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Abstract—This paper investigates the pricing formula for
geometric Asian option where the underlying asset is driven
by the mixed weighted fractional Brownian motion(MWFBM)
with jumps. We obtain a closed form expression for the price
of a geometric Asian option by quasi-conditional expectation
pricing method under the risk-neutral measure. Moreover, we
also consider Asian power options when the payoff function
is a power function. Numerical experiments are performed to
analyze the influence of various factors such as the strike price,
jump intensity, power index on the valuation of Asian power
options.

Index Terms—Asian option, mixed weighted fractional Brow-
nian motion, jump diffusion, numerical analysis.

I. INTRODUCTION

BLACK and Scholes [1] introduced the renowned Black-
Scholes model, which assumes that the risk asset price

follows a stochastic process driven by standard geometric
Brownian motion. This model has laid the groundwork for a
plethora of option pricing research. However, these models
rely on the assumption of standard geometric Brownian
motion, which has significant limitations when applied to real
financial markets. Specifically, they fail to capture phenom-
ena such as scale effects, seasonal patterns, heavy tails, and
long-term correlations in asset price fluctuations. To address
these limitations, fractional Brownian motion (FBM) was
introduced. Kolmogorov [2] was the first to propose the frac-
tional Brownian motion model, which offers a more nuanced
representation of financial market behaviors by capturing
long-term correlation and self-similarity. Regarding the ap-
plication of FBM in option pricing, Necula [3] employed the
Fourier transform method and Girsanov transformation under
the risk-neutral measure to study European option pricing.
More recently, Kalantari et al. [4] utilized the finite difference
method to explore the pricing model of American put options
within the fractional Brownian motion framework. The finite
difference method is a numerical technique that discretizes
partial differential equations to solve option pricing problems
iteratively. This approach offers a more accurate and flexible
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way to model the complex dynamics of financial markets,
thereby improving the precision of option pricing models.

Bojedcki [5] introduced the weighted fractional Brownian
motion (WFBM) as an extension of the FBM. This novel
model exhibits unique properties that set it apart from both
Markov processes and semimartingales. These properties
include self-similarity and orbital continuity, which enable
a more nuanced representation of complex dynamics. No-
tably, the WFBM is distinguished from the FBM by its
non-stationary increments, which provide a more flexible
dependency structure. This flexibility allows the WFBM to
better capture the intricate behaviors observed in financial
markets compared to the traditional FBM. Sun [6] employed
probability and actuarial methods to derive the pricing for-
mula for European options under the weighted fractional
Brownian motion framework, elucidating the rationale be-
hind employing this model for option pricing purposes.

Cheridito [7] addressed the inherent arbitrage issue in the
FBM-based market model by introducing the mixed frac-
tional Brownian motion (MFBM). This approach involves
constructing a linear combination of Brownian motion and
fractional Brownian motion, and it has been proven that
the MFBM is equivalent to the standard Brownian motion
for certain parameter values, thereby effectively eliminating
the arbitrage possibility in the financial market [7], [8],
[9]. Building upon this foundation, Sun et al. investigated
the pricing of financial derivatives with credit risk and
the valuation of European currency options, developing a
pricing model based on the mixed fractional Brownian mo-
tion and deriving the corresponding fractional-order partial
differential equation [10], [11]. Xiao et al. [12] tackled the
pricing problem of warrants in a mixed-score Brownian
environment, employing numerical methods to arrive at a
solution. Furthermore, Khalaf et al [13] constucted a linear
combination of standard Brownian motion and weighted frac-
tional Brownian motion, which defined as a mixed weighted
fractional Brownian motion for the first time.

The introduction of jump-diffusion processes into the frac-
tional Brownian motion model is a crucial step in capturing
the intermittent jumps in stock prices caused by unexpected
events, such as financial crises or natural disasters. Kim et al.
[14] previously explored the analytical pricing formulas for
European currency options and exchange options under the
generalized mixed fractional Brownian motion, highlighting
the potential of this approach in option pricing. Xu et al. [15],
[16] further advanced this research by developing a European
option pricing model driven by fuzzy mixed weighted frac-
tional Brownian motion with jumps, successfully deriving
explicit solutions for European call and put options by
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transforming the partial differential equation into a Cauchy
problem.

