with a 

transfer function 









= R

DC

BA
sG )(  where the 

singular Hankel values 0...... 11  + nrr  . 

Then, for every reduced system ),,,( rrrr DCBA  of order 

nr   with the transfer function 









= R

DC

BA
sG

rr

rr

r )( implies 
1)()( +

− rr sGsG  . 

From Theorem 25 and Corollary 26, necessary and 

sufficient conditions for the existence of the reduced system 

have been obtained with a lower bound of error that depends 

on the Hankel singular value. Furthermore, the practical 

computation of this reduced system, characterized by the 

transfer function )(sG
mkn−

, can be efficiently achieved by 

leveraging the systematic approach outlined in Algorithm 

27. This algorithm simplifies the process of obtaining an 

optimally reduced system by directly addressing the 

minimization of 


−− )()( sGsG
mkn

, ensuring both accuracy 

and computational efficiency. 

Algorithm 27 

1. Form matrices A , B , C , and D  from the system 

),,,( DCBA  of order n . 

2. Investigate the stability, controllability and 

observability properties of the system ),,,( DCBA . 

3. If the system ),,,( DCBA  is stable, controllable, and 

observable, then go to Step 4. If the system 

),,,( DCBA  does not meet one of the properties, 

either stable, controllable or observed, then the 

process stop. In other words, no reduced system 

),,,( rrrr DCBA  of order 
mknr −=  can be found. 

4. Determine the state space and transfer function )(sG  

of the system ),,,( DCBA . 

5. Form a balanced realization of the transfer function 

)(sG  as 








=

bb

bb

b
DC

BA
sG )( . 

6. Set the matrix 








=

−

−

)(

12 0
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m
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knI
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7. Minimize the value of  that satisfies three matrix 

inequalities: 

0
221222

221211










QPQ

QPP
T

, 

0
)(

)()()(
2

12221211

122212111222121112221211 








−−

−−+−

IPQPPB

BPQPPPQPPAAPQPP
TT

TTTT



, 

and 01111 ++ CCPAAP TT , 

where 
nP 11

 and 
mknQ −22

 are matrices that 

serve as variables. 

8. Determine the matrices ( ) 1

1222121111

−
−= TPQPPX  and 

( ) 1
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−
Q . 

9. Define the matrix 








= −1

2212

1211~
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PP
P T

 and denote the 

optimal value   from step 7 with 
opt . 

10. Substitute the matrix 








=

2212

1211

PP
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P T

 with the 

matrix P
~

 and also the value of   with 
opt  in the 

matrix inequality 

0
)(2
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r

T

T
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r

T

T

rrr

T



 

11. Determine matrices 
rrr CBA ,,  and 

rD   as solutions 

to the linear matrix inequalities obtained from Step 

10 so that a reduced system ),,,( rrrr DCBA  is also 

obtained. 

12. Set the matrices T

bb

T

bb BBAXXAMI
211111

1


++=  

and 
b

T

b

T

bb CCPBAPMI ++= 11112
.  

13. If 515

121111 ,,  RPPX nn   and 
rP 22
 can be 

found to satisfy: 

0
1

211111 ++= T

bb

T

bb BBAXXAMI


 and 

011112 ++= b

T

b

T

bb CCPBAPMI , then the existence 

of a reduced-order system ),,,( rrrr DCBA  with order 

r  and −


)()( sGsG r
 are guaranteed.  

In the next section, we will provide an example to 

demonstrate the existence of a reduced model order by 

applying Theorem 25. Our simulation is applied to a real-

world problem involving heat conduction in a rod. Before 

carrying out the simulation, the heat conduction problem 

will be explained.  

We consider a wire rod with unit length l  and heat 

conduction coefficient 2 . Suppose ),( tT   represents the 

temperature of the wire rod at position   and time t . 

According to [16], the heat conduction equation can be 

expressed as  

),(),( 2 tTtTt  = ,                        (17) 

where 
t

tT
tTt




=

),(
),(


  and 

2

2 ),(
),(









=

tT
tT . 

In this problem, we assume the end of the rod at position 

0=  given input in the form of a time-dependent heat 

source, denoted by )(tu , while the end of the rod at position 

l=  not isolated. So that the boundary conditions for the 

heat conduction equation can be written as 

utT =),0(  and 0),( =tlT
.                   (18) 

The heat conduction problem has a given initial 

condition, that is )()0,(  fT =  for l 0  and  t0  

where )(f  denotes the function in  . To further clarify 

the problem of heat conduction in wire rod with regard to 

boundary conditions and initial conditions, a schematic is 

presented in Figure 1. The arrow in Figure 1 indicate the 

direction of heat flow. 
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Figure 1. Heat conduction scheme in wire rod 

To obtain the state space equation from the heat 

conduction model, the location parameter intervals will be 

discretized into n  interval parts, each of which has a length 

of 
n

l
h =  units. The discretization form can be seen in   

Figure 2 below. 

