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Abstract—This paper addresses the multi-compartment ve-
hicle routing problem with heterogeneous fleets with maxi-
mum number limitations. To solve this problem, we propose
an iterated local search algorithm integrating with multiple
strategies to find a solution with minimum total cost. The
proposed algorithm starts by generating an initial solution using
a cheapest insertion heuristic. Then, a load adjustment strategy
is applied to transfer customers from larger vehicle to smaller
one. Four neighborhood operators such as relocation, 2-opt,
exchange and or-opt, are applied sequentially to refine the
solution, allowing for vehicle type adjustments during the local
search process. Additionally, a perturbation mechanism based
on destroy-and-repair principle is introduced to explore a wider
search space. Meanwhile, an acceptance strategy based on route
load variance is designed to permit the acceptance of sub-
optimal solutions. Finally, the best global solution undergoes
further optimization through a vehicle assignment strategy to
improve vehicle allocation. Experimental results on benchmark
instances demonstrate that the proposed algorithm outperforms
existing methods.

Index Terms—Heterogeneous fleet, iterated local search,
multi-compartment vehicle, routing problem, metaheuristic.

I. INTRODUCTION

THE diversification of goods transported in logistics
supply chain has raised the demand for transportation

vehicles. When transporting oil, medicine, fresh food and
other items, the different requirements of the transportation
environment for each item may lead to the fact that it cannot
be distributed in the same vehicle, which will increase the
cost of transportation. Multi-compartment vehicle is a kind
of transport vehicle with multiple compartments to transport
different types of goods at the same time. It can reduce the
risk caused by mixed loading of different goods and improve
the flexibility and safety of transportation.

The Multi-compartment Vehicle Routing Problem
(MCVRP) is a variant of the Vehicle Routing Problem
(VRP). Different from the traditional VRP, each vehicle in
MCVRP has multiple independent compartments, and can
distribute multiple types of items at the same time, so as
to achieve the goal of efficient and safe transportation. The
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study of MCVRP was carried out relatively early, the first
work of it [1] introduced the multi-compartment vehicle
problem attribute in the transportation of oil products. In
the study of MCVRP, some scholars [2], [3], [4], [5] have
accomplished research on traditional MCVRP, where multi-
compartment vehicles are used to solve the Capacitated
Vehicle Routing Problem. As research progressed, some
typical attributes of classic VRP[6], such as multiple depots
[7], stochastic demand [8], and time windows [9], [10],
have been gradually introduced into the study of MCVRP.
The latest literature review on MCVRP can be referred to
reference [11].

The Heterogeneous Multi-compartment Vehicle Routing
Problem (HMCVRP) is a new variant of MCVRP, and it
uses a variety of multi-compartment vehicles with different
capacities and costs. Similar to the traditional heterogeneous
vehicle routing problem, HMCVRP is also divided into
mixed fleet Multi-compartment Vehicle Routing Problem
(MSFMCVRP) and heterogeneous fixed Multi-compartment
Vehicle Routing Problem (HFMCVRP) problems. The dif-
ference between them is that the number of vehicles for
each type is limited in HFMCVRP. These problems are both
widely applied in real application.

For the MSFMCVRP, Cornillier et al. [12] proposed an
exact algorithm based on the branch-and-bound method to
solve the problem of refueling station replenishment. The
experimental results demonstrated that the algorithm effec-
tively found optimal solutions for small and medium-sized
problems, and the computation times within an acceptable
range. Abdelaziz et al. [13] used a variable neighborhood
search heuristic to find the best solutions, and they em-
ployed nine different vehicle types with varying numbers
of compartments and capacities. For the HFMCVRP, Wang
et al. [14] improved the Tabu Search (TS) algorithm by
combining reactive and guiding mechanisms to propose a
hybrid guiding-reactive TS algorithm to solve the heteroge-
neous multi-compartment VRP, achieving a balance between
search depth and search breadth during the solution process.
Avella et al. [15] conducted experiments using three types
of vehicles, totaling six vehicles. In the experiments, they
applied both branch-and-price and heuristic algorithms based
on savings algorithm to solve the problem. The transportation
costs obtained by the two algorithms decreased by 22%-
25% and 12%-15%, respectively. Sethanan and Pitakaso [16]
investigated how to optimize the transportation scheduling
of fresh milk using a differential evolution algorithm. They
proposed several improved metaheuristic algorithms based
on the differential evolution algorithm, and they verified
that the proposed algorithm performed excellently in opti-
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mizing transportation routes, reducing transportation costs,
and improving efficiency. Urli and Kilby [17] conducted a
study to provide theoretical support for fleet configuration
by addressing the multi-compartment split-delivery vehicle
routing problem, and then designed a hybrid model for the
issued problem.