In this paper, the present study seeks to extend these
findings by applying the mixed weighted fractional Brownian
motion with jumps to the pricing of geometric Asian power
option. By incorporating both fractional Brownian motion
and jump-diffusion processes, the proposed model can more
accurately reflect the complex dynamics of stock prices in
the real financial market. This paper aims to derive pricing
formulas for geometric Asian power options under this
enhanced model, providing valuable insights for practitioners
and researchers in the field of option pricing.

II. ASIAN OPTIONS AND MIXED WEIGHTED FRACTIONAL
BROWNIAN MOTION

Asian option, also known as average-price option, is
among the most actively traded options in the financial
derivatives market. Compared with the standard option, the
main difference between them is the yield of maturity, which
is based on the average of the price of the underlying asset
during a certain period of the option contract. It is precisely
because of this feature that the risk of artificial manipulation
that may exist in the market when Asian options are settled
is reduced. According to whether the strike price is fixed or
not, Asian option can be divided into fixed strike price and
floating strike price. According to the average method of
the underlying asset price, Asian options can be divided into
arithmetic average and geometric average. This paper mainly
considers the geometric Asian option pricing under the fixed
strike price. The payoff of a fixed strike price Asian option
is(G(T ) − K)+and(K − G(T ))+for a call and put option,
where G(T ) = exp[ 1T

∫ T

0
lnStdt].

Let(Ω, Ft, P )be a complete space with a filtration {Ft}t≥0

satisfying the usual conditions, where P represents physical
probability measure.

Definition 1. The mixed weighted-fBm ζa,bt =
{ζt(δ1, δ2)}t≥0 is a linear combination of the Brownian mo-
tion and the weighted fractional Brownian motion {Bt}t≥0,
which can be expressed as [16]

ζt(δ1, δ2) = δ1Bt + δ2B
a,b
t ,∀t ≥ 0, (1)

where a, b are the index and satisfy the condition a >
−1, |b| < 1 and |b| < a + 1. δ1, δ2 are positive constants,
{Bt}t≥0 and {Ba,b

t }t≥0 are independent of each other.
For a = 0, |b| < 1, the mixed weighted-fBm corresponds

to the celebrated fractional Brownian motion with Hurst
index b+1

2 , as well as to the well-known Brownian motion
when a = 0, b = 0.

The mixed weighted-fBm ζa,bt = {ζt(δ1, δ2)}t≥0 has the
following properties:
1) {ζt(δ1, δ2)}t≥0. is a central Gaussian process.
2) When t = 0, ζ0(δ1, δ2) = δ1B0 + δ2B

a,b
0 = 0.

3) ∀t, s ≥ 0, the covariance of ζt(δ1, δ2) and ζs(δ1, δ2)is

cov(ζt(δ1, δ2), ζs(δ1, δ2))

= δ21(t ∧ s) + δ22

∫ t∧s

0

ua[(t− u)b + (s− u)b]du,
(2)

where t ∧ s = 1
2 (t+ s− | t− s |).

4)∀t ≥ 0, E[(ζt(δ1, δ2))
2] = δ21t+2δ22

∫ t

0

ua(t−u)bdu. (3)

Lemma 1. The price at every t ∈ [0, T ] of a bounded
FH
t measureable claim U ∈ L2 is given by U(t) =

e−r(T−t)Ẽt[U ], where Ẽ[·] denotes the quasi-conditional
expectation with respect to the risk-neutral measure [9].

III. FINANCIAL MARKET MODELING

It is supposed that the following assumptions are hold:
1) There are no transaction costs or taxes in buying or selling
the stocks or options.
2) The transaction time and amount of assets are continuous.
3) The interest rate of deposits is same as that for loans.
4) The option can be exercised only at the maturity time.
5) The return of risk-free assets in time period is

dMt = rMtdt,M0 = 1, 0 ≤ t ≤ T, (4)

where constant r is the risk-free interest rate.
6) The stock price St is driven by the mixed weighted-FBM
which satisfies the following equation:

dSt =(r − λk)Stdt+ Stdζt(δ1, δ2) + (eJt − 1)StdNt

=(r − λk)Stdt+ δ1StdBt + δ2StdB
a,b
t

+ (eJt − 1)StdNt, (5)

where δ1 and δ2 represent the volatility of stock price. Nt

is a passion process with rate λ, k represents the expected
value of its change rate when the stock price jumps, and
k = EQ(e

Ji − 1), Jt is the jump size percent at time which
is a sequence of independent identically distributed random
variables, Ji ∼ N(µJ , δ