 
Figure 2. Discretization process 

On Figure 2, 
iT  represents the temperature in the interval 

l
n

i
l

n

i


−


)1(  where ni ,...,2,1= . Next, we review the 

boundary conditions in equation (18). From the boundary 

conditions utT =),0( , it is obtained that uT =0
. By using 

the Forward Finite Difference method, the derivative of 
iT  

with location   can be approximated by 
h

TTT iii −
=



 +1


 for 

ni ,...,2,1= . Thus from the boundary condition 0),( =tlT
 

in equation (18), it is obtained  
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The second derivative form of 
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equation (17) can be approximated by using the Finite 
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Because uT =0
 and 
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, the second derivative of 
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Based on equation (17) and the description 
2

2



 nT  above, 

then it is obtained a linear system of order  as follows 
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Furthermore, the wire rod used in this simulation is a wire 

rod made of aluminum with a heat conduction coefficient 

86,02 =  cm2/second. Suppose the length of the wire rod l  

is 15 cm and the discretization is carried out by taking 

15=n , then the n  order linear system can be expressed as 
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thus 
dt

dx

dt

dT
= . Then, it is obtained 

)()()( tButAxtx
dt

dx
+==   where  15)( Rtx   and Rtu )( . 

We assume that the temperature of a wire rod is only 

carried out at 
1 , 

15 , and 
i  where i  are even numbers 

between 1 until 15. This means that observations are made 
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for 
1 , 

15 , and 
i  with 14,...,4,2=i  so that the output 

vector )(ty  can be written as )()( tCxty =  with Rty )(  

and  110011 =C . The state-space equation 

for the heat conduction problem is 

)()()( tButAxtx += , )()( tCxty = . 

Next, a simulation will be carried out to show the 

existence of model order reduction of a continuous-time 

linear system of order 15 using the LMI method and the 

upper bound of reduction error   is chosen to be 7,2. Based 

on simulation results, it is found that the system ),,( CBA  

with order 15 is an asymptotically stable because all the 

eigenvalues of matrix A  have a negative real parts. 

Furthermore, the minimal realization order of the transfer 

function  )(sG  is 15. In this case, the minimal realization 

order of )(sG  is the same with the order of the state space, 

so it can be concluded that the state space realization of the 

transfer function )(sG  is a minimal realization. 

Additionally, it is also found that the order of the reduced 

system ),,( rrr CBA  with the desired transfer function )(sGr
 

is 5=r .  

To guarantee the existence of the reduced system of order 

5=r  which satisfies −


)()( sGsG r
 correspond to 

Theorem 25, we need to obtain positive definite matrices 

11P , 
22P , 

11X  of sizes 1515 , 55 , 1515 , respectively, 

as well as a real matrix 
12P  of size 515 . From the 

simulation results, we obtain the matrices 
11P , 

22P , 
11X  are 

positive definite matrices because all the eigenvalues of 

matrices 
11P , 

22P , 
11X  are positive, and the matrix 

12P  is a 

real matrix.  

Let  0
1

211111 ++= T

bb

T

bb BBAXXAMI


  and 

011112 ++= b

T

b

T

bb CCPBAPMI , then by substituting the 

matrices A , B ,C ,
11P , and 

11X  into matrices 
1MI  and 

2MI , it is found that all the eigenvalues of the 
1MI  and 

2MI  are negative. Hence, it can be concluded that 
1MI  and 

2MI  are respectively negative definite matrices. 

Next, we consider a system ),,( CBA  of order 15 with a 

transfer function )(sG  and a minimal realization. Hence, it 

is obtained matrices 
11P , 

22P , and 
11X  are a positive 

definite matrices of size 1515 , 55 , and 1515 , and real 

matrix 
12P  of size 515  that satisfies the matrix 

inequalities 0
1

21111 ++ TT BBAXAX


 and 

01111 ++ CCPAAP TT  where 1

12

1

22121111 )( −−−= TPPPPX . 

Therefore, based on   Theorem 25, it can be guaranteed the 

existence of a reduced system ),,( rrr CBA  of order 5=r  

with transfer function )(sGr
 that satisfies 

2,7)()( −


sGsG r
. 