These research on the HMCVRP has promoted the devel-
opment of this problem, but there are still some shortcomings
in algorithmic performance. HMCVRP is a combinatorial
optimization problem with high difficulty and is closely
related to practical applications, thus it is still a challenge
to explore efficient solution algorithms for HMCVRP.

Iterated Local Search (ILS) algorithm is a neighborhood-
based metaheuristic, which can not only avoid falling into
local optimal solution through perturbation, but also has
high solving efficiency. ILS has remarkable performance in
a variety of combinatorial optimization problems [18], and
has potential application in solving HMCVRP problem.

Therefore, this paper studies HMCVRP that the number
of each vehicle type is limited, named as HFMCVRP. The
optimization objective of the address problem is to minimize
the total cost. Then, an improved iterated local search com-
bined multiple strategies, denoted as MS ILS, is designed
to solve this problem. In the framework of ILS algorithm,
three strategies including Load Adjustment Strategy(LAS),
Load Variance(LV) acceptance strategy, and Vehicle Model
Optimizing Strategy(VOS) are designed and mixed with
ILS to improve the quality of the solution. The designed
algorithm has been experimentally verified and analyzed on
benchmark case sets, confirming its effectiveness.

The remainder of paper is structured as follows. Section II
is the description of problem model. The designed algorithm
is given in Section III. Section IV is the experimental
analysis,and the effectiveness of the improvement proposed
in this paper is verified by comparative experiments. Finally,
the conclusion is shown in Section V.

II. PROBLEM STATEMENT

A. Problem Definition

In this paper, the HFMCVRP problem can be described
as follows. There are various types of multi-compartment
vehicles in the distribution center named depot. Each vehicle
needs to provide transportation services to some customers.
Each compartment of vehicle has the maximum load capac-
ity. The number of vehicles of each type is limited, that is to
say, the number of certain vehicle type cannot exceed the
maximum number limitation. Each customer has multiple
goods to deliver, and the certain type of goods must be
placed in the certain compartment of vehicle. Additionally, it
is necessary to reasonably arrange vehicles to minimize the
routing cost under the premise of meeting customer demands,
constraints, and vehicle scheduling.

In order to solve this problem, this paper makes the
following assumptions.

(1) The depot is unique, and it has a certain number of
multi-compartment vehicles and products.

(2) The locations of the depot and all customers are known
and fixed, all customers are interconnected. All vehicles
need to start from the depot and return to the depot after
completing the distribution task.

(3) All vehicles are multi-compartment vehicles with
multiple independent compartments, and vehicles of the same
type share identical parameters. The total number of each
type of vehicle is limited.

(4) Each customer has multiple types goods to deliver.
Each customer can only be serviced by a single vehicle, that
is, any customer can only be satisfied by one vehicle.

(5) Each vehicle is responsible for one single delivery,
and the products carried by the vehicle when departing from
the depot cannot exceed the capacity of that vehicle type.