2
J). {Bt}t≥0, {Ba,b

t }t≥0 and {Jt}t≥0

are independent of each other.
By the Itô formula, we have

St =S0 exp{(r −
1

2
δ21 − λk)t− δ22

∫ t

0

ua(t− u)bdu

+ δ1Bt + δ2B
a,b
t +

Nt∑
i=1

Ji}, (6)

while Nt = n, we have
∑Ni

i=1 Ji ∼ N(nµJ , nδ
2
J), the above

formula can be rewrite as follows:

St =S0 exp{(r −
1

2
δ21 − λk)t− δ22

∫ t

0

ua(t− u)bdu

+ δ1Bt + δ2B
a,b
t + nµJ +

√
nδJZ}, (7)

where Z ∼ N(0, 1).

IV. PRICING FORMULA FOR GEOMETRIC ASIAN OPTION

We now obtain a closed form for the price of the geometric
Asian call option with fixed strike price K and maturity time
T .

Theorem 1. Suppose the stock price St follows the model
given by (7) under the risk-neutral probability measure and
the payoff function at the time of maturity is (G(T )−K)+.
Then the price of a geometric Asian call option C(S0, T ) is
given by

C(S0, T ) =e−rT
∞∑

n=0

(λT )ne−λT

n!
eµ̂n+

δ̂2n
2 N(d1)

−Ke−rT
∞∑

n=0

(λT )ne−λT

n!
N(d2), (8)
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where d1 = d2 +

√
1
3δ

2
1T +

δ22 T̃

T 2 + nδ2J ,

d2 =
ln S0

K + 1
2 (r − λk − 1

2δ
2
1)T − δT + nµJ√

1
3δ

2
1T +

δ22 T̃

T 2 + nδ2J

,

δT =
δ22
T

∫ T

0

∫ t

0

ua(t− u)bdudt,

T̃ =

∫ T

0

∫ t

0

∫ s

0

ua[(t− u)b + (s− u)b]dudsdt

+

∫ T

0

∫ T

t

∫ t

0

ua[(t− u)b + (s− u)b]dudsdt.

Proof. Let A(T ) = 1
T

∫ T

0
lnStdt, G(T ) = exp[A(T )].

Since the stock price St is log-normally distributed, the
random variable A(T ) has Gaussian distribution under the
risk-neutral probability measure. We calculate its mean and
variance at first. Let µ̂n and δ̂2n denote the mean and the
variance of the random variable A(T ) under the risk-neutral
probability measure. We notice that

µ̂n =Ẽ[A(T )] = Ẽ[
1

T

∫ T

0

lnStdt] =
1

T

∫ T

0

Ẽ[lnSt]dt

=
1

T

∫ T

0

[lnS0 + rt− λkt− 1

2
δ21t

− δ22

∫ t

0

ua(t− u)bdu+ nµJ ]dt

= lnS0 +
1

2
rT − 1

2
λkT − 1

4
δ21T − δT + nµJ ,

and

δ̂2n =var[A(T )] = Ẽ[A(T )− µ̂n]
2

=Ẽ[
1

T

∫ T

0

(δ1Bt + δ2B
a,b
t +

√
nδJZ)dt]2

=
δ21
T 2

∫ T

0

∫ T

0

Ẽ[BtBs]dsdt

+
δ22
T 2

∫ T

0

∫ T

0

Ẽ[Ba,b
t Ba,b

s ]dsdt+
nδ2J
T 2

Ẽ[

∫ T

0

Zdt]2

=
δ21
T 2

∫ T

0

∫ T

0

min(t, s)dsdt+ nδ2J

+
δ22
T 2

∫ T

0

∫ T

0

∫ t∧s

0

ua[(t− u)b + (s− u)b]dudsdt

=
1

3
δ21T + nδ2J

+
δ22
T 2

{∫ T

0

∫ t

0

∫ s

0

ua[(t− u)b + (s− u)b]dudsdt

+

∫ T

0

∫ T

t

∫ t

0

ua[(t− u)b + (s− u)b]dudsdt
}

=
1

3
δ21T +

δ22 T̃

T 2
+ nδ2J .

Hence the random variable A(T ) is log-normally dis-
tributed and the random variable logA(T ) has the Gaussian
distribution with the mean µ̂n and the variance δ̂2n as obtained
above. For the geometric Asian option, the price of a call

option is

C(S0, T ) = e−rT Ẽ[(G(T )−K)+]

=e−rT
∞∑

n=0

Ẽ[(G(T )−K)+|N(T ) = n]P [N(T ) = n]

=e−rT
∞∑

n=0

(λT )ne−λT

n!