IV. CONCLUSION 

This paper focuses on determining the necessary and 

sufficient conditions for the existence of model order 

reduction of a continuous-time linear system using LMI 

method. Based on the previous discussion, the following 

conclusions were drawn: 

1. The necessary and sufficient conditions for the 

existence of a reduced system ),,,( rrrr DCBA  of order 

nr   with a transfer function 
 RsGr )(  satisfying 

−


)()( sGsG r
 are the existence of 

nX 11
, 

nP 11
, rnRP 12

, 
rP 22
 that satisfy  

0
1

21111 ++ TT BBAXAX


 and 01111 ++ CCPAAP TT  

where  1

12

1

22121111 )( −−−= TPPPPX . 

2. For any reduced system ),,,( rrrr DCBA  of order nr   

with the transfer function 
 RsGsG r )(),( , the 

inequality 
1)()( +

− rr sGsG   holds and 
1+r  is a 

lower bound for the error resulting from model order 

reduction using the LMI method where 

0...... 11  + nrr  . 

3. The numerical simulations of the model order 

reduction for a heat conduction problem were 

conducted, with the choice of 2.7= . The results 

demonstrated that the existence of a reduced system 

),,( rrr CBA  of order 5=r  from a system ),,( CBA  of 

order 15=n  satisfies 2,7)()( −


sGsG r
. This 

assurance is achieved by finding 
1511 X , 

1511 P , 

515

12

RP , and 
522 P  that fulfill the conditions  

0
1

21111 ++ TT BBAXAX


 and 01111 ++ CCPAAP TT ,  

with 1

12

1

22121111 )( −−−= TPPPPX . 

REFERENCES 

[1]  G. J. Olsder and J. W. Woude, Mathematical Systems Theory, 

Netherlands: VSSD, 2005.  

[2]  W. Widowati and T. B. Riyanto, "Model Reduction of LPV Control 

with Bounded Parameter Variation Rates," in The 6th Asian Control 

Conference, Bali, 2006.  

[3]  Y. Ebihara and T. Hagiwara, "On ℋ_∞ Model Reduction using 

LMIs," IEEE Transactions on Automatic Control, vol. 49, no. 7, pp. 

1187-1191, 2004.  

[4]  A. Helmersson, Model Reduction using LMIs, vol. 4, Linköping: 

Linköping University, 1994, pp. 3217-3222.  

[5]  A. K. Al-Jiboory, "Optimal Control of Satellite System Model using 

Linear Matrix Inequality Approach," Results in Control and 

Optimization, vol. 10, p. 100207, 2023.  

[6]  M. S. Hossain, M. A. Chowdhury and M. S. Rahman, "A Dual 

Reduction Strategy for Reduce-Order Modeling of Periodic Control 

System," Result in Control and Optimization, vol. 4, p. 100034, 2021. 

[7]  K. M. Grigoriadis, "Optimal ℋ_∞ Model Reduction via Linear Matrix 

Inequalities: Continuous- and Discrete-Time Cases," Systems & 

Control Letters, vol. 26, no. 5, pp. 321-333, 1995.  

[8]  K. M. Abadir and J. R. Magnus, Matrix Algebra, New York: 

Cambridge University Press, 2005.  

[9]  R. E. Skelton, T. Iwasaki and D. E. Grigoriadis, A Unified Algebraic 

Approach to Control Design, London: Routledge, 2017.  

[10]  K. Zhou, J. C. Doyle and K. Glover, Robust and Optimal Control, 

1996.  

[11]  K. Zhou and J. C. Doyle, Essentials of Robust Control, vol. 104, New 

Jersey: Prentice hall Upper Saddle River, 1998.  

[12]  S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 5, May 2025, Pages 1073-1083

 
______________________________________________________________________________________ 



 

Inequality in System and Control Theory, Philadelphia: Society for 

Industrial and Applied Mathematics, 1994.  

[13]  R. S. Sanchez-Pena and M. Sznaier, Robust Systems Theory and 

Applications, Canada: John Wiley & Sons Inc, 1998.   

[14]  I. Postlethwaite, Multivariable Feedback Control: Analysis and 

Design, England: John Wiley & Sons Ltd, 1996. 

[15]  M. Green and D. J. N. Limebeer, Linear Robust Control, New Jersey: 

Prentice-Hall, 1995.  

[16]  W. E. Boyce, R. C. DiPrima and D. B. Meade, Elemantary Differential 

Equations and Boundary Value Problems, Canada: John Wiley & Sons 

Inc, 2021.  

 

IAENG International Journal of Applied Mathematics

Volume 55, Issue 5, May 2025, Pages 1073-1083

 
______________________________________________________________________________________ 