B. Model Description

Table I presents the parameters required for defining the
model. Based on this, a mathematical model for the problem
is established with the objective of minimizing the routing
cost, as shown below.
Minimize ∑

i∈V

∑
j∈V

∑
m∈M

xijm ∗ dij ∗ cm (1)

Subject to:∑
m∈M

∑
i∈C

xijm =
∑
m∈M

∑
j∈C

xijm = 1,∀i, j ∈ C (2)

∑
i∈C

x0im =
∑
j∈C

xj0m = 1,∀m ∈ M (3)

dip ≤ Lipm ≤ Qpm, ∀i ∈ V, p ∈ P,m ∈ M (4)∑
i∈V

Xi0m ≤ Nm, ∀m ∈ M (5)

(Lipm + djp)xijm ≤ Qpm, ∀i ∈ V, p ∈ P,m ∈ M (6)

Xijm = {0, 1} , i ̸= j, ∀i, j ∈ V,m ∈ M (7)

Equation (1) is the objective function of the model, which
represents the minimization of routing cost. Constraint (2)
means that each customer can only be served by one vehicle.
Constraint (3) ensures the vehicle start from depot and return
to depot. Constraint (4) ensures that the quantity of products
delivered by all vehicles doesn’t exceed the maximum load
capacity of compartment. Constraint (5) indicates that the
number of vehicles used for each vehicle type cannot exceed
the limit for that vehicle type. Constraint (6) describes the
accumulation of each product in a vehicle. Constraint (7)
indicates the decision variable.

III. ALGORITHM DESIGN

A. Algorithm Framework

The ILS algorithm consists of four parts: initial solution
construction, perturbation, local search, and acceptance cri-
teria. By iteratively applying perturbation, local search, and
acceptance criteria to find the global best solution. Based on
the ILS framework, this paper designs multiple strategies,
including load adjustment, acceptance criteria, and vehicle
model optimization, to solve the HFMCVRP effectively.

The algorithm in this paper is denoted MS ILS, and its
pseudocode is shown in Algorithm 1. In Algorithm 1, Step
2 calls the initial solution generation algorithm to obtain the
initial solution. In step 3, the initial solution is improved
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TABLE I
DEFINITION OF RELEVANT PARAMETERS

Parameter Description

V Set of nodes V = {0, 1, . . . , n}, where node 0 represents the depot, and nodes 1 to n represent customers.
E Set of edges E = {(i, j); i, j ∈ V }, representing all edges between node i and node j.
C Set of customers C = {1, 2, ..., n}.
M Set of fleet types M = {1, 2, 3, ...,m}.
P Types of goods to be served, P = {1, 2, 3, ..., p}.
dip Customer i has a known demand that is the demand of product p.
Qpm The capacity of corresponding compartment for vehicle m that the product p must be put into.
dij The distance between nodes i and j, dij = dji; when i = j, dij=0.
cm Unit transportation cost for vehicle type m.
Nm Maximum number of vehicle type m.
Lipm The total quantity of product p by vehicle m after visiting node i.
Xijm Decision variable,where Xijk = 1 if vehicle m travels from node i to node j; otherwise, Xijm = 0.

Algorithm 1 MS ILS
Input:Iteration count iter, neighborhood size nb,
perturbation destruction factor p, search strategy rules
Output:Global best solution S∗

1: S∗=Null; t=0;
2: S0=GetInitSolution(); // Construct the initial solution
3: S1=ApplyLAS(S0); // Apply the LAS to improve S0

4: Sc=LocalSearch(S1,nb,rules);
5: S∗=Sc;
6: while t <= iter do
7: Sb = Pertrub(Sc,p);
8: Sd=ApplyLAS(Sb);
9: Sn = LocalSearch(Sd,nb,rules);

10: if AcceptLV(Sc,Sn) then
11: Sc =Sn;
12: end if
13: if Sc < S∗ then
14: S∗ = Sc;
15: end if
16: t++;
17: end while
18: S∗= ApplyVOS(S∗);
19: return S∗

by applying the LAS to ensure that a high quality initial
solution is obtained. Steps 6 to 18 are the main loop of
the algorithm, within which the perturbation method, LAS,
local search and LV acceptance strategy are invoked in turn,
and the LV is responsible for determining whether the new
solution should be accepted. If the new solution meets the
acceptance rules, it’s accepted, then update the solution. Step
19 is to perform a post-optimization process on the global
best solution obtained after the loop, and the solution is
improved by the VOS designed in this paper. Finally, the
algorithm outputs the global best solution.