∫
D1

(ex −K)
1√
2πδ̂n

e
− (x−µ̂n)2

2δ̂2n dx,

The above formula is converted by the total probability
formula. The following computations give the explicit for-
mula for the function C(S0, T ). Observe that

C(S0, T )

=e−rT
∞∑

n=0

(λT )ne−λT

n!

∫
D1

(eµ̂n+δ̂ny −K)
1√
2π

e−
y2

2 dy

=e−rT
∞∑

n=0

(λT )
n
e−λT

n!
eµ̂n+

δ̂2n
2

∫ ∞

−d2

1√
2π

e−
(y−δ̂n)2

2 dy

−Ke−rT
∞∑

n=0

(λT )ne−λT

n!

∫ ∞

−d2

1√
2π

e−
y2

2 dy

=e−rT
∞∑

n=0

(λT )ne−λT

n!
eµ̂n+

δ̂2n
2

∫ ∞

−d2−δ̂n

1√
2π

e−
z2

2 dz

−K
∞∑

n=0

(λT )ne−λT

n!
e−rTN(d2)

=e−rT
∞∑

n=0

(λT )ne−λT

n!
eµ̂n+

δ̂2n
2 N(d1)

−Ke−rT
∞∑

n=0

(λT )ne−λT

n!
N(d2),

where

D1 = {x : G(T ) ≥ K} =
{
x : eA(T ) ≥ K

}
= {x : ex ≥ K} = {x : x ≥ lnK}

=
{
y : µ̂n + δ̂ny ≥ lnK

}
=

{
y : y ≥ lnK − µ̂n

δ̂n

}
= {y : y ≥ −d2} .

V. PRICING FORMULA FOR GEOMETRIC ASIAN POWER
OPTION

We will now consider computation of the price of Asian
Power call option under mwfBm environment where the
payoff for a call option with strike price K and maturity
time T is (Gα(T )−K)+ for some fixed integer n ≥ 1.

Theorem 2. Suppose the stock price St follows the model
given by (7) under the risk-neutral probability measure and
the payoff function at the time of maturity is (Gα(T )−K)+.
Then the price of a geometric Asian call option C(S0, T ) is
given by

C(S0, T ) =e−rT
∞∑

n=0

(λT )ne−λT

n!
eαµ̂n+

1
2α

2δ̂2nN(d3)

−Ke−rT
∞∑

n=0

(λT )ne−λT

n!
N(d4), (9)
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where

d3 = d4 + α

√
1

3
δ21T +

δ22 T̃

T 2
+ nδ2J ,

d4 =
ln S0

α√
K

+ 1
2 (r − λk − 1

2δ
2
1)T − δT + nµJ√

1
3δ

2
1T +

δ22 T̃

T 2 + nδ2J

.

Proof. For the geometric Asian power option, the payoff
function is (Gα(T )−K)+ = (exp(αA(T ))−K)+. Follow-
ing the arguments given in Theorem 6, it follows that

C(S0, T ) = e−rT Ẽ[(Gα(T )−K)+]

=e−rT
∞∑

n=0

Ẽ[(Gα(T )−K)+|N(T ) = n]P [N(T ) = n]

=e−rT
∞∑

n=0

(λT )ne−λT

n!

×
∫
D2

(eαx −K)
1√
2πδ̂n

e
− (x−µ̂n)2

2δ̂2n dx. (10)

The following computations give an explicit formula the
function C(S0, T ). Observe that

C(S0, T ) = e−rT
∞∑

n=0

(λT )ne−λT

n!

×
∫
D2

(eα(µ̂n+δ̂ny) −K)
1√
2π

e−
y2

2 dy

=e−rT
∞∑

n=0

(λT )ne−λT

n!
eαµ̂n+

1
2α

2δ̂2n

×
∫ ∞

−d4

1√
2π

e−
(y−αδ̂n)2

2 dy

−Ke−rT
∞∑

n=0

(λT )ne−λT

n!