B. Initial Solution Generation

For HFMCVRP, the maximum quantity constraint for each
vehicle type makes the generation of the initial solution quite
challenging. In order to solve this problem, we designed an
initial solution construction method based on the cheapest
insertion algorithm, which allows customers with large de-
mand to be inserted into the route first, and then the others.

To ensure the quality of the initial solution, the algorithm
will look for the position with the cheapest insertion cost
and then insert the customer into it. The steps of this initial
solution construction are described as follows:

(1) Based on the vehicle set, construct M initial routes in
the form of 0-0 (where M is the number of all vehicles, 0
represents the depot), and then assign appropriate vehicles
to these routes.

(2) From the set C, select ⌈M/2⌉ large demand customers
and insert them into the routes, obtained ⌈M/2⌉ routes in the
form of 0-i-0. Next, randomly select M -⌈M/2⌉ customers
from C and also insert them into the routes, then remove
these customers from C. Finally, this process generates M
routes in the form of 0-i-0.

(3) Arrange the remaining customer in set C in descending
order based on demand. Sequentially select customer j and
traverse all positions in the routes to find the position that
satisfies the vehicle capacity constraints and has the cheapest
insertion cost, then insert customer j into the position and
remove j from set C. If no suitable insertion position can
be found, jump back to step (1) and continue execution.

(4) Repeat step (3) until the set C is empty.

C. Load Adjustment Strategy

Since the capacity and unit distance cost of each vehicle
type are different, the load on each route may vary signifi-
cantly. To address this,this paper designs a LAS to increase
the load on smaller vehicles, thereby freeing up space on
larger vehicles, which enhances the diversity and flexibility
of local search.

Algorithm 2 presents the process of the LAS. The execu-
tion steps are as follows:

(1) Obtain the set of all vehicle types used in the current
solution M = {1, 2, . . . , m}. Traverse from the largest vehicle
type m to type 2 in descending order, covering all non-
minimal types. Set the current vehicle type r = m.

(2) When traversing vehicle type r, obtain the set of all
routes using vehicle type Fr = {R1, R2,. . . ,Ri}, where r ∈
M and r ̸= 1.

(3) For each route Ri in Fr, traverse the nodes in route
Ri and try to insert the nodes into the routes using vehicle
type t (t < r). It ensures that the insertion doesn’t violate
the capacity constraint and doesn’t increase the cost.

(4) After all routes in Fr have been traversed, r = r-1.
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Algorithm 2 Load Adjustment Strategy
Input:Initial solution initialsol
Output:Optimal solution optimalsol

1: typenum=Get-typenum(initialsol); //Obtain the number
of vehicle types

2: tournum=Get-tournum(initialsol); //Obtain the number
of routes

3: for (i= typenum;i>1;i- -) do
4: Routei=Get-route(initialsol);
5: for (j=1;j<= tournum;j++) do
6: Nodei=Get-node(Routei);
7: Nodenumi=Get-nodenum(Routei);
8: for (c=1;c<= Nodenumi;c++) do
9: Routej=Get-route(initialsol);

10: Nodenumj=Get-nodenum(Routej);
11: if Routej=insert(Nodei) then
12: for (k=1;k<= Nodenumj ;k++) do
13: Routej=insert(Nodei); //select the position

in the route with the minimum cost to insert
node.

14: end for
15: else
16: Routej=Routej+1;
17: end if
18: Nodei= Nodei+1;
19: end for
20: Routei = Routei+1;
21: end for
22: end for
23: optimalsol=update(initialsol);
24: return optimalsol;

(5) If r > 1, return to step (2) and continue; otherwise,
exit the strategy.

D. Local Search

In the local search process, this paper sequentially applies
four neighborhood operators: relocate, exchange, 2-Opt, and
Or-Opt to find the best solution within the neighborhood.
None of these operators involve depot, and their functional-
ities are described as follows:

(1) Relocate: Select a node on the route, remove it from
its original position, and then insert it into a position on the
same or another route.

(2) Exchange: Choose two nodes from the same route or
different routes, swap their positions, and then insert them
back into their corresponding routes.

(3) 2-Opt: Within the same route, select two non-
intersecting edges to break. After breaking, reverse the
segment of nodes between these edges and then reconnect the
route segments. Fig.1 illustrates the execution of 2-Opt on a
route, where 0 represents the depot and the letters represent
customers.

(4) Or-Opt: Select a segment of a specified length from
the route and move it to another position within the same
route or to a different route. Fig.2 illustrates the execution
of Or-Opt.

During the local search process, when performing intra-
path operations such as relocate, exchange, and Or-Opt, a

Fig. 1. Example Of 2-Opt Operator

Fig. 2. Example Of Or-Opt Operator

vehicle type exchange operation is conducted. The underly-
ing idea is that if the load capacities of the two routes don’t
exceed each other’s capacity constraints and exchanging the
vehicle types results in a cheaper route cost, then the vehicle
types corresponding to the two route are swapped. The
purpose of this step is to further reduce the route cost and
facilitate the subsequent enhancement of the solution quality.

E. Perturbation

When solving vehicle routing problems,the results often
get trapped in local optima, which affects the global search
capability of the algorithm. By introducing the perturbation
method, this issue can be effectively avoided. The perturba-
tion method will actively disrupts the structure of the solu-
tion, forcing the algorithm to jump out of the local optimum
and explore new spaces, which enhances the diversity of
solutions and increases the likelihood of finding the global
optimal solution.

In the selection of perturbation method, this paper uses the
fixed random perturbation method. During each perturbation
method, the algorithm randomly selects a node from the
route, then removes several nodes within its neighborhood
range, and temporarily stores these nodes in an array. Sub-
sequently, the removed nodes are randomly inserted into the
route. Finally, if the new obtained solution, is better than the
perturbed solution, the new solution will replace the perturb
solution. This process could be repeated many times, and
them the best perturbation solution can be found.

Through the perturbation method described above, local
optima can be effectively avoided, the diversity of the solu-
tion is enhanced.

F. Load Variance Acceptance Strategy

To enhance the diversity of the solution, the algorithm
allows the acceptance of worse solutions. When a better
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solution with a cheaper cost than the current solution is
found, this solution is accepted. If the cost is higher than the
current solution, an acceptance strategy called Load Variance
based on the variance of route load rates is used, which tends
to accept more stable solutions. Its definition is shown in
Equation (8).

f(x) =
∑n

i=1

(pi − P )2

n
(8)

In (8), n represents the number of routes in solution x,
Pi represents the load rate of vehicle on route Ri, which is
calculated as the ratio of the load on the vehicle along route
Ri to the maximum capacity of the vehicle type, P denotes
the average load rate across all routes. Thus, the acceptance
strategy for the current solution can be defined as shown in
Equation (9).

Sc =

{
Sn, F (Sn) < F (Sc)
Sn, F (Sn) ≥ F (Sc) and f(Sn) < f(Sc)
Sc, F (Sn) ≥ F (Sc) and f(Sn) ≥ f(Sc)

(9)

where Sc represents the current solution, Sn represents the
new solution found through the local search, and F (x)
represents the objective function. In this strategy, the new
solution is accepted if its F (x) decreases. If the F (x)
remains the same or worsens but f(x) decreases, the new
solution is also accepted.

G. Vehicle model Optimizing Strategy

During the solution process of the multi-vehicle routing
problems, unreasonable vehicle type allocation may occur.
If the vehicle types are allocated simply based on traversing
routes, it may result in a situation that the longer routes being
assigned to larger vehicle types, which doesn’t guarantee that
the final solution is optimal under the current conditions. To
avoid this, this paper employs a Vehicle model Optimizing
Strategy to optimize the final solution, ensuring that the
vehicle type allocation is better.