∫ ∞

−d4

1√
2π

e−
y2

2 dy

=e−rT
∞∑

n=0

(λT )ne−λT

n!
eαµ̂n+

1
2α

2δ̂2n

∫ ∞

−d4−αδ̂n

1√
2π

e−
z2

2 dz

−Ke−rT
∞∑

n=0

(λT )ne−λT

n!
N(d4)

=e−rT
∞∑

n=0

(λT )ne−λT

n!
eαµ̂n+

1
2α

2δ̂2nN(d3)

−Ke−rT
∞∑

n=0

(λT )ne−λT

n!
N(d4),

where

D2 = {x : Gα(T ) ≥ K} =
{
x : eαA(T ) ≥ K

}
= {x : eαx ≥ K} =

{
x : x ≥ 1

α
lnK

}
=

{
y : µ̂n + δ̂ny ≥ ln

α
√
K
}
=

{
y : y ≥ ln α

√
K − µ̂n

δ̂n

}
= {y : y ≥ −d4} .

VI. NUMERICAL EXPERIMENTS

In this section, a series of numerical experiments are
performed to investigate the impact of various factors on
geometric Asian option. Specifically, the effect of the strike

price K, the jump intensity λ, the power exponent α, and
the parameters a and b are examined.

Firstly, parameters are assumed as follows: S0 = 10, T =
0.5, r = 0.05, δ1 = δ2 = 0.2, n = 8, µJ = 0.03, δJ = 0.06.

Fixed parameters α = 2, a = b = 0.2, according to
Theorem 2, the value of Asian power option C(S0, T ) under
different strike price K and jump intensity λ can be obtained,
as shown in Table I.

TABLE I: The value of Asian power option for different
strike price and jump intensity

K C
λ1 = 1 λ2 = 3 λ3 = 5 λ4 = 7 λ5 = 9

70 34.550 38.532 42.538 45.916 47.347
75 30.039 34.064 38.105 41.544 43.130
80 25.768 29.826 33.892 37.379 39.105
85 21.805 25.874 29.940 33.456 35.302
90 18.206 22.248 26.286 29.802 31.743
95 15.008 18.978 22.949 26.436 28.442
100 12.225 16.074 19.939 23.363 25.406
105 9.851 13.529 17.252 20.583 22.633
110 7.861 11.328 14.876 18.085 20.117

Fig. 1: Asian power option value against different strike price
and jump intensity values

1.75 1.8 1.85 1.9 1.95 2 2.05 2.1 2.15

0

10

20

30

40

50

60

70

C

Fig. 2: The impact of power index α on the pricing of Asian
power call option

Fig.1 illustrates the variation in the value of Asian power
call option as the strike price and jump intensity change. It is
evident that there is a negative correlation between the value
of the Asian power call option and the strike price. As the
strike price increases, the payoff of the option at maturity
decreases, which in turn reduces the corresponding option
value.
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Conversely, the value of the Asian power option moves in
the same direction as the jump intensity. The jump intensity
reflects the degree of unsystematic risk in the underlying
asset. As the jump intensity increases, the underlying asset
experiences more pronounced fluctuations, characterized by a
higher upper limit while the lower bound remains unchanged.
This leads to an increase in the option value.

Fig. 3: The impact of parameter b on the pricing of Asian
power call option with a = 0.2, T = 0.5

Fig. 4: The impact of parameter b on the pricing of Asian
power call option with a = 0.2, T = 1.5

Fig. 5: The impact of parameter a on the pricing of Asian
power call option with b = 0.2, T = 0.5

Fig. 6: The impact of parameter a on the pricing of Asian
power call option with b = 0.2, T = 1.5

Fixed parameters K = 100, λ = 6 and a = b = 0.2, Fig.2
shows the positive correlation between the power index α and
the price of Asian power option. It can be seen that the option
price also rises with the increase of the α. In particular, when
the power index exceeds a certain threshold, the increase of
the power index has a more significant impact on the option

price, which fully reflects the leverage effect of the power
option.

While parameters α = 2,K = 100 and λ = 6, then we
investigate how the parameters a and b affect the pricing
model by utilizing the control variable method. Fig.3-Fig.6
are the variation diagrams of the value of Asian power call
option with the different index a and b. As depicted in
Fig.3-Fig.6, we observe that when the maturity date is set
at T = 0.5, the price of Asian power call option experiences
a decline as parameters a and b increase. However, when the
maturity date is set at T = 1.5, the option price experiences
an increase as parameters a and b increase.

VII. CONCLUSIONS

This paper investigated the geometric Asian option pricing
model in the environment of the mixed weighted fractional
Brownian motion with jump intensity. We derived explicit
solutions for both Asian call option and Asian power option
by using the quasi-martingale pricing method. Finally, we
simulated the impact of strike price, jump intensity, power
index and parameters a, b on the pricing of option.
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