The process of this strategy is as follows:
1) Obtain the set of vehicle types used in the solution M

= {1, 2,. . . , m}, and traverse from vehicle type 1 to m in
order. Set the current vehicle type i = 1;

2) Find the set of routes corresponding to vehicle type i
as fi = {R1, R2,. . . , Ri}, and then obtain the set of routes
with loading capacities not exceeding the maximum capacity
of vehicle type i as FI = {R1, R2,. . . , RI}. If i is less than
I , sort the routes R1 to RI in descending order based on
their lengths, and then assign vehicle type i to these routes
in the order.

3) i++ ; If i ≤ m, jump back to (2) to continue; otherwise,
exit the strategy.

This method ensures that the vehicle assignment across all
routes in the final solution is optimized. If i is equal to I ,
this allocation will not affect the cost. If i is less than I , it
indicates that there are routes in the set FI = {R1, R2,. . . ,
RI} that are assigned a larger vehicle type than i. Since
vehicle allocation is done in descending order of route length,
vehicle type i will be allocated to the longer routes, while the
remaining shorter routes will enter the next iteration, waiting
to be assigned to larger vehicle types than i. Therefore,
it prevents situations where shorter routes are assigned to
smaller vehicles and longer routes to larger vehicles.

Algorithm 3 Vehicle Model Optimizing Strategy
Input:Current solution currentsol
Output:Optimal solution optimalsol

1: S1=Null,S2=Null;
2: typenum=Get-typenum(currentsol); //Obtain the num-

ber of vehicle types
3: tournum=Get-tournum(currentsol); //Obtain the number

of routes
4: for (i=1;i≤ typenum;i++) do
5: for (j=1;j≤ tournum;j++) do
6: S1=Get-route(currentsol); //Iterate through all

routes using vehicle type i
7: S2=Descending(S1); //Sort all routes in descending

order
8: currentsol=Allocation(S2); //Assign vehicle type i

to the routes in this order
9: end for

10: end for
11: optimalsol=currentsol
12: return optimalsol

The process of the Vehicle Model Optimizing Strategy is
shown in Algorithm 3.

IV. EXPERIMENTAL ANALYSIS

The proposed algorithm was implemented by C# and run
on the PC with following specifications: Intel(R) Core(TM)
i7-10700 CPU @ 2.90 GHz,16.0 GB RAM, and a Windows
11 64-bit operating system. The parameters setting are as
follows. The number of iterations is set to 100, the neigh-
borhood size is 30, the number of perturbations is 30, the
perturbation parameter is set to 0.2, and every instance was
executed independently by the MS ILS algorithm 10 times.
The MS ILS algorithm was used to solve the benchmark
dataset TC-8 come from reference [14], which is a modified
from the international standard instance T-8 of the heteroge-
neous fixed fleet vehicle routing problem.

In the following table, AVG represents the average of the
best values obtained over 10 runs. GAP is the percentage
improvement of the best solution obtained by the correspond-
ing algorithm over that one found by the first algorithm,
NUM represents the number of customers in this case.
BEST represents the best result obtained by the algorithm,
and T represents the running time of the algorithm. All
experimental environments were kept consistent.

A. Performance of Load Adjustment Strategy

This paper adopts a LAS aimed at redistributing the
loading structure among routes, providing more capacity for
high-load vehicle types as much as possible and increasing
the adjustment space for subsequent local operators. To
further verify the effectiveness of this strategy, a comparison
is conducted using the inclusion or exclusion of the LAS as
a variable.

The detailed data of best solutions is shown in Table II.
Fig.3 gives the comparison results of the average solutions
obtained by ILS and ILS combined with LAS strategy.
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Fig. 3. Comparison Average solutions of ILS and ILS+LAS

TABLE II
COMPARISON RESULTS OF ILS AND ILS+LAS

TC-8 NUM ILS ILS+LAS

BEST BEST GAP/%
13 50 1750.35 1693.45 3.25
14 50 642.41 645.01 -0.40
15 50 1042.90 1050.97 -0.77
16 50 1207.65 1181.82 2.14
17 75 1210.32 1154.68 4.60
18 75 2131.60 2057.45 3.48
19 100 1168.61 1192.56 -2.05
20 100 1705.43 1689.42 0.94

AVG 1357.41 1333.17 1.40

From Table II, we can see that compared to the basic
ILS, the ILS+LAS algorithm achieves an average cost im-
provement of 1.40%. Therefore, it can be concluded that the
solution quality is significantly improved by introducing this
strategy, verifying its effectiveness.

B. Performance of Load Variance Strategy

To test the performance of the load variance acceptance
strategy on the TC-8 benchmark set, this paper conducted
experiments with and without the LV acceptance strategy
for comparison. The results are shown below.

The results in Fig.4 show that by introducing the LV
acceptance strategy, the costs of average solutions with the
LV acceptance strategy are superior to those without it in
multiple cases. As shown in Table III, the best improvement
of the ILS+LV algorithm compared to the basic ILS algo-
rithm is 1.60% , and the maximum improvement reaches to
4.66%. Therefore, it is concluded that the introduction of the
LV acceptance strategy significantly improves the solution
quality, verifying the effectiveness of this strategy.

C. Performance of Vehicle Model Optimizing Strategy

As mentioned in the previous sections, the VOS Strategy
can effectively prevent unreasonable vehicle assignments.
Therefore, to evaluate the performance of Vehicle model Op-
timizing Strategy, comparative experiments were conducted
with and without VOS, and the results are shown below.

From Fig.5, it is evident that in six instances, the average
solutions obtained using the VOS outperform those without
it. Specific data in Table IV shows that the average cost
reduction of all the instances is 1.78%. The improvement
in Case 13 is the most significant and the cost decreases

Fig. 4. Comparison Average Solutions of ILS and ILS+LV

TABLE III
COMPARISON RESULTS OF ILS AND ILS+LV

TC-8 NUM ILS ILS+LV

BEST BEST GAP/%
13 50 1750.35 1668.78 4.66
14 50 642.41 627.16 2.37
15 50 1042.90 1039.88 0.29
16 50 1207.65 1197.25 0.86
17 75 1210.32 1160.99 4.08
18 75 2131.60 2072.92 2.75
19 100 1168.61 1211.30 -3.65
20 100 1705.43 1681.01 1.43

AVG 1357.41 1332.41 1.60

by 6.50% compared with basic ILS. This confirms that the
application of the VOS significantly enhances the solution
quality.

D. Comparison of Hybrid Strategies

In the previous experiments, we have already verified
that the improvement achieved by each single strategy is
effective. In order to verify whether the combination of
these strategies is effective, we conducted four comparative
experiments. The specific data is shown in Table V.

From Table V, we can see that the best results are obtained
using all three strategies. Compared with basic ILS, our
proposed algorithm decrease the cost by 5.24% on average.
Among of all the hybrid strategies, the improvement per-
centage value of ILS+LV+VOS is smallest just only 1.76%,
but it is better than the ILS+LV mentioned above. The
improvement of ILS+LAS+LV is the most significant, with
an increase of 2.83%. When two or three strategies are used,
the improvement percentage value increases, which indicates
the combination of these strategies leads to better results.

E. Comparison with Existing Methods

In order to verify the overall effect of MS ILS algorithm,
we compared the proposed algorithm with the existing meth-
ods [14], including TS, TS-R, TS-G, RGTS. TS-R is the
Reactive Tabu Search algorithm, TS-G represents the Guided
Tabu Search algorithm, and RGTS is the Guided Reactive
Tabu Search algorithm. The results are shown in table VI
and table VII. The best result is marked in bold.

As reported in table VI, it can be seen that the MS ILS
algorithm outperforms other algorithms in half of the cases,
and obtains the same number of optimal solutions as RGTS.
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Fig. 5. Comparison Average Solutions of ILS and ILS+VOS

TABLE IV
COMPARISON RESULT OF ILS AND ILS+VOS

TC-8 NUM ILS ILS+VOS

BEST BEST GAP/%
13 50 1750.35 1636.53 6.50
14 50 642.41 632.01 1.62
15 50 1042.90 1053.85 -1.05
16 50 1207.65 1185.98 1.79
17 75 1210.32 1181.00 2.42
18 75 2131.60 2074.62 2.67
19 100 1168.61 1197.34 -2.46
20 100 1705.43 1659.15 2.71

AVG 1357.41 1327.56 1.78

Meanwhile, the average cost obtained by the MS ILS algo-
rithm is 1276.49, which is better than the RGTS algorithm.

Table VII mainly reflects the improvements of the algo-
rithms. BKS represents the best result among all algorithms.
From the table VII, it can be observed that the MS ILS
algorithm has found four best solutions, matching the count
of RGTS. The average deviation value of the MS ILS
algorithm is 0.59%, outperforming RGTS’s 1.04% in terms
of algorithm improvement. Thus, it can be concluded that
the MS ILS algorithm not only achieved the same number
of best solutions as the RGTS algorithm, but also has the
best average results among all algorithms, which verifies the
effectiveness of the improvement.

F. Convergence Analysis Of the Proposed Algorithm

To evaluate the performance of the proposed algorithm in
solving the HFMCVRP, we analyze the algorithm’s behavior
after multiple iterations to determine whether it converges to
the optimal solution after a sufficient number of iterations,
ensuring its stability and effectiveness. In the experiment, we
selected three different-sized cases as representatives: case
16 with 50 customers, case 17 with 75 customers, and case
19 with 100 customers. The convergence curves are shown
in Fig.6, where the vertical axis represents the cost and the
horizontal axis represents the number of iterations.

Through the convergence analysis of the algorithm, we
have some findings. First, when the iteration number reaches
40, the algorithm converges quickly. Second, when the itera-
tion number reaches 80, the algorithm still experiences some
fluctuations. Finally, when the iteration number reaches 100,
the algorithm tends to stabilize and approach the optimal
cost. The results indicate that as the number of iterations
increases, the algorithm gradually stabilizes, and the cost

Fig. 6. Convergence Curves Of Different Problem Scale Instances

approaches the optimal solution. This demonstrates that the
algorithm can effectively converge after multiple iterations,
validating its good convergence property and proving its
effectiveness in solving the HFMCVRP.

V. CONCLUSION

This paper mainly focuses on the HFMCVRP, which
has different capacity and cost vehicles and each vehicle
type of vehicle has limited number. Then, we proposed an
improved iterated local search algorithm to solve it. These
improvements include one method for generating initial
solutions and three strategies such as the LAS strategy to
provide adjustment flexibility, the LV strategy to ensure
the diversification of solutions, and the VOS strategy to
ensure optimal vehicle allocation. The proposed algorithm
was verified on benchmark instances, and it outperforms
existing methods for the same problem.

Further, we carried out some experiments to evaluate the
effectiveness of designed strategies. There are some findings
made from the experimental results. First, the results of
using any single strategy improvement method are better
than the basic ILS algorithm. When the basic ILS algorithm
is combined with LAS, LV or VOS, the improvement per-
centage values are 1.40%, 1.60% and 1.78% respectively.
Second, when the combination of two or three strategies is
applied in the proposed algorithm, the better solutions can
be found. The combination of all three strategies yielded
the best results, the improvement percentage value reaches
5.24%. These results prove that our designed strategies are
effective. In summary, the proposed algorithm proposed in
this paper can effectively solve the HFMCVRP.

In future, more effective algorithm could be proposed
owing to the complexity of the addressed problem. Mean-
while, more problem attributes such as multiple depots,
electric vehicles, and split delivery can be introduced into
the research of problem.
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